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1 Introduction

Lewis (1969) considered natural language as a convention in a community

and analyzed it using the concept of Nash equilibrium. Faithfully following

Lewis’s idea, Wärneryd (1993) represents such communication between two

players in a sender-receiver game. We also consider a sender-receiver game

consisting of two players, a sender and a receiver. At the beginning of the

game, the sender observes a state of the world picked up by Nature according

to the uniform distribution on the set of states. After observing a state, the

sender chooses a signal from a set of signals. Subsequently, the receiver is

informed the signal chosen by the sender and associates the signal with a

state in the set of states. If the state associated by the receiver coincides

with the initial state observed by the sender, then each player gets a payoff

of 1, and 0 otherwise.

Let’s consider a situation where the set of states consists of three states

and the set of signals also three signals.1 This situation is formulated by a

pair of 3 × 3 stochastic matrices, (P,Q), of which each entry is denoted by

pij ≥ 0 and qji ≥ 0 respectively, that is,

(P,Q) =




p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,


q11 q12 q13

q21 q22 q23

q31 q32 q33


 ,

where
∑3

j=1 pij = 1 for each i = 1, 2, 3, and
∑3

i=1 qji = 1 for each j = 1, 2, 3.

Each pij is the probability that the sender chooses a signal j after observing

a state i, i.e., the sender’s behavior strategy. Each qji is the probability that

1We shall formally give the model of more general cases in the next section.

2



the sender associates the given signal j with a state i, i.e., the receiver’s

behavior strategy.2 Afterwards we call this situation the 3 × 3 one. Given

such a (P,Q), the payoff for each player is equally given by

1

3
tr(PQ) :=

1

3

3∑
i=1

(
3∑

k=1

pijqji).

Since each signal does not have any pre-assigned meaning, we are inter-

ested in dynamically stable states of a population where many senders and

many receivers are randomly and repeatedly matched to play the sender-

receiver games described above. This is why we examine the symmetric

equilibrium strategy of this sender-receiver games in the context of normal

evolutionary game theory. Trapa and Nowak (2000) show that an evolu-

tionary stable strategy of a sender-receiver game is a pair of a permutation

matrix P and its transpose matrix Q. In the above 3× 3 situation, a pair of

(P,Q) =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1




is one of the class of the evolutionary stable strategies. Their finding implies

that the sender-receiver games of each n×m situation with n ̸= m does not

have the evolutionally stable strategy. From a static standpoint, Pawlow-

itsch (2008) rigorously characterizes the class of neutrally stable strategies

in general situations where the number of possible states is not necessarily

equal to that of available signals. While neutrally stable strategies are Lya-

2This formulation of a sender-receiver game follows the style of Nowak and Krakauer
(1999).
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punov stable under the replicator dynamics, Hofbauer and Hutteger (2015)

investigate the dynamic stability of the rest point close to each neutrally

stable strategy under the selection-mutation dynamics that is a perturba-

tion of replicator dynamics with small mutation rates. They focus on the

sender-receiver games of the 3 × 3 situations above and prove the existence

of certain rest points of the dynamics close to Nash strategies of the sender-

receiver games.3 Furthermore, they show that all but the rest points of the

dynamics close to the evolutionally stable strategies are dynamically unsta-

ble. More specifically, they find the first-order approximated rest points of

the dynamics close to typical neutrally stable strategies as following,




1 0 0

1 0 0

0 1
2

1
2

 ,


1
2

1
2

0

0 0 1

0 0 1


 ,




1 0 0

1 0 0

0 1 0

 ,


1
2

1
2

0

0 0 1

ν ν 1− 2ν


 ,

where ν < 1
2
, and that each family of those rest points converges to the

corresponding typical neutrally stable strategy above as each mutation rate

of the dynamics goes to zero.4 While there exist those rest points close to

these typical neutrally stable strategies, they show that those rest points

lose asymptotic stability under the selection-mutation dynamics. We follow

their course in research and extend the object of investigation to the sender-

receiver games with n states andm signals, that is, we admit that the number

3Hofbauer and Hutteger (2008) investigate binary sender-receiver games consisting of
two states of the world and two signals, using the same selection-mutation dynamics. They
indicate that the long-term behavior of the dynamics depends on the mutation rates.

4In each square bracket, the former parenthesis is the sender’s P and the latter one the
receiver’s Q.
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of possible states is not equal to that of available signals in our setup.

Although there is no evolutionally stable strategy in the sender-receiver

games with n ̸= m (Trapa and Nowak, 2000), we find two distinct classes of

neutrally stable strategies that each neighborhood of the strategy in these

classes contains a rest point that can be asymptotically stable under the

selection-mutation dynamics. The first class is the set of neutrally stable

strategies that have a stretched form of the evolutionally stable strategy in a

certain way.5 We name the neutrally stable strategy in this class an extended-

signaling system, following Lewis (1969) and Trapa and Nowak (2000), who

called the evolutionary stable strategy in the sender-receiver games a signal-

ing sytem.

The second clsss is a class of neutrally stable strategies with |m− n| = 1

and auxiliary conditions. We name the strategy in this class a particular-

hybrid system. We show that each particular-hybrid system has an asymp-

totically stable rest point close to itself. At Last, we show that all Nash

strategies but these two strategies are not asymptotically stable.

Hofbauer and Huttegger (2015) argues that “the second-order forces that

are governed by mutation can increase the chance of successful signaling.”

Observing the dynamic stability of an exteded-signaling system and a particular-

hybrid system in this note, their statement above is valid even if the number

of states, n, is different from the number of signals, m.6

Finally, we present the properties of all the Nash strategies for the rest

point near itself not to be asymptotically stable. We show that all Nash

5In Section 3 we shall propose the definition of these classes and precisely give the
meaning of the word ‘stretched ’.

6For the most part, we describe the case n ≤ m since the argument for another case
n > m is similar.
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strategies but extended-signaling systems and particular hybrid systems are

not asymptotically stable.

The rest of this note is organized as follows. In Section 2, we present the

formal model of a sender-receiver game and the definition of the selection-

mutation dynamics for our model. In Section 3, we propose our definition

of an extended-signaling system and prove that a rest point close to each

extended-signaling system exists. Moreover, we explicitly describe the char-

acteristic polynominal of the first-order approximated Jacobian matrix at a

rest point close to each extended-signaling system and show the conditions

among parameters such as mutation rates, the number of states n, and that

of signals m, for the rest point to be asymptotically stable. Subsequently, we

propose our definition of a particular hybrid-sytem and determine whether a

rest point close to a particular hybrid-system exists. Moreover, we explicitly

describe the the characteristic polynomial of the first-order approximated

Jacobian matrix at the rest point close to a particular hybrid-system and

investigate the dynamic property of the rest point. In addition, we prove

the rest point close to other systems to be unstable. Section 4 concludes the

note.

2 The model

Our sender-receiver game consists of two players; one is a sender and the

other is a receiver. Suppose that there are n states of the world (given by

the set N = {1, 2, . . . , n}, n ≥ 2) and m signals (given by the set M =

{1, 2, , . . . ,m},m ≥ 2). In this note, we explore the case n ̸= m.
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This game proceeds as follows. In the first stage, Nature chooses a state of

the world i ∈ N according to the uniform probability distribution of the set

of states N , and the sender only learns the choice. In the second stage, the

sender chooses a signal j ∈ M according to her mixed strategy, represented

by an n×m stochastic matrix P . Each entry pij of P is the probability that

the sender chooses a signal j ∈ M given a state i ∈ N that Nature has chosen.

7 The set of the sender’s mixed strategies is denoted by P△
n×m. The receiver

observes only the signal by the sender, not the choice of Nature. In the third

stage, the receiver associates the observed signal j ∈ M with a state k ∈ N

according to his mixed strategy, represented by an m× n stochactic matrix

Q. Each entry qjk of Q is the probability that the receiver associates the

observed signal j ∈ M with a state k ∈ N .8 The set of the receiver’s mixed

strategies is denoted by Q△
m×n. Finally, the payoff for each player is realized

and the game ends. For each pair of strategies (P,Q) ∈ P△
n×m ×Q△

m×n, the

payoff of each player is equally given by

π(P,Q) =
1

n

n∑
i=1

m∑
j=1

pijqji =
1

n
tr(PQ).

Following the tradition of evolutionary game theory, we consider a popu-

lation that is consisting of many players who play the sender-receiver game

described above with a randomly matched opponent. We think a pair of

a sender and a receiver matrix (P,Q) to be each player’s strategy, and

P△
n×m ×Q△

m×n is interpreted not only as the set of mixed strategies but also

the population’s average strategy. In a match, we assume that each player

7Each ith row of P is (pi1, pi2, . . . , pim) with
∑m

j=1 pij = 1.
8Each jth row of Q is (qj1, qi2, . . . , qjn) with

∑n
i=1 qji = 1.
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finds herself or himself in the role of the sender or the receiver with equal

probabilities. In a match of a player with a strategy (P,Q) and the opponent

with a strategy (P ′, Q′), the payoff for each player is given by

F [(P,Q), (P ′, Q′)] =
1

2
π(PQ′) +

1

2
π(P ′Q).

We explore the game Γn,m = {P△
n×m×Q△

m×n, F [(P,Q), (P ′, Q′)]} and its Nash

equilibrium which is an equilibrium composition of the population.

Following a usual convention, a strategy played in a symmetric Nash

equilibrium, i.e., a strategy that is a best response to itself, is called a Nash

strategy. Pawlowitsch (2008) shows that a pair (P,Q) ∈ P△
n×m × Q△

m×n is

a Nash strategy of Γn,m if and only if P ∈ B(Q) and Q ∈ B(P ), where

B(Q) ∈ P△
n×m and B(P ) ∈ Q△

m×n denote the best-response correspondence

of the sender and receiver, respectively. Γn,m has an abundance of Nash

strategies, but might have no evolutionally stable strategy (ESS) because

we allow the case n ̸= m (Trapa and Nowak, 2000). Hence, we turn to a

weaker evolutionally stability concept than ESS to narrow down the set of

Nash strategies.

Definition 1. A strategy (P,Q) ∈ P△
n×m ×Q△

m×n is neutrally stable if

(i) (P,Q) is a Nash strategy and

(ii) whenever (P ′, Q′) ∈ B(Q)×B(P )\{(P,Q)}, π(P,Q) ≥ π(P ′, Q′).

Pawlowitsch (2008) characterizes of the neutrally stable strategies of Γn,m

with rigorous proofs.

Proposition 1. Let (P,Q) ∈ P△
n×m × Q△

m×n be a Nash strategy. (P,Q) is

neutrally stable if and only if

8



(i) at least one of the two matrices, P or Q, has no zero column, and

(ii) neither P nor Q has a column with multiple maximal elements that are

strictly between 0 and 1.

Although the set of neutrally stable strategies of Γn,m turns out to be

much smaller than the set of Nash strategies, Γn,m has yet a large set of

neutrally stable strategies. To select a certain strategy from among a set of

neutrally stable strategies, we use an explicitly formulated dynamic selection

process for strategy distribution with small noises.

Population Dynamics

We consider an (m−1)-dimensional simplex Si = {(pi1, pi2, . . . , pim)|
∑m

j=1 pij =

1, pij ≥ 0 for each j ∈ M} to be the set of population distributions over the

set of pure strategies for senders who have observed a state i ∈ N that Nature

has chosen in the first stage. Similarly we consider an (n − 1)-dimensional

simplex Sj = {(qj1, qj2, . . . , qjn)|
∑n

k=1 qjk = 1, qjk ≥ 0 for each j ∈ N} to be

the set of population distributions of pure strategies for receivers who have

observed a signal j ∈ M that the opponent senders have chosen in the second

stage. The set of population states is defined as S = (Πi∈NSi) × (Πj∈MSj),

which stands for the set of behavioral strategies in the signaling game.

Our dynamic selection process is described by a dynamical system of

differential equations defined for all points in S. The dynamical system is

formulated as the following 2mn differential equations:

ṗij = pij(qji −
m∑

s∈M

pisqsi) + ε(1−mpij),
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q̇ji = qji(pij −
n∑

t∈N

qjtptj) + δ(1− nqji),

where ε and δ are small, uniform mutation parameters. We denote this

system by S ′ = Φ(S). This dynamical system is called the selection-mutation

dynamics (Hofbauer, 1985). If ε = δ = 0, the selection-mutation dynamics

coincides with the replicator dynamics.

3 Results

We propose two category of equilibrium concepts that satisfy the neutrally

stability defined above and some additional properties. We refer to the strat-

egy in the first category as an extended-signaling system and the strategy in

the second category as a particular hybrid system. We shall show that the

strategy of the first category has its neighborhood that contains a rest point

which can be asymptotically stable under our selection-mutation dynamics

and that in a special case, |m − n| = 1, of our sender-receiver game, neigh-

borhood of the strategy with the second category contains a rest point which

can be asymptotically stable under the selectin-mutation dynamics. How-

ever, we find that a rest point close to other systems is not asymptotically

stable.

3.1 Extended-signaling systems

We introduce some notations to simplify our expression of a extended-signaling

system. We denote by pj the jth column vector of the matrix P which is

a strategy for the sender, and by qi the ith column vector of the matrix

10



Q which is a strategy for the receiver, i.e., P = (p1,p2, . . . ,pm), and Q =

(q1,q2, . . . ,qn). Further, let ZP = {j ∈ M | pj is a zero-column of the matrix P}

and ZQ = {i ∈ N | qi is a zero-column of the matrix Q}.

Definition 2. We say that a strategy (P ∗, Q∗) ∈ P△
n×m × Q△

m×n is an

extended-signaling system if the following properties hold:

whenever n ≤ m,

(i) |ZP ∗| = m− n,

(ii) p∗ij = q∗ji = 1 or p∗ij = q∗ji = 0 for each i ∈ N and j ∈ M\ZP ,

(iii) q∗ji =
1
n
for each j ∈ ZP and i ∈ N ;

whenever n > m,

(i) |ZQ∗| = n−m,

(ii) p∗ij = q∗ji = 1 or p∗ij = q∗ji = 0 for each j ∈ M and i ∈ N\ZQ,

(iii) p∗ij =
1
m

for each i ∈ ZQ and j ∈ M ;

where
(
p∗ij, q

∗
ji

)
(i,j)∈N×M

denote the entries of the extended-signaling system

(P ∗, Q∗).

The strategies in Example 1 below, (P ∗
1 , Q

∗
1) and (P ∗

2 , Q
∗
2), are those of

extended-signaling systems.9 From Proposition 1, we can see that not only

these examples but the extended-signaling system generally has neutral sta-

bility.

Example 1.

P ∗
1 =

 1 0 0

0 0 1

, Q∗
1 =


1 0

1
2

1
2

0 1

,

9Here, ϕ denotes an empty set.
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where ZP ∗
1
= {2}, ZQ∗

1
= ϕ.

P ∗
2 =



1 0 0

1
3

1
3

1
3

0 0 1

1
3

1
3

1
3

0 1 0


, Q∗

2 =


1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

,

where ZP ∗
2
= ϕ, ZQ∗

2
= {2, 4}.

We introduce additional notatins to give clear expositions in this subsec-

tions. Given an extended-signaling system (P ∗, Q∗), we divide the set N×M

into subsets, Ii, i = 1, 2, 3 for the case n ≤ m, and I ′i, i = 1, 2, 3 for the case

n > m:

I1 = {(i, j) ∈ N ×M | p∗ij = 1},

I2 = {(i, j) ∈ N ×M | j /∈ ZP ∗ , p∗ij = 0},

I3 = {(i, j) ∈ N ×M | j ∈ ZP ∗};

I ′1 = {(i, j) ∈ N ×M | q∗ij = 1},

I ′2 = {(i, j) ∈ N ×M | i ̸∈ ZQ∗ , q∗ji = 0},

I ′3 = {(i, j) ∈ N ×M | i ∈ ZQ∗}.

For (P ∗
1 , Q

∗
1) in Example 1, we can easily check that I1 = {(1, 1), (2, 3)}, I2 =

{(1, 3), (2, 1)}, I3 = {(1, 2), (2, 2)}, and for (P ∗
2 , Q

∗
2), I

′
1 = {(1, 1), (3, 3), (5, 2)}, I ′2 =

{(1, 2), (1, 3), (3, 1), (3, 2), (5, 1), (5, 3)}, I ′3 = {(2, 1), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3)}.

We find a rest point of the selection-mutation dynamics close to each

extended-signaling system. A rest point of our dynamical system, S ′ = Φ(S),

is generally defined as a point that satisfies Φ
((
pij, qji)(i,j)∈N×M

)
= 0, where

0 is a zero-column vector. Especially, we focus on a rest point called to be

symmetric for the corresponding extended-signaling system.
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Definition 3. Let (P ∗, Q∗) be an extended-signaling system. We say that a

rest point (P̃ (ε, δ), Q̃(ε)) ∈ S has a symmetric form for (P (ε, δ), Q(ε, δ)) if

· For n ≤ m, for some real values ε1, ε2, δ1, δ2,

p̃ij(ε, δ) =


1− (n− 1)ε1 − (m− n)ε2 for each (i, j) ∈ I1,

ε1 for each (i, j) ∈ I2,

ε2 for each (i, j) ∈ I3;

q̃ji(ε, δ) =


1− (n− 1)δ1 for each (i, j) ∈ I1,

δ1 for each (i, j) ∈ I2,

q1 for each (i, j) ∈ I3,

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

Example 2.

For an extended-signaling system (P ∗
3 , Q

∗
3),

P ∗
3 =


1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

 , Q∗
3 =



1 0 0

1
3

1
3

1
3

0 0 1

1
3

1
3

1
3

0 1 0


.

the symmetric rest point of the selection-mutation dynamics has a form such

that
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P̃3(ε, δ) =


1− 2ε1 − 2ε2 ε2 ε1 ε2 ε1

ε1 ε2 ε1 ε2 1− 2ε1 − 2ε2

ε1 ε2 1− 2ε1 − 2ε2 ε2 ε1

,

Q̃3(ε, δ) =



1− 2δ1 δ1 δ1

q1 q1 q1

δ1 δ1 1− 2δ1

q1 q1 q1

δ1 1− 2δ1 δ1


,

where ZP ∗ = {2, 4}, I1 = {(1, 1), (3, 3), (2, 5)},

I2 = {(2, 1), (3, 1), (1, 3), (2, 3), (1, 5), (3, 5)},

I3 = {(1, 2), (2, 2), (3, 2), (1, 4), (2, 4), (3, 4)}.

Theorem 1. Let (P ∗, Q∗) ∈ P△
n×m × Q△

m×n be an extended-signaling sys-

tem. Then, for each pair of mutation rates, (ε, δ), there exists a neigh-

borhood of the point (P ∗, Q∗) that contains a unique symmetric rest point,

(P̃ (ε, δ), Q̃(ε, δ)), of the selection-mutation dynamics.

Proof. We consider the case n ≤ m and abbreviate the proof for the case

n > m because it is similar to that of the former.

Fix a signal j of (i, j) ∈ I3 to be j̄. Since
∑n

i=1 qj̄i = nq1 = 1, we have

q1 =
1
n
.

We sequentially find the values of the entries of the symmetric rest point,

ε1, ε2, and δ1 consistent with the conditions required for the rest point, ṗ = 0

and q̇ = 0.

We write down our dynamical system S ′ = Φ(S) of the selection-mutation

dynamics:
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ṗ11 = p11(q11 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp11),

ṗ12 = p12(q21 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp12),
...

ṗnm = pnm(qmn − pn1q1n − pn2q2n − · · · − pnmqmn) + ε(1−mpnm),

q̇11 = q11(p11 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq11),

q·12 = q12(p21 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq12),
...

q̇mn = qmn(pnm − qm1p1m − qm2p2m − · · · − qmnpnm) + δ(1− nqmn).

By removing equations, ṗij = 0 and q̇ij = 0 with (i, j) ∈ I1, and q̇ij = 0

with (i, j) ∈ I3, from our whole system, Φ(S) = 0, we obtain a following

sub-system of Φ(S) = 0, which is denoted by F = 0.

F = 0 ⇔


ṗij = 0 for each (i, j) ∈ I2,

ṗij = 0 for each (i, j) ∈ I3,

q̇ji = 0 for each (i, j) ∈ I2.

.

By substituting the entries (p̃ij, q̃ji) of Definition 3 and q1 =
1
n
into the sub-

system F = 0, we get a following reduced system, f(ε1, ε2, δ1; ε, δ) = 0,

consisting only of three equations, fi(ε1, ε2, δ1; ε, δ) = 0, i = 1, 2, 3.

F (ε1, ε2, δ1; ε, δ) = 0 ⇔



p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I2,

p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I3,

q̃ji[p̃ij −
∑

(t,j)∈N×M

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each (i, j) ∈ I2,

.
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⇔



p̃ij[q̃ij −
∑

(i,s)∈I1

p̃isq̃sj −
∑

(i,s)∈I2

p̃isq̃sj −
∑

(i,s)∈I3

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I2,

p̃ij[q̃ij −
∑

(i,s)∈I1

p̃isq̃sj −
∑

(i,s)∈I2

p̃isq̃sj −
∑

(i,s)∈I3

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I3,

q̃ji[p̃ji −
∑

(t,j)∈I1

q̃jtp̃tj −
∑

(t,j)∈I2

q̃jtp̃tj −
∑

(t,j)∈I3

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each (i, j) ∈ I2,

⇔


ε1

{
δ1 − (n− 1)ε1δ1 − [1− (n− 1)ε1 − (m− n)ε2] [1− (n− 1)δ1]− 1

n
(m− n)ε2

}
+ ε(1−mε1) = 0,

ε2
{

1
n
− (n− 1)ε1δ1 − [1− (n− 1)ε1 − (m− n)ε2] [1− (n− 1)δ1]− 1

n
(m− n)ε2

}
+ ε(1−mε2) = 0,

δ1 {ε1 − (n− 1)δ1ε1 − [1− (n− 1)δ1] [1− (n− 1)ε1 − (m− n)ε2]}+ δ(1− nδ1) = 0.

From this, we see that (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0) is a solution to the

reduced system, i.e., fi(0, 0, 0; 0, 0) = 0, i = 1, 2, 3.

Let Df denote the Jacobian matrix of f1, f2, f3 with respect to ε1, ε2, δ1, that

is,

Df =


∂f1
∂ε1

∂f1
∂ε2

∂f1
∂δ1

∂f2
∂ε1

∂f2
∂ε2

∂f2
∂δ1

∂f3
∂ε1

∂f3
∂ε2

∂f3
∂δ1

 .

At the point (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0), we have

det(Df
(
0)
)
=

∣∣∣∣∣∣∣∣∣
−1 0 0

0 1−n
n

0

0 0 −1

∣∣∣∣∣∣∣∣∣ =
1− n

n
̸= 0,

where det(Df(x)) denotes the determinant ofDf(x) at point x = (ε1, ε2, δ1; ε, δ).

The last inequality holds because we assume n ≥ 2 in our model. By the im-

plicit function theorem, our reduced system, fi(ε1, ε2, δ1; ε, δ) = 0, i = 1, 2, 3,
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defines ε1, ε2, and δ1 as continuously differentiable functions of ε and δ in some

neighborhood of (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0).10 We denote these functions

by ε1(ε, δ), ε2(ε, δ), and δ1(ε, δ).

Inserting qji =
1
n
and pij = ε2 into the following equations which have

been removed from our whole sytem, Φ(S) = 0, to construct the previous

sub-system, fi(ε1, ε2, δ1; ε, δ) = 0, i = 1, 2, 3.

q̇ji = qji(pij −
n∑

t=1

qjtptj) + δ(1− nqji) with (i, j) ∈ I3,

we have

q̇ji = q̃ji(p̃ij−
n∑

t=1

q̃jtp̃tj)+δ(1−nq̃ji) =
1

n
(ε2−n× 1

n
×ε2)+δ(1−n× 1

n
) = 0.

The constant values, q̃ji =
1
n
and p̃ij = ε2 for each (i, j) ∈ I3, of the symmetric

rest point are consistent with the condition required of the rest point, q̇ji = 0.

It remains to prove that the functions ε1(ε, δ), ε2(ε, δ), and δ1(ε, δ) satisfy

the equations ṗij = 0 and q̇ji = 0 with (i, j) ∈ I1 which have been removed.

From our fixed form of the rest point, we can assert that for each (i, j) ∈ I2,

ṗij = ε̇1(ε, δ) = 0, q̇ji = δ̇1(ε, δ) = 0, and for each (i, j) ∈ I3, ṗij = ε̇2(ε, δ) =

0. Since we have also fixed pij = 1−(n−1)ε1−(m−n)ε2 and qji = 1−(n−1)δ1

for each (i, j) ∈ I1, we get ṗij = −(n − 1)ε̇1(ε, δ) − (m − n)ε̇2(ε, δ) = 0 and

q̇ji = −(n− 1)δ̇1(ε, δ) = 0.

Therefore, we conclude that for all (i, j) ∈ M × N , ṗij = q̇ji = 0 with

(ε1, ε2, δ1) = (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ)), which proves the theorem. □
10That is, we get a unique candidate of values of ε1, ε2, and δ1, for each pair of mutation

rates, (ε, δ).
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We show the form of the first-order approximation to the symmetric rest

point close to the corresponding exteded-signaling systems. From this form,

we can easily see that an extended-signaling system is the limit point of the

family of the symmetric rest points as (ε, δ) goes to (0, 0). Furthermore,

using this form, we explore the stability of the rest point of our dynamical

system.

Corollary 1. The first-order approximated entries
(
p̃ij(ε, δ), q̃ji(ε, δ)

)
(i,j)∈N×M

of the rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S in the neighborhood of an extended-

signaling system (P ∗, Q∗) is explicitly given as shown below: Moreover,

lim
(ε,δ)→(0,0)

(
P̃ (ε, δ), Q̃(ε, δ)

)
= (P ∗, Q∗).

· For n ≤ m,

p̃ij(ε, δ) =


1 + 2n−mn−1

n−1
ε for each (i, j) ∈ I1,

ε for each (i, j) ∈ I2,

n
n−1

ε for each (i, j) ∈ I3;

q̃ji(ε, δ) =


1− (n− 1)δ for each (i, j) ∈ I1,

δ for each (i, j) ∈ I2,

1
n

for each (i, j) ∈ I3;
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· For n > m,

p̃ij(ε, δ) =


1− (m− 1)ε for each (i, j) ∈ I ′1,

ε for each (i, j) ∈ I ′2,

1
m

for each (i, j) ∈ I ′3;

q̃ji(ε, δ) =


1 + 2m−mn−1

n−1
δ for each (i, j) ∈ I ′1

δ for each (i, j) ∈ I ′2

m
m−1

δ for each (i, j) ∈ I ′3,

Proof. We consider the case n ≤ m and abbreviate the proof for the case

n > m because it is similar to that of the former.

Tayler’s formula for the function (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ)) about (ε, δ) =

(0, 0) is given by


ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

 =


ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

+


∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

 .

Because (ε1(0, 0), ε2(0, 0), δ1(0, 0)) is a solution of the system,

fi(ε1(0, 0), ε2(0, 0), δ1(0, 0); 0, 0) = 0, i = 1, 2, 3,

we have (ε1(0, 0), ε2(0, 0), δ1(0, 0)) = (0, 0, 0).
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By the implicit function theorem, we have
∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)

 = −(Df(0)−1)


∂f1
∂ε

(0) ∂f1
∂δ

(0)

∂f2
∂ε

(0) ∂f2
∂δ

(0)

∂f3
∂ε

(0) ∂f3
∂δ

(0)



= −


−1 0 0

0 1−n
n

0

0 0 −1


−1

1 0

1 0

0 1

 =


1 0

n
n−1

0

0 1

 ,

where 0 = (0, 0, 0; 0, 0).

Tayler’s formula descrived above becomes
ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

 =


ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

+


∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)



=


1 0

n
n−1

0

0 1


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

 ,

where oi(ε, δ),i = 1, 2, 3 stands for the second- or higher-order terms of ε, and

δ. Thus, we get the first-order approximated values of ε1, ε2, δ1 respectively

as follows:

ε1 = ε+ o1(ε, δ),

ε2 = n
n−1

ε+ o2(ε, δ),

δ1 = δ + o3(ε, δ).

Replacing ε1, ε2, and δ1 in p̃ij(ε, δ) and q̃ij(ε, δ) for each (i, j) ∈ M×N of
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the form of the symmetric rest point, by these values, we find the first-order

approximated rest point. □

Example 3.

The first order approximation of the symmetric rest point close to the

extended-signaling system (P ∗
i , Q

∗
i ), i = 1, 2, in Example 1, is given by

P̃1(ε, δ) =

 1− 3ε 2ε ε

ε 2ε 1− 3ε

, Q̃1(ε, δ) =


1− δ δ

1
2

1
2

δ 1− δ

,

where ZP ∗
1
= {2}.

P̃2(ε, δ) =



1− 2ε ε ε

1
3

1
3

1
3

ε ε 1− 2ε

1
3

1
3

1
3

ε 1− 2ε ε


, Q̃2(ε, δ) =


1− 5δ 3

2
δ δ 3

2
δ δ

δ 3
2
δ δ 3

2
δ 1− 5δ

δ 3
2
δ 1− 5δ 3

2
δ δ

,

where ZQ∗
2
= {2, 4}.

We sequentially demonstrate how the asymptotic stability of the selection-

mutation dynamics at the symmetric rest point depends on the rates of mu-

tations, ε and δ, as well as the numbers of states, n, and signals, m. Table

1 is an example of the first order approximated Jacobian matrix of our dy-

namical system evaluated at the symmetric rest point close to an exteded-

signaling system (P ∗
4 , Q

∗
4) for n = 2 and m = 3. Each entry of this table is[

∂ the row of this table
][

∂ the column of this table
] e.g.,

∂ ˙pij
∂pst

. Observing this table, we expect that

the symmetric rest point can be asymptotically stable.

We turn to the general case. Let JΦ(ε, δ, n,m) denote the Jacobian ma-

trix with respect to ṗij, q̇ji (i = 1, . . . , n, j = 1, . . . ,m) of our dynamical
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system with the mutation rate ε, δ, which is evaluated at the first-order

approximated rest point near an extended-signaling system of our sender-

receiver game with n states of the world and m signals. Table 2.A lists of

all entries of JΦ(ε, δ, n,m) for n ≤ m.11 JΦ(ε, δ, n,m) is a square matrix

with (2nm)2 entries. This list consists of six sub-lists (rows) of entries of

JΦ(ε, δ, n,m) as follows:

1.
∂ṗij
∂p·

and
∂ṗij
∂q·

with (i, j) ∈ I1,

2.
∂ṗij
∂p·

and
∂ṗij
∂q·

with (i, j) ∈ I2,

3.
∂ṗij
∂p·

and
∂ṗij
∂q·

with (i, j) ∈ I3,

4.
∂q̇ji
∂p·

and
∂q̇ji
∂q·

with (i, j) ∈ I1,

5.
∂q̇ji
∂p·

and
∂q̇ji
∂q·

with (i, j) ∈ I2,

6.
∂q̇ji
∂p·

and
∂q̇ji
∂q·

with (i, j) ∈ I3.

Contents of each cell of sub-lists are explained in the following table.

specifying the pair of (s, t)

specifying the pair of (i, j) value of
(

∂ṗij
∂pst

or
∂ṗji
∂qts

or
∂q̇ji
∂pst

or
∂q̇ji
∂qts

)

number of such entries in the Jacobian matrix
[number of rows with the (i, j) ∈ Ii(i = 1, 2, 3)] ×

[number of entries in each row with (s, t) ∈ Ii(i = 1, 2, 3) ]

Now using this list leads to the main result of our note.12

Theorem 2. If n ≤ m and ε
δ
< n(n−1)

mn−n2−1
for sufficiently small ε and δ, then

the symmetric rest point close to an extended-signaling system is asymptot-

ically stable.

Proof. The characteristic equation of the first-order approximated Jacobian

matrix evaluated at the symmetric rest point close to any extended-signaling

11Table 2.B lists the entries for n ≥ m.
12We abbreviate the result for n > m, since it is similar to the case n ≤ m.

22



system is given by

[λ− mn−3n+2
n−1

ε− (n− 1)δ + 1]n−1

×[λ+ ε− nδ + 1]n(n−1)

×[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n

×[λ− mn−n
n−1

ε+ δ + 1]n(n−1)

×[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×[λ− mn−n2−1
n−1

ε+ nδ]

×[λ+ 1
n−1

(n3 − n2 + n−mn2 +mn)ε+ (1− n)δ + 1− 1
n
]

×[λ+ (mn− n2 − n+ 2)ε+ (1− n)δ + 1] = 0

where λ is the eigenvalue.

We explain briefly the procedure for getting the above equation. Let

A = JΦ−λI, that is, detA denotes the characteristic polynomial. Let aij ∈ A

be the entries of the matrix A and Aij the corresponding (i, j)th cofactor.

In the following we disregard any term that is second- or higher-order one in

ε, δ because of the continuity of the characteristic polynomial with respect

to ε and δ.13 Consequently, we may regard most of entries of the Jacobian

matrix except its diagonal factors as 0 or linear forms of ε and δ. Referring

to Table2.A and noting that |I1| = n, |I2| = (n− 1), and |I3| = n(m−n), we

expand the matrix A along any ith row. We get the following polynomial.

13This is a normal procedure for determining the stability of a rest point, which Hofbouer
and Hutteger (2015) also follows.
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detA

=
∑2nm

k=1 (−1)i+kaikAik

= [−λ+ mn−3n+2
n−1

ε+ (n− 1)δ − 1]n[−λ− ε+ nδ − 1]n(n−1)[λ− n
n−1

ε+ (n− 1)δ − 1 + 1
n
]n(m−n)

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ − 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n)

−(− n
n−1

ε)(− 1
n
− 2n−mn−1

n(n−1)
ε)[−λ+ mn−3n+2

n−1
ε+ (n− 1)δ + 1]n−1[−λ− ε+ nδ + 1]n(n−1)[−λ− n

n−1
ε+ (n− 1)δ + 1 + 1

n
]n(m−n)−1

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ + 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n) × n(m− n)

−( 1
n
− 1

n2 )
n

n−1
ε[−λ+ mn−3n+2

n−1
ε+ (n− 1)δ − 1]n−1[−λ− ε+ nδ − 1]n(n−1)[−λ− n

n−1
ε+ (n− 1)δ − 1 + 1

n
]n(m−n)−1

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ − 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n)−1 × n(m− n).

This polynomial is the sum of three parts. The first is composed of all

the diagonal factors of the characteristic polynominal detA, that is [−λ +

mn−3n+2
n−1

ε+ (n− 1)δ− 1]n[−λ− ε+ nδ− 1]n(n−1)[−λ− n
n−1

ε+ (n− 1)δ− 1+

1
n
]n(m−n)[−λ + −2n+mn+1

n−1
ε + (n − 2)δ − 1]n[−λ + mn−n

n−1
ε − δ − 1]n(n−1)[−λ −

1
n−1

ε−nδ]n(m−n). In Table2.A,
∂ṗij
∂pij

or
∂ ˙qji
∂qji

for s = i, t = j of each column is

corresponded with each diagonal factor.

The second with the negative sign is composed of all the diagonal factors

except an entry
∂ṗij
∂pst

for (i, j) ∈ I1, (s, t) ∈ I3, s = i, t = j, and an entry

∂ṗij
∂pst

for (i, j) ∈ I1, (s, t) ∈ I3, s = i. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I1, (s, t) ∈ I3, s = i, t = j is − n
n−1

ε. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I1, (s, t) ∈ I3, s = i is − 1
n
− 2n−mn−1

n(n−1)
ε. The number of such terms is n(m−n).

The third with the negative sign is composed of all diagonal factors except

an entry
∂ṗij
∂pst

for (i, j) ∈ I3, (s, t) ∈ I3, t = j, s = i and an entry
∂ṗij
∂qts

for

(i, j) ∈ I3, (s, t) ∈ I3, s = i, t = j. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I3, (s, t) ∈ I3, t = j, s = i is 1
n
− 1

n2 . The value of an entry
∂ṗij
∂qts

for (i, j) ∈

I3, (s, t) ∈ I3, s = i, t = j is n
n−1

ε. The number of such terms is n(m− n).

Factoring these parts and arranging, we get the characteristic polynomial

as follows.
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[λ− mn−3n+2
n−1

ε− (n− 1)δ + 1]n−1[λ+ ε− nδ + 1]n(n−1)[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n[λ− mn−n
n−1

ε+ δ + 1]n(n−1)[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×
(
[λ− mn−3n+2

n−1
ε− (n− 1)δ + 1][λ+ n

n−1
ε− (n− 1)δ + 1− 1

n
][λ+ 1

n−1
ε+ nδ]

+(− n
n−1

ε)(− 1
n
− 2n−mn−1

n(n−1)
ε)[λ+ n

n−1
ε− (n− 1)δ + 1− 1

n
]× n(m− n)

+( 1
n
− 1

n2 )
n

n−1
ε[λ− mn−3n+2

n−1
ε− (n− 1)δ + 1]× n(m− n)

)
= [λ− mn−3n+2

n−1
ε− (n− 1)δ + 1]n−1

×[λ+ ε− nδ + 1]n(n−1)

×[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n

×[λ− mn−n
n−1

ε+ δ + 1]n(n−1)

×[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×[λ− mn−n2−1
n−1

ε+ nδ]

×[λ+ 1
n−1

(n3 − n2 + n−mn2 +mn)ε+ (1− n)δ + 1− 1
n
]

×[λ+ (mn− n2 − n+ 2)ε+ (1− n)δ + 1].

□

3.2 Particular-hybrid systems

When we restrict our attention to sender-receiver games with |m − n| = 1,

we find another type of neutrally stable strategies with the same feature

that characterizes an extended-signaling system. That is, a rest point near

the strategy of this type can be asymptotically stable under the selection-

mutation dynamics. We name such a neutrally stable strategy of this type

particular-hybrid systems for a normal expression of the theory of signaling

games (see Example 4 below). We begin by defining a particular-hybrid

system.

Definition 4 Suppose |m − n| = 1. We say that a pair of strategies

(P ⋆, Q⋆) ∈ P△
n×m × Q△

m×n is a particular -hybrid signaling system if the fol-

lowing properties hold:
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whenever n ≤ m, there exist sets L ⊂ M and K ⊂ N such that

(i) |L| = |K| = 2,

(ii) p⋆ij = q⋆ji = 1 or p⋆ij = q⋆ji = 0 for each i ∈ N\K and j ∈ M\L,

(iii) p⋆ik =
1
2
and q⋆ki=1 for each k ∈ K;

whenever n > m, there exist sets L ⊂ M and K ⊂ N such that

(i) |L| = |K| = 2,

(ii) q⋆ij = q⋆ji = 1 or p⋆ij = q⋆ji = 0 for each k ∈ M\L and j ∈ N\K,

(iii) q⋆jl =
1
2
and p⋆lj=1 for each l ∈ L;

where
(
p⋆ij, q

⋆
ji

)
(i,j)∈N×M

denote the entries of the particular-hybrid system

(P ⋆, Q⋆).

Example 4. A particular-hybrid sytem:

P ⋆
4 =


0 1 0 0

1
2

0 0 1
2

0 0 1 0

, Q⋆
4 =


0 1 0

1 0 0

0 0 1

0 1 0

.

We find a rest point of the selection-mutation dynamics near each particular-

hybrid system. In general, a rest point of our dynamical system, S ′ = Φ(S),

is defined as a point that satisfies Φ
((
pij, qji)(i,j)∈N×M

)
= 0, where 0 is a zero-

column vector. Especially, we focus on a rest point called to be symmetric

for the corresponding particular-hybrid system.

Definition 5. Let (P ⋆, Q⋆) be a particular-hybrid system. We say that a

rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S has a symmetric form for (P ⋆, Q⋆) if
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· For n ≤ m, for some real values ε1, ε2, ε, δ1, δ2, δ3,

p̃ij(ε, δ) =



1− (m− 3)ε1 − 2ε2 for each p⋆ij = 1,

ε1 for each p⋆ij = 0 with j ̸= k,

ε2 for each p⋆ij = 0 with j = k,

1
m−2

ε3 for each p⋆ij = 0 with p⋆ik =
1
2

1
2
− 1

2
ε3 for each p⋆ij =

1
2
.

q̃ji(ε, δ) =



1− (n− 2)δ1 − δ2 for each q⋆ji = 1 with j ̸= k,

δ1 for each q⋆ji = 0 with j ̸= k and q⋆ki ̸= 1,

δ2 for each q⋆ji = 0 with j ̸= k and q⋆ki = 1,

δ3 for each q⋆ki = 0,

1− (n− 1)δ3 for each q⋆ki = 1.

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

For the particular-hybrid sytem in Example 4, the symmetric rest point of the

selection-mutation dynamics has a form presented in the following Example

5.

Example 5.

P̃4(ε, δ) =


ε4 1− ε1 − 2ε2 ε1 ε2

1
2
− 1

2
ε3

1
2
ε3

1
2
ε3

1
2
− 1

2
ε3

ε2 ε1 1− ε1 − 2ε2 ε2

,
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Q̃4(ε, δ) =


δ3 1− 2δ3 δ3

1− δ1 − δ2 δ2 δ1

δ1 δ2 1− δ1 − δ2

δ3 1− 2δ3 δ3

.

Theorem 3. Let (P ⋆, Q⋆) ∈ P△
n×m × Q△

m×n be a paticular-hybrid sys-

tem. Then, for each pair of mutation rates, (ε, δ), there exists a neigh-

borhood of the point (P ⋆, Q⋆) that contains a unique symmetric rest point,

(P̃ (ε, δ), Q̃(ε, δ)), of the selection-mutation dynamics.

Proof. We consider the case n ≤ m and abbreviate the proof for the case

n > m because it is similar to that of the former.

We now find the values of the entries of the symmetric rest point, ε1, ε2, ε3,

and δ1, δ2, δ3 consistent with the conditions required for the rest point, ṗ = 0

and q̇ = 0.

We write down our dynamical system S ′ = Φ(S) of the selection-mutation

dynamics:

ṗ11 = p11(q11 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp11),

ṗ12 = p12(q21 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp12),
...

ṗnm = pnm(qmn − pn1q1n − pn2q2n − · · · − pnmqmn) + ε(1−mpnm),

q̇11 = q11(p11 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq11),

q·12 = q12(p21 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq12),
...

q̇mn = qmn(pnm − qm1p1m − qm2p2m − · · · − qmnpnm) + δ(1− nqmn).

By removing equations, ṗij = 0 with p⋆ij = 1, p⋆ij = ε3 and q̇ij = 0 with
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q⋆ji = 1, from our whole system, Φ(S) = 0, we obtain a following sub-system

of Φ(S) = 0, which is denoted by F = 0.

F = 0 ⇔



ṗij = 0 for each p⋆ij = 0 with j ̸= k,

ṗij = 0 for each p⋆ij = 0 with j = k,

ṗij = 0 for each p⋆ij =
1
2
,

q̇ji = 0 for each q⋆ji = 0 with j ̸= k and q⋆ki ̸= 1,

q̇ji = 0 for each q⋆ji = 0 with j ̸= k and q⋆ki = 1,

q̇ji = 0 for each q⋆ki = 0.

.

By substituting the entries (p̃ij, q̃ji) of Definition 5 into the sub-system F = 0,

we get a following reduced system, f(ε1, ε2, ε3, δ1, δ2, δ3; ε, δ) = 0, consisting

of six equations, fi(ε1, ε2, ε3, δ1, δ2, δ3; ε, δ) = 0, i = 1, 2, 3, 4, 5, 6.

F (ε1, ε2, ε3, δ1, δ2, δ3; ε, δ) = 0 ⇔



p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each p⋆ij = 0 with j ̸= k,

p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each p⋆ij = 0 with j = k,

p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each p⋆ij =
1

2
,

q̃ji[p̃ij −
∑

(t,j)∈N×M

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each q⋆ji = 0 with j ̸= k and q⋆ki ̸= 1,

q̃ji[p̃ij −
∑

(t,j)∈N×M

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each q⋆ji = 0 with j ̸= k and q⋆ki = 1,

q̃ji[p̃ij −
∑

(t,j)∈N×M

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each q⋆ki = 0.

.

⇔



ε1 {δ1 − (m− 3)ε1δ1 − [1− (m− 3)ε1 − 2ε2] [1− (n− 2)δ1 − δ2]− 2ε2δ3}+ ε(1−mε1) = 0,

ε2 {δ2 − (m− 3)ε1δ1 − [1− (m− 3)ε1 − 2ε2] [1− (n− 2)δ1 − δ2]− 2ε2δ3}+ ε(1−mε2) = 0,

(1
2
− 1

2
ε3)

{
1− (n− 1)δ3 − 2(1

2
− 1

2
ε3) [1− (n− 1)δ3]− ε3δ2

}
+ ε

[
1−m(1

2
− 1

2
ε3)

]
= 0,

δ1
{
ε1 − (n− 2)δ1ε1 − 1

m−2
ε3δ2 − [1− δ2 − (n− 2)δ1] [1− (m− 3)ε1 − 2ε2]

}
+ δ(1− nδ1) = 0.

δ2
{

1
m−2

ε3 − [1− δ2 − (n− 2)δ1] [1− (m− 3)ε1 − 2ε2]− (n− 2)ε1δ1 − 1
m−2

ε3δ2
}
+ δ(1− nδ1) = 0.

δ3
{
ε2 − [1− (n− 1)δ3]

[
1
2
− 1

2
ε3
]
− (n− 1)ε2δ3

}
+ δ(1− nδ3) = 0.

29



From this, we see that (ε1, ε2, ε3, δ1, δ2, δ3; ε, δ) = (0, 0, 0, 0, 0, 0; 0, 0) is a so-

lution to the reduced system, i.e., fi(0, 0, 0, 0, 0, 0; 0, 0) = 0, i = 1, 2, 3, 4, 5, 6.

Let Df denote the Jacobian matrix of f1, f2, f3, f4, f5, f6 with respect to

ε1, ε2, ε3, δ1, δ2, δ3, that is,

Df =



∂f1
∂ε1

∂f1
∂ε2

∂f1
∂ε3

∂f1
∂δ1

∂f1
∂δ2

∂f1
∂δ3

∂f2
∂ε1

∂f2
∂ε2

∂f2
∂ε3

∂f2
∂δ1

∂f2
∂δ2

∂f2
∂δ3

∂f3
∂ε1

∂f3
∂ε2

∂f3
∂ε3

∂f3
∂δ1

∂f3
∂δ2

∂f3
∂δ3

∂f4
∂ε1

∂f4
∂ε2

∂f4
∂ε3

∂f4
∂δ1

∂f4
∂δ2

∂f4
∂δ3

∂f5
∂ε1

∂f5
∂ε2

∂f5
∂ε3

∂f5
∂δ1

∂f5
∂δ2

∂f5
∂δ3

∂f6
∂ε1

∂f6
∂ε2

∂f6
∂ε3

∂f6
∂δ1

∂f6
∂δ2

∂f6
∂δ3


.

At the point (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0), we have

det(Df
(
0)
)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1
2

0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −1

4
̸= 0,

□
Corollary 2. The first-order approximated entries

(
p̃ij(ε, δ), q̃ji(ε, δ)

)
(i,j)∈N×M

of a rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S in the neighborhood of a particular-

hybrid system (P ⋆, Q⋆) is explicitly given as follows:
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· For n ≤ m,

p̃ij(ε, δ) =



1− (m− 1)ε for each p⋆ij = 1,

ε for each p⋆ij = 0 with j ̸= k,

ε for each p⋆ij = 0 with j = k,

ε for each p⋆ij = 0 with p⋆ik =
1
2

1
2
− m−2

2
ε for each p⋆ij =

1
2
with j = k.

q̃ji(ε, δ) =



1− (n− 1)δ for each q⋆ji = 1 with j ̸= k,

δ for each q⋆ji = 0 with j ̸= k and q⋆ki ̸= 1,

δ for each q⋆ji = 0 with j ̸= k and q⋆ki = 1,

2δ for each q⋆ji = 0 with j = k,

1− 2(n− 1)δ for each q⋆ki = 1 with j = k.

Proof. Since the proof is similar to that of Corollary 1, we omit it. □

Example 6.

The first order approximation of the symmetric rest point close to the

particular-hybrid system (P ⋆
4 , Q

⋆
4), i = 1, 2, in Example 5, is given by

P̃4(ε, δ) =


ε 1− 3ε ε ε

1
2
− ε ε ε 1

2
− ε

ε ε 1− 3ε ε

, Q̃4(ε, δ) =


2δ 1− 4δ 2δ

1− 2δ δ δ

δ δ 1− 2δ

2δ 1− 4δ 2δ

 .

By deriving the characteristic equation of the Jacobian matrix evaluated
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at the first-order approximated rest point close to a particular-hybrid system,

we get the following result.14

Theorem 4. If n ≤ m and ε
δ
> n−1

2
for sufficiently small ε and δ, then

the symmetric rest point close to a paticular-hybrid system is asymptotically

stable.

Proof. Following the similar procedure in the proof of Theorem 2, the

characteristic equation of the first order approximated Jacobian matrix eval-

uated at the symmetric rest point close to any particular-hybrid system (with

n ≤ m) is given by

[λ− (m− 2)ε− 2(n− 1)δ + 1](m−2)

×[λ+ ε− nδ + 1](m−3)(n−1)

×[λ+ ε− (n+ 1)δ + 1](2(n−1))

×[λ+ 2ε− (2n− 1)δ + 1](m−2)

×[λ− m−6
2

ε− (n− 1)δ + 1
2
]2

×[λ− (m− 1)ε− (n− 2)δ + 1]n−1

×[λ−mε+ δ + 1](m−2)(n−2)

×[λ−mε+ δ + 1]m−2

×[λ− m
2
ε+ δ + 1

2
]2(n−1)

×[λ− m−2
2

ε− (n− 2)δ + 1
2
]2

×[λ+ 2−m
2

ε+ (2− 3n)δ + 1
2
]

×[λ+ (4−m)ε+ (n+ 1)δ + 1]

×[λ+ 2ε+ (1− n)δ] = 0

where λ is the eigenvalue. □

14We abbreviate the result for n > m, since it is similar.
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3.3 Other systems

We show that a rest point close to most of other systems except for an

extended-signaling system and a particular-hybrid system is not asymptoti-

cally stable.

Theorem 5.

A rest point close to all strategies that have at least one of following

properties is not asymptotically stable.

(i) There exist some K ⊂ M , |K| = k ≥ 3 and some i ∈ N such that for

each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 1.

(ii) There exist some L ⊂ N , |L| = l ≥ 3 and some j ∈ M such that for each

i ∈ L, 0 < qji < 1 with
∑

j∈L qji = 1 and pij = 1.

(iii) There exist some K ⊂ M , |K| = k ≥ 2 and some i ∈ N such that for

each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 1,

and there exist some L ⊂ N , |L| = l ≥ 2 and some j ∈ M such that for each

i ∈ L, 0 < qji < 1 with
∑

j∈L qji = 1 and pij = 1.

(iv) There exists some w ∈ W , |W | ≥ 2 such that there exist some Kw ⊂ M ,

|Kw| ≥ 2 and some i ∈ N with for each j ∈ Kw, 0 < pij < 1,
∑

j∈Kw
pij = 1

and qji = 1,

or there exists some v ∈ V , |V | ≥ 2 such that there exist some Lv ⊂ N ,

|Lv| ≥ 2 and some j ∈ M with for each i ∈ Lv, 0 < qji < 1,
∑

j∈Lv
qij = 1

and pij = 1.

(v) There exist some L ⊂ N , |L| = l ≥ 2 and some K ⊂ M , |K| = k = l

such that for each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and for each i ∈ L,

0 < qji < 1 with
∑

i∈L qji = 1.
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Proof.

Let JΦ denote the Jacobian matrix at a rest point of the selection-

mutation dynamics. The characteristic equation is given by det(JΦ−λI) = 0,

where λ is the eigenvalue. Let λt denote the tth-order term of this equation

and dt denote the coefficient of the term. If the rest point is asymptotically

stable, the sign of any solution, λ, of this equation must be negative. The

LHS of this equation can be factorizing as the following form

2MN∏
s=1

(λ+ as + bsε+ csδ) = 0.

where as, bs and cs are some real numbers. If any solution, λ, of this equation

is negative, then each coefficient dt that does not include ε or δ must be

positive 15. To the contrary, we will show that there exists some negative

coefficient dt that does not include ε or δ16.

First, we make clear the relation between the rest point under the repli-

cator dynamics and the rest point under the selection-mutation dynamics. If

a rest point (P̄ , Q̄) under the replicator dynamics is not Nash equilibrium,

then there exists no rest point of the selection-mutation dynamcs near (P̄ , Q̄)

for sufficiently small ε, δ (Hofbauer and Hatteger, 2008). Therefore, we con-

sider all Nash strategies under the replicator dynamics. The Nash strategy in

sender-receiver games has the following properties. Let H ⊂ N ∩M denote

the common subset of N and M . Let L ⊂ N and K ⊂ M denote each subset

of N and M .

15It is true in the case t = 0. It is not asymptotically stable if the constant of this
equation is negative.

16In short, we will show that there exists some negative dt when ε and δ go to zero.

34



(1) pij = qji = 1 or pij = qji = 0 for some i ∈ N and each j ∈ M ,

or qji = pij = 1 or qji = pij = 0 for some j ∈ M and each i ∈ N .

(2) 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 1, for each j ∈ K, |K| ≥ 2 and

some i ∈ N ,

or pij = 1 and 0 < qji < 1 with
∑

i∈L qji = 1, for each i ∈ L, |L| ≥ 2 and

some j ∈ M .

(3) There exist some K ⊂ M and some L ⊂ N , |K| = |L| such that 0 <

pij < 1 and 0 < qji < 1, for each i ∈ L and some j ∈ K,

(4) 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 0, for each i ∈ N and some

i ∈ N ,

or pij = 0 and 0 < qji < 1 with
∑

i∈N qji = 1, for each i ∈ N and some

j ∈ M .

We examine whether the characteristic equation has some negative coef-

ficient dt when the Nash strategy has one or some of the above properties.

The rest point of the strategy that only satisfies (1) is asymptotically

stable because it is an evolutionarily stable strategy.

Conversely, under the replicator dynamics, the rest point of the strategy

that has (4) is not asymptotically stable because there exists 0 diagonal

factors of Jacobian matrix of this rest point 17.

However, under the selection-mutation dynamics, there can be non-zero

factors of Jacobian matrix of the rest point close to the strategy that includes

(4) 18.

We basically consider the strategy that only has property (1) , and then

17In this case (4),
∂q̇ji
∂qji

= pij − pijqji −
∑

t∈N ptiqjt = 0
18For example, the extended signaling system doesn’t have 0 diagonal factor though it

is the strategy that satisfies (4).
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consider each strategy that has the property (1) and (2), (1) and (3), and (1),

(2) and (3). Seuquentially, We focus on the column of JΦ − λ and analyze

each column’s effect on the stability of the rest point of the strategy that

has (2) and (3). We disregard (4) because (4) doesn’t effect on the sign of

coefficient dt.

Case (i) There exist some K ⊂ M , |K| = k ≥ 3 and some i ∈ N such that

for each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 1.

We consider that the strategy is composed of (1) and (2). This strategy

satisfies |M | − |N | = |K| − 1. It depends on the value of pij for i ∈ N and

j ∈ K wheather this system has the rest point. This system has the rest

point in the case that pij =
1
k
for i ∈ N and j ∈ K19 .

Case (i).

P =


1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 1 0 · · · 0

0 · · · 0 1
k

· · · 1
k

, Q =



1 0 0 0

0
. . . 0 0

0 0 1 0

0 0 0 1

0 0 0
...

0 0 0 1


.

In this case , we have the following factors aIJ and aJI of the Jacobian

matrix, focusing ṗij, q̇ji for some i,∈ N and for each j ∈ K.

19We abbreviate this proof because this proof is similar to Theorem 3.
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ṗij, q̇ji the range of i, j, s, t factors aIJ of the Jacobian matrix factors aJI of the Jacobian matrix

(1) s = i, t = j
∂ṗij
∂pst

= qji − pijqji −
∑

j∈k pijqji

(2) s = i, t ∈ K, t ̸= j
∂ṗij
∂pst

= −pijqti
∂ṗit
∂pij

= −pitqji

(3) s = i, t /∈ K
∂ṗij
∂pst

= 0 ∂ṗil
∂pij

= −pitqji

(4) s ̸= i, t ̸= j, t ∈ M
∂ṗij
∂pst

= 0 ∂ṗst
∂pij

= 0

(5) s = i, t = j
∂ṗij
∂qts

= pij − p2ij
∂q̇ji
∂pij

= qji − q2ji = 0

(6) s = i, t ̸= j, t ∈ K
∂ṗij
∂qti

= −pijpit
q̇ti
∂pij

= 0

(7) s = i, t ̸= j, t /∈ K
∂ṗij
∂qts

= 0 ∂q̇ti
∂pij

= 0

(8) s ̸= i
∂ṗij
∂qts

= 0
∂q̇js
∂pij

= 0

q̇ts, ṗst the range of i, j, s, t ∈ M factors aIJ of the Jacobian matrix factors aJI of the Jacobian matrix

(9) s = i, t = j
∂q̇ji
∂qts

= pij − qjipij −
∑

i∈N qjipij

(10) s ∈ L, s ̸= i
∂q̇ji
∂qts

= −qjipsj
∂q̇js
∂qji

= −qjspij = 0

(11) s /∈ L
∂q̇ji
∂qjs

= 0
∂q̇js
∂qji

= 0

(12) s = i, t = j
∂q̇ji
∂pst

= qji − q2ji = 0
∂ṗij
∂qji

= pij − p2ij

(13) s = i, t ∈ K, t ̸= j
∂q̇ji
∂pst

= 0 ∂ṗst
∂qji

= 0

(14) s = i, t ̸= j, t /∈ K
∂q̇ji
∂pst

= 0 ∂ṗst
∂qji

= 0

(15) s ̸= i, t = j
∂q̇ji
∂pst

= 0 ∂ṗst
∂qji

= 0

(16) s ̸= i, t ̸= j, t /∈ K
∂q̇ji
∂psj

= 0
∂ṗsj
∂qji

= 0

We consider the columns of
∂ṗij
∂pst

,
∂ṗij
∂qts

, for each s ∈ N , for each t ∈ M

and
∂q̇ji
∂pst

,
∂q̇ij
∂qts

, for each s ∈ N , for each t ∈ M . In the case k is even,

the characteristic equation of the first-order approximated Jacobian matrix

evaluated at the rest point close to this system is given by

(λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

+
∑ k

2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1)(n−1)(2n+2+k)(λ+ 1

k
)(n+1)k(λ+ 1

k
)−2r( 1

k
)2r

= (λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

(
1 +

∑ k
2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1

k
)−2r( 1

k
)2r

)
= 0.

37



In the case k is odd, it is given by

(λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

+
∑ k−1

2
r=1 (−1)r k!

2r!(k−2r)!
(λ+ 1)(n−1)(2n+2+k)(λ+ 1

k
)(n+1)k(λ+ 1

k
)−2r( 1

k
)2r = 0.

These equations have negative coefficient dt of λ or negative constant in

k ≥ 3. We turn to the general case of pij for i ∈ N and j ∈ K. We can find

negative coefficients in each case.

Case (ii): There exist some L ⊂ N , |L| = l ≥ 3 and some j ∈ M such that

for each i ∈ L, 0 < qji < 1 with
∑

j∈L qji = 1 and pij = 1.

This case is similiar to Case (i). Then Case (ii) necessarily has an negative

coefficient dt.

Case (iii): There exist some K ⊂ M , |K| = k ≥ 2 and some i ∈ N such that

for each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and qji = 1.

and there are some L ⊂ N , |L| = l ≥ 2 and some j ∈ M such that for each

i ∈ L, 0 < qji < 1 with
∑

j∈L qji = 1 and pij = 1.

We consider that the strategy is composed of (1), (2) and (3).

Case (iii).

P =



1 0 0 0 · · · 0 0

0
. . . 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1
k

· · · 1
k

0

0 0 0 0 · · · 0 1

0
. . . 0 0 · · · 0

...

0 0 0 0 · · · 0 1


, Q =



1 0 0 0 0 · · · 0

0
. . . 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

0 0 0
... 0 · · · 0

0 0 0 1 0 · · · 0

0 0 0 0 1
l

· · · 1
l


.

In the case k and l are even, the characteristic equation of the first-order
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approximated Jacobian matrix evaluated at the rest point close to this system

is given by

(λ+ 1)2m
2−2mk−m+n(λ+ 1

k
)nk(λ+ 1

l
)lm

+
∑ k

2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1)2m

2−2mk−m+n(λ+ 1
k
)nk(λ+ 1

l
)lm(λ+ 1

k
)−2r( 1

k
)2r

+
∑ l

2
s=1(−1)s s!

2s!(l−2s)!
(λ+ 1)2m

2−2mk−m+n(λ+ 1
k
)nk(λ+ 1

l
)lm(λ+ 1

l
)−2s(1

l
)2s

+
∑ k

2
r=1(−1)r k!

2r!(k−2r)!

∑ l
2
s=1(−1)s l!

2s!(l−2s)!

×(λ+ 1)2m
2−2mk−m+n(λ+ 1

k
)nk(λ+ 1

l
)lm(λ+ 1

k
)−2r( 1

k
)2r(λ+ 1

l
)−2s(1

l
)2s

= (λ+ 1)2m
2−2mk−m+n(λ+ 1

k
)nk(λ+ 1

l
)lm(

1 +
∑ k

2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1

k
)−2r( 1

k
)2r

+
∑ l

2
s=1(−1)s s!

2s!(l−2s)!
(λ+ 1

l
)−2s(1

l
)2s

+
∑ k

2
r=1(−1)r k!

2r!(k−2r)!

∑ l
2
s=1(−1)s l!

2s!(l−2s)!
(λ+ 1

k
)−2r( 1

k
)2r(λ+ 1

l
)−2s(1

l
)2s

)
= 0

This equation has negative coefficient of λ or negative constant in k ≥ 2

and l ≥ 2. We also have negative coefficient dt or constant in the case k and

l are odd, k is odd and l is even, k is even and l is odd.

Case (iv): There exists some w ∈ W , |W | ≥ 2 such that there exist some

Kw ⊂ M , |Kw| ≥ 2 and some i ∈ N with for each j ∈ Kw, 0 < pij < 1,∑
j∈Kw

pij = 1 and qji = 1

or there exists some v ∈ V , |V | ≥ 2 s.t. there exist some Lv ⊂ N , |Lv| ≥ 2

and some j ∈ M with for each i ∈ Lv, 0 < qji < 1,
∑

j∈Lv
qij = 1 and pij = 1.

It is clear that Case (iv) necessarily has some negative coefficient dt or

negative constant from the above discussion.

Case (v): There exist some L ⊂ N , |L| = l ≥ 2 and some K ⊂ M , |K| =
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k = l such that for each j ∈ K, 0 < pij < 1 with
∑

j∈K pij = 1 and for each

i ∈ L, 0 < qji < 1 with
∑

i∈L qji = 1.

In the case k and l are even, the characteristic equation of the first-order

approximated Jacobian matrix evaluated at the rest point close to this system

is given by

(λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

+
∑ k

2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1)(n−1)(2n+2+k)(λ+ 1

k
)(n+1)k(λ+ 1

k
)−2r( 1

k
)2r

= (λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

(1 +
∑ k

2
r=1(−1)r k!

2r!(k−2r)!
(λ+ 1

k
)−2r( 1

k
)2r)

In the case k is odd, it is given by

(λ+ 1)(n−1)(2n+2+k)(λ+ 1
k
)(n+1)k

+
∑ k−1

2
r=1 (−1)r k!

2r!(k−2r)!
(λ+ 1)(n−1)(2n+2+k)(λ+ 1

k
)(n+1)k(λ+ 1

k
)−2r( 1

k
)2r = 0.

These equations has negative coefficient dt or negative constant in k ≥ 3.

All Nash strategies that have the above properties necessarily destroy the

stability. Moreover, it is clear that all Nash strategies necessarily destroy the

stability of the rest point in all the combination of the above properties. □

4 Conclusion

In this note, we investigate the stability of rest points of sender-receiver

games under the selection-mutation dynamics when the number of states of

the world is not the same as the number of signals. We have focused on
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neutrally stable strategies in sender-receiver games, an extended-signaling

system and a particular hybrid system. These can be defined in the case

n ̸= m, and have Lyapunov stability under the replicator dynamics. On the

other hand, all neutrally stable strategies have Lyapunov stability under the

selection-mutation dynamics in the case n = m = 3.

We have generally proved that a rest point exists close to each extended-

signaling system and this point can be asymptotically stable under the selection-

mutation dynamics when the number of states of the world is not the same

as the number of signals. Restricting to |m − n| = 1, we have paticular-

hybrid systems. we have also proved that there exists a rest point that can

be asymptotically stable under the selection-mutation dynamics. However,

though there exisit each rest point the other Nash strategies, these rest points

are not asymptotically stable.
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ṗ 1

3
−
2ε

0
−

1 2
−
2ε

+
δ

0
0

0
−
2ε

0
0

0
2ε

0

∂
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ṗ
ij

∂
q t

s
;
(i
,j
)
∈
I 3

−
n

n
−
1
ε

0
n

n
−
1
ε

0

th
e
n
u
m
b
er

of
en
tr
ie
s

n
(m

−
n
)
·1

n
(m

−
n
)
·(
n
−

1)
n
(m

−
n
)
·1

n
(m

−
n
)
·(
m

−
n
−
1)

n
(m

−
n
)
·m

(n
−

1)
n
(m

−
n
)
·1

n
(m

−
n
)
·(
n
−

2)
n
(m

−
n
)
·1

n
(m

−
n
)
·m

(n
−

1)

s
=

i,
t
=

j
s
=

i,
(s
,t
)
∈
I 2

s
=

i,
(s
,t
)
∈
I 3

t
=

j,
s
̸=

i,
(s
,t
)
∈
I 2
,I

3
t
̸=

j
t
=

j,
s
=

i
t
=

j,
s
̸=

i
t
̸=

j

∂
q̇ j

i

∂
p
s
t
;
(i
,j
)
∈
I 1

δ
0

0
−
δ

0
∂
q̇ j

i

∂
q t

s
;
(i
,j
)
∈
I 1

−
1
+

−
2
n
+
m
n
+
1

n
−
1

ε
+
(n

−
2)
δ

−
ε

0

th
e
n
u
m
b
er

of
en
tr
ie
s

n
·1

n
·(
n
−

1)
n
·(
m

−
n
)

n
·(
n
−

1)
n
·(
n
−

1)
(m

−
1)

n
·1

n
·(
n
−
1)

n
·n

(m
−
1)

s
̸=

i,
t
=

j,
(s
,t
)
∈
I 1

s
=

i,
t
̸=

j,
(i
,j
)
∈
I 1

s
=

i,
t
=

j
s
=

i,
t
̸=

j
t
̸=

j
t
=

j,
s
̸=

i,
(s
,t
)
∈
I 1

t
=

j,
s
=

i
t
=

j,
s
̸=

i,
(s
,t
)
̸∈
I 1

t
̸=

j

∂
q̇ j

i

∂
p
s
t
;
(i
,j
)
∈
I 2

−
δ

0
δ

0
0

∂
q̇ j

i

∂
q t

s
;
(i
,j
)
∈
I 2

−
δ

−
1
+

m
n
−
n

n
−
1
ε
−
δ

0
0

th
e
n
u
m
b
er

of
en
tr
ie
s

n
(n

−
1)

·1
n
(n

−
1)

·(
m

−
1)

n
(n

−
1)

·1
n
(n

−
1)

·(
m

−
1)

n
(n

−
1)

·m
(m

−
2)

n
(n

−
1)
1̇

n
(n

−
1)
1̇

n
(n

−
1)
(̇n

−
2)

n
(n

−
1)
ṅ
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