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1 Introduction

We study a mechanism design problem in a binary excludable public good
model. Each agent has a quasi-linear preference. A (direct) mechanism
determines the set of agents who consume the public good and the cost
share depending on agents’ preferences.

We focus on mechanisms satisfying strategy-proofness, which requires that
it be a dominant strategy for any agent to report his true preference. We eval-
uate strategy-proof mechanisms from the point of view of efficiency. However,
it is well known that there exists no mechanism satisfying strategy-proofness
and Pareto-efficiency [Holmström (1979)]. Hence, our aim is to design the
best mechanism possible.

Moulin (1994) has constructed a basic mechanism called the equal cost
sharing with maximal participation mechanism (henceforth, the Moulin mech-
anism). It is the unique mechanism satisfying strategy-proofness, individual
rationality, budget-balance, anonymity, and other desirable properties.1 Fur-
thermore, it minimizes the supremal welfare loss among the set of all mecha-
nisms satisfying strategy-proofness, individual rationality, and the auxiliary
axiom [Massó et al. (2015)]. The supremal welfare loss is the supremum of
the welfare loss that occurs as a result of applying the mechanism, and is
used as a measure of inefficiency.2

Ohseto (2005) has generalized the Moulin mechanism and constructed
attractive mechanisms called the anonymous augmented serial mechanisms
(henceforth, the Ohseto mechanisms). They are characterized by strategy-
proofness, budget-balance, anonymity, and other desirable properties.3 Fur-
thermore, the optimal Ohseto mechanism achieves the smaller supremal wel-
fare loss than that of the Moulin mechanism.4 These facts mean that in order
to improve the inefficiency of the mechanism, we will need to forgo a desirable
property5 or expand the scope of the mechanisms from being deterministic
to being probabilistic.6

1See Moulin (1999), Deb and Razzolini (1999a, b), and Ohseto (2000).
2For example, see Juarez (2008), Moulin and Shenker (2001), and Ohseto (2010).
3See Ohseto (2005) and Hashimoto and Saitoh (2016).
4The Ohseto mechanism, other than the Moulin mechanism, do not satisfy individual

rationality. Hence, the optimal Ohseto mechanism improve the inefficiency of the Moulin
mechanism, but forgo individual rationality. Because a provider of a public good, such as a
government, might be able to enforce participation in a mechanism, individual rationality
may not be indispensable.

5It is known that even if we give up anonymity, we cannot improve the inefficiency of
the optimal Ohseto mechanism. See Ohseto (2005).

6In the two-agent case, Dobzinski et al. (2017) has studied a probabilistic mechanism
satisfying strategy-proofness, individual rationality, budget-balance, and anonymity, and
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We take the latter approach and introduce a new class of strategy-proof
mechanisms, called α-mechanisms, each of which is a linear combination of
the Ohseto mechanisms. We first show that the α-mechanisms are second-
best efficient. Second best efficiency requires7 that the mechanism be on the
Pareto-frontier of the set of strategy-proof mechanisms. Next, we identify the
optimal α-mechanism with respect to the supremal welfare loss, and show
that it improves the inefficiency of the Moulin mechanism and the Ohseto
mechanisms.

The remainder of the paper is organized as follows. In Section 2, we set
up the model. In Section 3, we define the basic properties. In Section 4, we
introduce the mechanisms. In Section 5, we state our results. In Section 6,
we provide the proofs.

2 Model

Let N = {1, 2, . . . , n} be the set of agents. We consider the provision of
a binary excludable public good y ∈ {0, 1}. The cost function c(·) of the
excludable public good is normalized as follows: c(0) = 0 and c(1) = 1.

Each agent i ∈ N has a preference for bundles consisting of a consumption
level of the excludable public good si ∈ {0, 1} and a cost share ti ∈ R. We
assume that this preference is represented by a quasi-linear utility function,
i.e., if agent i’s valuation of the excludable public good is vi ∈ R+, then his
utility for (si, ti) ∈ {0, 1} × R is

ui((si, ti); vi) = sivi − ti.

A list v ≡ (vi)i∈N ∈ Rn
+ is a valuation profile. Given v ∈ Rn

+ and N ′ ⊂ N ,

vN ′ ∈ R#N ′

+ and v−N ′ ∈ R#N\N ′

+ denote (vj)j∈N ′ and (vj)j ̸∈N ′ , respectively.
The set of feasible allocations is

Z ≡
{
(si, ti)i∈N ∈

(
{0, 1} × R

)n
:
∑
i∈N

ti ≥ max
i∈N

si

}
.

A deterministic mechanism is a function f : Rn
+ → Z. Given a deterministic

mechanism f and a valuation profile v ∈ Rn
+, we denote agent i’s assignment

under f(v) as fi(v) ≡ (si(v), ti(v)) ∈ {0, 1} × R.
Let ∆Z be the set of all probability distributions on Z. Given a probabil-

ity distribution, we denote by σi ∈ [0, 1] and τi ∈ R the probability that agent

has showed that it improves the inefficiency of the Moulin mechanism.
7In other words, it requires that the mechanism be undominated by the other strategy-

proof mechanisms.
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i consumes the excludable public good and the expected value that agent i
pays under the probabilistic distribution, respectively. Each agent i evaluates
(σi, τi) using his expected utility, i.e., if agent i’s valuation of the excludable
public good is vi ∈ R+, then his expected utility for (σi, τi) ∈ [0, 1]× R is

ui((σi, τi); vi) = σivi − τi.

A probabilistic mechanism is a function φ : Rn
+ → ∆Z. Given a probabilistic

mechanism φ and a valuation profile v ∈ Rn
+, we denote by σi(v) ∈ [0, 1] and

τi(v) ∈ R the probability that agent i consumes the excludable public good
and the expected value that agent i pays under the probability distribution
φ(v), respectively.

3 Axioms

We define the basic properties. Since the deterministic mechanisms are spe-
cial cases of the probabilistic mechanisms, we define the properties for the
probabilistic mechanisms only.

Strategy-proofness states that it is a dominant strategy for any agent to
report his true valuation.

Definition 1. A probabilistic mechanism φ is strategy-proof if for any
i ∈ N , any v ∈ Rn

+, and any v′i ∈ R+, it holds that

σi(v)vi − τi(v) ≥ σi(v
′
i, v−i)vi − τi(v

′
i, v−i).

Second-best efficiency states that the mechanism is on the Pareto-frontier
of the set of strategy-proof mechanisms.

Definition 2. A probabilistic mechanism φ∗ is second-best efficient if
there exists no strategy-proof probabilistic mechanism φ such that for any
v ∈ Rn

+ and any i ∈ N ,

σi(v)vi − τi(v) ≥ σ∗
i (v)vi − τ ∗i (v),

and for some v̂ ∈ Rn
+ and some j ∈ N ,

σj(v̂)v̂j − τj(v̂) > σ∗
j (v̂)v̂j − τ ∗j (v̂).

The welfare loss of a mechanism is the difference between the welfare of
the first-best mechanism and that of the mechanism we consider.
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Definition 3. Given a probabilistic mechanism φ and a valuation v ∈ Rn
+,

the welfare loss of φ at v is defined as follows:

WL(v;φ) ≡ max
{∑

i∈N

vi − 1, 0
}
−

(∑
i∈N

(
σi(v)vi − τi(v)

))
.

The supremal welfare loss is the supremum of the welfare loss over all
v ∈ Rn

+.

Definition 4. Given a probabilistic mechanism φ, the supremal welfare
loss of φ is

sup
v∈Rn

+

WL(v;φ).

4 Mechanisms

4.1 Moulin mechanism

We first define the Moulin mechanism. To do so, we identify the largest set
of agents whose valuations are greater than or equal to the equal cost share
in that set.

Definition 5. For any k ∈ {1, . . . , n}, let Mk(v) = {i ∈ N |vi ≥ 1
k
}. The

largest unanimous coalition at v ∈ Rn
+, denoted by M(v), is defined as

follows:

1. if there exists k∗ ∈ {1, . . . , n} such that #Mk∗(v) = k∗, and for any
integer k (k∗ < k ≤ n), #Mk(v) < k, then M(v) = Mk∗(v), and

2. M(v) = ∅ otherwise.

Definition 6. A deterministic mechanism fM is the Moulin mechanism if
for any v ∈ Rn

+ and any i ∈ N ,

fM
i (v) =

{
(1, 1

#M(v)
) if i ∈ M(v),

(0, 0) otherwise.

Example 1. Let n = 3. Let v1 = v2 =
2
3
and v3 =

1
4
. Then, M(v) = {1, 2}.

Thus, it holds that

fM(v) =
(
(1,

1

2
), (1,

1

2
), (0, 0)

)
.

5



Remark 1. For any i ∈ N and any sufficiently small ε > 0, let vεi = 1
i
− ε.

Then, for any i ∈ N , fM
i (vε) = (0, 0). Hence, the welfare loss at vε is

n∑
i=1

1

i
− nε− 1.

As ε → 0, we have8 the supremal welfare loss of the Moulin mechanism,
which is

n∑
i=1

1

i
− 1.

4.2 Ohseto mechanisms

Next, we define the Ohseto mechanisms, which are a generalization of the
Moulin mechanism. When the number of agents whose valuations are greater
than 1

n
is smaller than the given number w, the allocation is determined by

the Moulin mechanism. On the other hand, when the number of agents
whose valuations are greater than 1

n
is larger than or equal to w, all agents

share the cost 1
n
.

Definition 7. Let w = 1, 2, . . . , n. A deterministic mechanism fw is the
w-Ohseto mechanism if for any v ∈ Rn

+ and any i ∈ N ,

1. when #{j ∈ N |vj > 1
n
} < w,

fw
i (v) =

{
(1, 1

#M(v)
) if i ∈ M(v),

(0, 0) otherwise,

2. when #{j ∈ N |vj > 1
n
} ≥ w,

fw
i (v) =

{
(1, 1

n
) if vi > 0,

(0, 1
n
) if vi = 0.

We denote fw
i (v) = (swi (v), t

w
i (v)).

Remark 2. When w = n, the w-Ohseto mechanism coincides with the
Moulin mechanism.

8See Moulin and Shenker (2001) for a detailed analysis.
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Example 2. Let n = 3. Let v1 = v2 = 2
3
and v3 = 1

4
. Since #{j ∈ N |vj >

1
3
} = 2, it holds that

f 1(v) =
(
(1,

1

3
), (1,

1

3
), (1,

1

3
)
)

f 2(v) =
(
(1,

1

3
), (1,

1

3
), (1,

1

3
)
)

f 3(v) =
(
(1,

1

2
), (1,

1

2
), (0, 0)

)
.

Remark 3. Among the Ohseto mechanisms, the 1-Ohseto mechanism achieves
the smallest supremal welfare loss.9

Remark 4. Let w = 1. For any sufficiently small ε > 0, let vε1 =
1
n
+ ε. For

any i ̸= 1, let vi = 0. Then, we have fw
1 (v

ε
1, v−1) = (1, 1

n
), and for any i ̸= 1,

fw
i (v

ε
1, v−1) = (0, 1

n
). Hence, the welfare loss at (vε1, v−1) is

−(
1

n
+ ε− 1).

As ε → 0, we have10 the supremal welfare loss of the 1-Ohseto mechanism,
which is given by

1− 1

n
.

4.3 New mechanisms

Finally, we define our new mechanism, which is a linear combination of
Ohseto mechanisms. Define ∆ ≡ {(α1, . . . , αn) ∈ [0, 1]n :

∑n
i=1 αi = 1}.

Definition 8. Let α = (α1, . . . , αn) ∈ ∆. A probabilistic mechanism φα is
the α-mechanism if for any v ∈ Rn

+,

φα(v) =
[
α1 ◦ f 1(v), α2 ◦ f 2(v), . . . , αn ◦ fn(v)

]
,

where for any k = 1, . . . , n, αk ◦fk(v) means that the allocation fk(v) occurs
with probability αk.

Remark 5. When αk = 1, the α-mechanism coincides with the k-Ohseto
mechanism. Thus, when αn = 1, the α-mechanism coincides with the Moulin
mechanism.

Example 3. Let n = 3. Let v1 = v2 = 2
3
and v3 = 1

4
. Then, φα(v)

generates the allocation
(
(1, 1

3
), (1, 1

3
), (1, 1

3
)
)
with probability α1 + α2, and

the allocation
(
(1, 1

2
), (1, 1

2
), (0, 0)

)
with probability α3.

9See Proposition 1 in Ohseto (2005).
10See Ohseto (2005) for a detailed analysis.
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5 Results

We state our results. All proofs are given in the final section. The first result
states that the α-mechanisms satisfy strategy-proofness.

Theorem 1. For any α ∈ ∆, the α-mechanism is strategy-proof.

The second result states that each α-mechanism is on the Pareto-frontier
of the set of strategy-proof mechanisms.

Theorem 2. For any α ∈ ∆, the α-mechanism is second-best efficient.

Next, we state the third result, which is related to the supremal welfare
loss of the α-mechanisms. To do so, we need the following notation. Define
D ⊂ Rn

+ as follows:

D ≡ {v ∈ Rn
+ : v1 ≥ v2 ≥ · · · ≥ vn}.

For any k = 0, 1, . . . , n and any m = 0, 1, . . . , n, we also define D(k,m) ⊂ D
as follows:

D(k,m) ≡
{
v ∈ D : #{i ∈ N : vi >

1

n
} = k and #M(v) = m

}
.

Remark 6. When k < m, v ∈ D(k,m) means11 that for any i ∈ N , vi ≥ 1
n
.

Hence, the welfare loss of any Ohseto mechanism at v is zero. Thus, the
welfare loss of any α-mechanism at v is also zero. Therefore, we only consider
the case k ≥ m.

Remark 7. When k = 0, v ∈ D(k,m) means that for any i ∈ N , vi ≤ 1
n
.

Hence, the welfare loss of any Ohseto mechanism at v is zero. Thus, the
welfare loss of any α-mechanism at v is also zero. Therefore, we only consider
the case k ≥ 1.

Proposition 1. Let α ∈ ∆. The supremal welfare loss of the α-mechanism
is given by

max
k≥1

sup
v∈D(k,0)

WL(v;φα).

Furthermore, it holds that

sup
v∈D(k,0)

WL(v;φα) = max
{
(1−

k∑
h=1

αh)
( k∑
h=1

1

h
+(n−k)

1

n
−1
)
,

k∑
h=1

αh(1−
k

n
)
}
.

11If vn < 1
n , then we must have m < n. This means that vm ≥ 1

m > 1
n , which implies

that k ≥ m. This is a contradiction.
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Using Proposition 1, we identify the optimal α-mechanism. For any k =
1, . . . , n, define ᾱk as follows:

ᾱk ≡ 1−
k−1∑
h=1

ᾱh −
1− k

n∑k
h=1

1

h
+ 1− 2k

n

. (1)

Denote ᾱ ≡ (ᾱ1, . . . , ᾱn).

Proposition 2. ᾱ is well-defined, i.e., for any k = 1, . . . , n, ᾱk ∈ [0, 1] and∑n
h=1 ᾱh = 1.

Proposition 3. The supremal welfare loss of the ᾱ-mechanism is given by

max
k≥1

{ k∑
h=1

ᾱh(1−
k

n
)
}
.

Theorem 3. Among the α-mechanisms, the ᾱ-mechanism achieves the small-
est supremal welfare loss.

The following result states that our new mechanism improves the supre-
mal welfare loss over that of the Ohseto mechanisms.

Corollary 1. The supremal welfare loss of the ᾱ-mechanism is strictly less
than that of any Ohseto mechanism.

Example 4. Let n = 5. Then, ᾱ1 =
1
2
, ᾱ2 =

5
2·17 , ᾱ3 =

90
17·49 , ᾱ4 =

12·40
49·89 , and

ᾱ5 =
12
89
. Note that

ᾱ1(1−
1

5
) =

1

2
· 4
5
= 0.4

2∑
h=1

ᾱh(1−
2

5
) =

11

17
· 3
5
≈ 0.3882

3∑
h=1

ᾱh(1−
3

5
) =

37

49
· 2
5
≈ 0.3020

4∑
h=1

ᾱh(1−
4

5
) =

77

89
· 1
5
≈ 0.1730

5∑
h=1

ᾱh(1−
5

5
) = 0.

Then, the supremal welfare loss of the ᾱ-mechanism is 0.4, which is half that
of the 1-Ohseto mechanism (i.e., the optimal Ohseto mechanism).
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Example 5. Figure 1 compares the numerical results of the supremal welfare
loss of the ᾱ-mechanism, the 1-Ohseto mechanism, and the Moulin mecha-
nism.

Acknowledgments The authors thank Yuji Fujinaka, Tomoya Kazumura,
Tadashi Sekiguchi, Tatsuhiro Shichijo, and Shohei Tamura for their helpful
comments. The authors also thank the participants in the 23rd Decentraliza-
tion Conference and the seminar at Osaka Prefecture University. This work
was supported by JSPS KAKENHI Grant Number 26780117.

6 Proofs

6.1 Proof of Theorem 1

Let α ∈ ∆. Let i ∈ N . Let v ∈ Rn
+ and v′i ∈ R+. For any w = 1, . . . , n, the

w-Ohseto mechanism is strategy-proof, that is, it holds that

swi (v)vi − twi (v) ≥ swi (v
′
i, v−i)vi − twi (v

′
i, v−i).

Note that

σα
i (v) =

n∑
w=1

αws
w
i (v)

and

ταi (v) =
n∑

w=1

αwt
w
i (v).

Thus, we have

σα
i (v)vi − ταi (v) ≥ σα

i (v
′
i, v−i)vi − ταi (v

′
i, v−i).

Therefore, Theorem 1 is valid.

6.2 Myerson’s Lemma

To prove Theorem 2, we use the following Lemma, proved by Myerson (1981)
in a similar model.

Lemma (Myerson 1981). If a mechanism φ satisfies strategy-proofness, then
for any i ∈ N , any vi, v

′
i ∈ R+ such that vi ≤ v′i, and any v−i ∈ Rn−1

+ , it holds
that

σi(vi, v−i) ≤ σi(v
′
i, v−i)
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and

σ(v′i, v−i)v
′
i − τi(v

′
i, v−i) = σ(vi, v−i)vi − τi(vi, v−i) +

∫ v′i

vi

σ(xi, v−i)dxi.

Myerson’s Lemma states that if the mechanism is strategy-proof, then
(i) the probability that the agent consumes the excludable public good is a
non-decreasing function of his valuation, and (ii) his utilities when he reports
truthfully are related by the integral of the probability.

6.3 Proof of Theorem 2

Let α ∈ ∆. Let φ be a strategy-proof probabilistic mechanism such that for
any v ∈ Rn

+ and any i ∈ N ,

σi(v)vi − τi(v) ≥ σα
i (v)vi − ταi (v). (2)

Note that12
∑

i∈N τi(v) ≥ maxi∈N σi(v). Then, it follows that

max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v) ≥
∑
i∈N

σi(v)vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v). (3)

Lemma 1. For any v ∈ Rn
+ such that

∑
i∈N vi < 1 and any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Lemma 1. We prove Lemma 1 by mathematical induction.

Claim 1. For any v ∈ Rn
+ such that

∑
i∈N vi < 1 and #{i ∈ N : vi >

1
n
} = 0,

it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 1. Let v ∈ Rn
+ be such that

∑
i∈N vi < 1 and #{i ∈ N : vi >

1
n
} = 0. Note that13 for any i ∈ N ,

σα
i (v) = 0 and ταi (v) = 0.

Sub-claim 1 - 1. maxi∈N σi(v) = 0.

12This follows from the feasibility.
13Since

∑
i∈N vi < 1, M(v) = ∅.
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Proof of Sub-claim 1 - 1. By adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) ≥ 0.

Then, by (3), it holds that

max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v) ≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

≥ 0,

that is,

max
i∈N

σi(v)(
∑
i∈N

vi − 1) ≥ 0.

Since
∑

i∈N vi − 1 < 0, we have

max
i∈N

σi(v) ≤ 0,

which implies the desired result.

Sub-claim 1 - 2. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Sub-claim 1 - 2. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

Then, by adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) > 0.

Since, by Sub-claim 1 - 1, maxi∈N σi(v) = 0, by (3), it follows that

0 = max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

> 0,

which is a contradiction.

Thus, Claim 1 is valid.
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Claim 2. Suppose that for any v ∈ Rn
+ such that

∑
i∈N vi < 1 and #{i ∈

N : vi >
1
n
} ≤ k − 1, it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Then, for any v ∈ Rn
+ such that

∑
i∈N vi < 1 and #{i ∈ N : vi >

1
n
} = k, it

holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 2. Let v ∈ Rn
+ be such that

∑
i∈N vi < 1 and #{i ∈ N : vi >

1
n
} = k. Note that for any i ∈ N ,

σα
i (v) =

{∑k
h=1 αh if vi > 0

0 if vi = 0

and

ταi (v) =
1

n

k∑
h=1

αh.

Sub-claim 2 - 1. maxi∈N σi(v) ≤
∑k

h=1 αh.

Proof of Sub-claim 2 - 1. By adding (2) for all agents, we have

∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) ≥
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh.

Then, by (3), it holds that

max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v) ≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

≥
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh,

that is,

(max
i∈N

σi(v)−
k∑

h=1

αh)(
∑
i∈N

vi − 1) ≥ 0.

Since
∑

i∈N vi − 1 < 0, we have

max
i∈N

σi(v) ≤
k∑

h=1

αh.
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Sub-claim 2 - 2. maxi∈N σi(v) =
∑k

h=1 αh.

Proof of Sub-claim 2 - 2. Let i ∈ N be such that vi >
1
n
. Then, by Myerson’s

Lemma, it holds that

σi(v)vi − τi(v) = σi(
1

n
, v−i)

1

n
− τi(

1

n
, v−i) +

∫ vi

1
n

σi(wi, v−i)dwi.

By the assumption of Claim 2 , we have

σi(
1

n
, v−i)

1

n
− τi(

1

n
, v−i) =

k−1∑
h=1

αh
1

n
− 1

n

k−1∑
h=1

αh = 0.

Hence, by (2), it holds that∫ vi

1
n

σi(wi, v−i)dwi = σi(v)vi − τi(v)

≥ σα
i (v)vi − ταi (v)

=
k∑

h=1

αhvi −
1

n

k∑
h=1

αh.

Since, by Sub-claim 2 - 1, σi(v) ≤
∑k

h=1 αh, by Myerson’s Lemma, for any
wi ≤ vi, it holds that

σi(wi, v−i) ≤
k∑

h=1

αh.

Hence, it follows that∫ vi

1
n

σi(wi, v−i)dwi ≤
∫ vi

1
n

k∑
h=1

αhdwi

=
k∑

h=1

αhvi −
1

n

k∑
h=1

αh.

Thus, we have ∫ vi

1
n

σi(wi, v−i)dwi =
k∑

h=1

αhvi −
1

n

k∑
h=1

αh,

which implies that

σi(v) =
k∑

h=1

αh.
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Since, by Sub-claim 2 - 1, maxi∈N σi(v) ≤
∑k

h=1 αh, it follows that

max
i∈N

σi(v) =
k∑

h=1

αh.

Sub-claim 2 - 3. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Sub-claim 2 - 3. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

Then, by adding (2) for all agents, we have

∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) >
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh.

Since, by Sub-claim 2 - 2, maxi∈N σi(v) =
∑k

h=1 αh, by (3), it follows that

k∑
h=1

αh

∑
i∈N

vi −
k∑

h=1

αh = max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

>

k∑
h=1

αh

∑
i∈N

vi −
k∑

h=1

αh,

which is a contradiction.

Thus, Claim 2 is valid.

Therefore, Lemma 1 is valid.

Lemma 2. For any v ∈ Rn
+ such that

∑
i∈N vi > 1 and any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Lemma 2. We prove Lemma 2 by mathematical induction.
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Claim 1. For any v ∈ Rn
+ such that

∑
i∈N vi > 1 and #{i ∈ N : vi >

1
n
} = n,

it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 1. Let v ∈ Rn
+ be such that

∑
i∈N vi > 1 and #{i ∈ N : vi >

1
n
} = n. Note that for any i ∈ N ,

σα
i (v) = 1 and ταi (v) =

1

n
.

Sub-claim 1 - 1. maxi∈N σi(v) = 1.

Proof of Sub-claim 1 - 1. By adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) ≥
∑
i∈N

vi − 1.

Then, by (3), it holds that

max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v) ≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

≥
∑
i∈N

vi − 1,

that is,

(max
i∈N

σi(v)− 1)(
∑
i∈N

vi − 1) ≥ 0.

Since
∑

i∈N vi − 1 > 0, we have

max
i∈N

σi(v) ≥ 1,

which implies the desired result.

Sub-claim 1 - 2. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Sub-claim 1 - 2. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

Then, by adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) >
∑
i∈N

vi − 1.
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Since, by Sub-claim 1 - 2, maxi∈N σi(v) = 1, by (3), it follows that∑
i∈N

vi − 1 = max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

>
∑
i∈N

vi − 1,

which is a contradiction.

Thus, Claim 1 is valid.

Claim 2. Suppose that for any v ∈ Rn
+ such that

∑
i∈N vi > 1 and #{i ∈

N : vi >
1
n
} ≥ k + 1, it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Then, for any v ∈ Rn
+ such that

∑
i∈N vi > 1, #{i ∈ N : vi >

1
n
} = k, and∑

i∈N\M(v) vi = 0, it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 2. Let v ∈ Rn
+ be such that

∑
i∈N vi > 1, #{i ∈ N : vi >

1
n
} = k, and

∑
i∈N\M(v) vi = 0. Without loss of generality, we assume that

v1 ≥ v2 ≥ · · · ≥ vn. Denote m = #M(v). Since
∑n

i=m+1 vi = 0, for any
i = m+ 1, . . . , n, vi = 0. Note that for any i = 1, . . . ,m,

σα
i (v) = 1 and ταi (v) =

1

n

k∑
h=1

αh +
1

m
(1−

k∑
h=1

αh),

and for any i = m+ 1, . . . , n,

σα
i (v) = 0 and ταi (v) =

1

n

k∑
h=1

αh.

Sub-claim 2 - 1. maxi∈N σi(v) = 1.

Proof of Sub-claim 2 - 1. By adding (2) for all agents, we have

m∑
i=1

σi(v)vi −
∑
i∈N

τi(v) ≥
m∑
i=1

vi − 1.
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Then, by (3), it holds that

max
i∈N

σi(v)
m∑
i=1

vi −max
i∈N

σi(v) ≥
m∑
i=1

σi(v)vi −
∑
i∈N

τi(v)

≥
m∑
i=1

vi − 1,

that is,

(max
i∈N

σi(v)− 1)(
m∑
i=1

vi − 1) ≥ 0.

Since
∑m

i=1 vi − 1 > 0, we have

max
i∈N

σi(v) ≥ 1,

which implies the desired result.

Sub-claim 2 - 2. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Sub-claim 2 - 2. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

Then, by adding (2) for all agents, we have

m∑
i=1

σi(v)vi −
∑
i∈N

τi(v) >
m∑
i=1

vi − 1.

Since, by Sub-claim 2 - 1, maxi∈N σi(v) = 1, by (3), it follows that

m∑
i=1

vi − 1 = max
i∈N

σi(v)
m∑
i=1

vi −max
i∈N

σi(v)

≥
m∑
i=1

σi(v)vi −
∑
i∈N

τi(v)

>
m∑
i=1

vi − 1,

which is a contradiction.
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Thus, Claim 2 is valid.

Claim 3. Suppose that for any v ∈ Rn
+ such that

∑
i∈N vi > 1 and #{i ∈

N : vi >
1
n
} ≥ k + 1, it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Then, for any v ∈ Rn
+ such that

∑
i∈N vi > 1, #{i ∈ N : vi >

1
n
} = k, and∑

i∈N\M(v) vi > 0, it holds that for any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 3. Let v ∈ Rn
+ be such that

∑
i∈N vi > 1, #{i ∈ N : vi >

1
n
} = k, and

∑
i∈N\M(v) vi > 0. Without loss of generality, we assume that

v1 ≥ v2 ≥ · · · ≥ vn. Denote m = #M(v). Note that for any i = 1, . . . ,m,

σα
i (v) = 1 and ταi (v) =

1

n

k∑
h=1

αh +
1

m
(1−

k∑
h=1

αh).

Note also that for any i = m+ 1, . . . , n,

σα
i (v) =

{∑k
h=1 αh if vi > 0,

0 if vi = 0,

and

ταi (v) =
1

n

k∑
h=1

αh.

Sub-claim 3 - 1. maxi=m+1,...,n σi(v) ≥
∑k

h=1 αh.

Proof of Sub-claim 3 - 1. We divide the argument into two cases.

Case 1. m = 0.

By adding (2) for all agents, we have

∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) ≥
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh.

Then, by (3), it holds that

max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v) ≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

≥
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh,
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that is,

(max
i∈N

σi(v)−
k∑

h=1

αh)(
∑
i∈N

vi − 1) ≥ 0.

Since
∑

i∈N vi − 1 > 0, we have

max
i∈N

σi(v) ≥
k∑

h=1

αh,

which implies the desired result.

Case 2. m ≥ 1.

By adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) ≥
m∑
i=1

vi +
k∑

h=1

αh

n∑
i=m+1

vi − 1.

Note that
∑

i∈N τi(v) ≥ maxi∈N σi(v) and
∑m

i=1 vi ≥ 1. Then, it follows that

(
m∑
i=1

vi − 1) + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi

≥ max
i∈N

σi(v)(
m∑
i=1

vi − 1) + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi

≥ max
i∈N

σi(v)
m∑
i=1

vi + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

≥
m∑
i=1

vi +
k∑

h=1

αh

n∑
i=m+1

vi − 1,

that is,

max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi ≥
k∑

h=1

αh

n∑
i=m+1

vi.

Since
∑n

i=m+1 vi > 0, we have

max
i=m+1,...,n

σi(v) ≥
k∑

h=1

αh,
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which implies the desired result.

Sub-claim 3 - 2. maxi=m+1,...,n σi(v) =
∑k

h=1 αh.

Proof of Sub-claim 3 - 2. Let i ∈ argmaxi=m+1,...,n σi(v). For any sufficiently
small ε > 0, let v̂i =

1
n
+ ε. Then, by Myerson’s Lemma, it holds that

σi(v̂i, v−i)v̂i − τi(v̂i, v−i) = σi(v)vi − τi(v) +

∫ v̂i

vi

σi(wi, v−i)dwi.

By the assumption of Claim 3, we have

σi(v̂i, v−i)v̂i − τi(v̂i, v−i) =
k+1∑
h=1

αhv̂i −
1

n

k+1∑
h=1

αh.

Hence, by (2), it holds that

k+1∑
h=1

αhv̂i −
1

n

k+1∑
h=1

αh −
∫ v̂i

vi

σi(wi, v−i)dwi

= σi(v̂i, v−i)v̂i − τi(v̂i, v−i)−
∫ v̂i

vi

σi(wi, v−i)dwi

= σi(v)vi − τi(v)

≥ σα
i (v)vi − ταi (v)

=
k∑

h=1

αhvi −
1

n

k∑
h=1

αh.

Thus, as ε → 0, we have

−
∫ 1

n

vi

σi(wi, v−i)dwi ≥
k∑

h=1

αhvi −
1

n

k∑
h=1

αh,

that is, ∫ 1
n

vi

σi(wi, v−i)dwi ≤
1

n

k∑
h=1

αh −
k∑

h=1

αhvi.

Since, by Sub-claim 3 - 1, σi(v) ≥
∑k

h=1 αh, by Myerson’s Lemma, for any
wi ≥ vi, it holds that

σi(wi, v−i) ≥
k∑

h=1

αh.

21



Hence, it follows that∫ 1
n

vi

σi(wi, v−i)dwi ≥
∫ 1

n

vi

k∑
h=1

αhdwi

=
1

n

k∑
h=1

αh −
k∑

h=1

αhvi.

These mean that ∫ 1
n

vi

σi(wi, v−i)dwi =
1

n

k∑
h=1

αh −
k∑

h=1

αhvi,

which implies that

σi(v) =
k∑

h=1

αh.

Sub-claim 3 - 3. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Sub-claim 3 - 3. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

We divide the argument into two cases.

Case 1. m = 0.

By adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) >
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh.

Since, by Sub-claim 3 - 2, maxi∈N σi(v) =
∑k

h=1 αh, by (3), it follows that

k∑
h=1

αh

∑
i∈N

vi −
k∑

h=1

αh = max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

>

k∑
h=1

αh

∑
i∈N

vi −
k∑

h=1

αh,

which is a contradiction.
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Case 2. m ≥ 1.

By adding (2) for all agents, we have

∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) >
m∑
i=1

vi +
k∑

h=1

αh

n∑
i=m+1

vi − 1.

Note that
∑

i∈N τi(v) ≥ maxi∈N σi(v) and
∑m

i=1 vi ≥ 1. Then, it follows that

(
m∑
i=1

vi − 1) + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi

≥ max
i∈N

σi(v)(
m∑
i=1

vi − 1) + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi

≥ max
i∈N

σi(v)
m∑
i=1

vi + max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

>
m∑
i=1

vi +
k∑

h=1

αh

n∑
i=m+1

vi − 1,

that is,

max
i=m+1,...,n

σi(v)
n∑

i=m+1

vi >
k∑

h=1

αh

n∑
i=m+1

vi.

Since, by Sub-claim 3 - 2, maxi∈N σi(v) =
∑k

h=1 αh, we have

k∑
h=1

αh

n∑
i=m+1

vi >

k∑
h=1

αh

n∑
i=m+1

vi.

Since
∑n

i=m+1 vi > 0, it is a contradiction.

Thus, Claim 3 is valid.

Therefore, Lemma 2 is valid.

Lemma 3. For any v ∈ Rn
+ such that

∑
i∈N vi = 1 and any i ∈ N ,

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).
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Proof of Lemma 3. Let v ∈ Rn
+ be such that

∑
i∈N vi = 1.

Claim 1.
∑

i∈N σα
i (v)vi −

∑
i∈N ταi (v) = 0.

Proof of Claim 1. Without loss of generality, we assume that v1 ≥ v2 ≥
· · · ≥ vn. Denote k = #{i ∈ N : vi >

1
n
} and m = #M(v). We divide the

argument into two cases.

Case 1. m = 0.

Note that for any i ∈ N ,

σα
i (v) =

{∑k
h=1 αh if vi > 0,

0 if vi = 0,

and

ταi (v) =
1

n

k∑
h=1

αh.

Hence, it holds that∑
i∈N

σα
i (v)vi −

∑
i∈N

ταi (v) =
k∑

h=1

αh

∑
i∈N

vi −
k∑

h=1

αh

=
k∑

h=1

αh(
∑
i∈N

vi − 1)

= 0.

Case 2. m ≥ 1.

Since
∑

i∈N vi = 1, for any i = 1, . . . ,m, vi =
1
m
, and for any i = m+1, . . . , n,

vi = 0. Note that for any i = 1, . . . ,m,

σα
i (v) = 1 and ταi (v) =

1

n

k∑
h=1

αh +
1

m
(1−

k∑
h=1

αh),

and for any i = m+ 1, . . . , n,

σα
i (v) = 0 and ταi (v) =

1

n

k∑
h=1

αh.

Hence, it holds that∑
i∈N

σα
i (v)vi −

∑
i∈N

ταi (v) =
m∑
i=1

vi − 1

= 0.

Thus, Claim 1 is valid.
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Claim 2. For any i ∈ N , it holds that

σi(v)vi − τi(v) = σα
i (v)vi − ταi (v).

Proof of Claim 2. Suppose to the contrary that for some j ∈ N ,

σj(v)vj − τj(v) > σα
j (v)vj − ταj (v).

Then, by adding (2) for all agents, we have∑
i∈N

σi(v)vi −
∑
i∈N

τi(v) >
∑
i∈N

σα
i (v)vi −

∑
i∈N

ταi (v).

Since
∑

i∈N vi = 1, by (3) and Claim 1, it follows that

0 = max
i∈N

σi(v)
∑
i∈N

vi −max
i∈N

σi(v)

≥
∑
i∈N

σi(v)vi −
∑
i∈N

τi(v)

>
∑
i∈N

σα
i (v)vi −

∑
i∈N

ταi (v)

= 0,

which is a contradiction. Thus, Claim 2 is valid.

Therefore, Lemma 3 is valid.

By Lemmas 1, 2, and 3, Theorem 2 is valid.

6.4 Proof of Proposition 1

We calculate the welfare loss of the α-mechanism.

Lemma 4. Let k = 1, . . . , n and m = 0, 1, . . . , n. For any v ∈ D(k,m), it
holds that

σα(v) = (1, . . . , 1︸ ︷︷ ︸
m

,
k∑

h=1

αh, . . . ,

k∑
h=1

αh︸ ︷︷ ︸
n−m−ℓ

, 0, . . . , 0︸ ︷︷ ︸
ℓ

),

where ℓ = #{i ∈ N : vi = 0}.
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Proof of Lemma 4. Since #{i ∈ N : vi >
1
n
} = k, for any w ≤ k and any

i ∈ N , it holds that

swi (v) =

{
1 if vi > 0,

0 if vi = 0.

Since #M(v) = m, for any w > k and any i, j ∈ N such that i ≤ m < j, it
holds that

swi (v) = 1 and swj (v) = 0.

Hence, we have

σα(v) = (1, . . . , 1︸ ︷︷ ︸
m

,

k∑
h=1

αh, . . . ,
k∑

h=1

αh︸ ︷︷ ︸
n−m−ℓ

, 0, . . . , 0︸ ︷︷ ︸
ℓ

),

Lemma 5. For any k = 1, . . . , n and any m = 0, 1, . . . , n, it holds that

sup
v∈D(k,0)

WL(v) ≥ sup
v∈D(k,m)

WL(v),

and

sup
v∈D(k,0)

WL(v) = max
{
(1−

k∑
h=1

αh)
( k∑
h=1

1

h
+ (n− k)

1

n
− 1
)
,

k∑
h=1

αh(1−
k

n
)
}
.

Proof of Lemma 5. Let k = 1, . . . , n and m = 0, 1, . . . , n. First, consider
v ∈ D(k, 0). When

∑
i∈N vi ≥ 1,

WL(v) = (
∑
i∈N

vi − 1)− (
∑
i∈N

k∑
h=1

αhvi −
k∑

h=1

αh)

= (1−
k∑

h=1

αh)(
∑
i∈N

vi − 1).

Since we must have v1 < 1, . . . , vk < 1
k
, vk+1 ≤ 1

n
, . . . , vn ≤ 1

n
, the supremal

value on this case is

(1−
k∑

h=1

αh)
( k∑
h=1

1

h
+ (n− k)

1

n
− 1
)
.
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When
∑

i∈N vi < 1,

WL(v) = 0− (
∑
i∈N

k∑
h=1

αhvi −
k∑

h=1

αh)

=
k∑

h=1

αh(1−
∑
i∈N

vi).

Since we must have 1
n
< v1, . . . ,

1
n
< vk, 0 ≤ vk+1, . . . , 0 ≤ vn, the supremal

value on this case is
k∑

h=1

αh(1−
k

n
).

Thus, we have

sup
v∈D(k,0)

WL(v) = max
{
(1−

k∑
h=1

αh)
( k∑
h=1

1

h
+ (n− k)

1

n
− 1
)
,

k∑
h=1

αh(1−
k

n
)
}
.

Next, consider v ∈ D(k,m) such that m ≥ 1. Since m ≥ 1, we must have∑
i∈N

vi ≥ 1.

Hence, it holds that

WL(v) = (
∑
i∈N

vi − 1)− (
m∑
i=1

vi +
n∑

i=m+1

k∑
h=1

αhvi − 1)

=
n∑

i=m+1

vi −
n∑

i=m+1

k∑
h=1

αhvi

= (1−
k∑

h=1

αh)
n∑

i=m+1

vi.

Since we must have vm+1 <
1

m+1
, . . . , vk <

1
k
, vk+1 ≤ 1

n
, . . . , vn ≤ 1

n
, we have

sup
v∈D(k,m)

WL(v) = (1−
k∑

h=1

αh)
( k∑
h=m+1

1

h
+ (n− k)

1

n

)
.

Since
∑k

h=1
1
h
+ (n− k) 1

n
− 1 ≥

∑k
h=m+1

1
h
+ (n− k) 1

n
, we have

sup
v∈D(k,0)

WL(v) ≥ sup
v∈D(k,m)

WL(v).

Therefore, Proposition 1 is valid.
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6.5 Proof of Proposition 2

Let k = 1, . . . , n. We first establish that ᾱk ≥ 0. Notice that

ᾱk ≡ 1−
k−2∑
h=1

ᾱh − ᾱk−1 −
1− k

n∑k
h=1

1

h
+ 1− 2k

n

and

ᾱk−1 ≡ 1−
k−2∑
h=1

ᾱh −
1− k − 1

n∑k−1
h=1

1

h
+ 1− 2(k − 1)

n

.

Hence, it holds that

ᾱk =
1− k − 1

n∑k−1
h=1

1

h
+ 1− 2(k − 1)

n

−
1− k

n∑k
h=1

1

h
+ 1− 2k

n

=
(1− k − 1

n
)(
∑k

h=1

1

h
+ 1− 2k

n
)− (1− k

n
)(
∑k−1

h=1

1

h
+ 1− 2(k − 1)

n
)

(
∑k−1

h=1

1

h
+ 1− 2(k − 1)

n
)(
∑k

h=1

1

h
+ 1− 2k

n
)

.

Note that
k−1∑
h=1

1

h
+ 1− 2(k − 1)

n
> 0

and
k∑

h=1

1

h
+ 1− 2k

n
> 0.

Hence, to establish ᾱk ≥ 0, it is sufficient to show that the following equation
is non-negative:

(1− k − 1

n
)(

k∑
h=1

1

h
+ 1− 2k

n
)− (1− k

n
)(

k−1∑
h=1

1

h
+ 1− 2(k − 1)

n
). (4)
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Note that

(1− k − 1

n
)(

k∑
h=1

1

h
+ 1− 2k

n
) = (1− k

n
+

1

n
)(

k−1∑
h=1

1

h
+ 1− 2(k − 1)

n
+

1

k
− 2

n
)

= (1− k

n
)(

k−1∑
h=1

1

h
+ 1− 2(k − 1)

n
)

+(1− k

n
)(
1

k
− 2

n
) +

1

n
(

k∑
h=1

1

h
+ 1− 2k

n
).

Hence, (4) is equivalent to

(1− k

n
)(
1

k
− 2

n
) +

1

n
(

k∑
h=1

1

h
+ 1− 2k

n
),

which is equal to

1

k
− 2

n
+

1

n

k∑
h=1

1

h
. (5)

Since 1
k
− 1

n
≥ 0 and

∑k
h=2

1
h
≥ 0, (5) is non-negative. Thus, (4) is also

non-negative.
By (1), it is obvious that

n∑
h=1

ᾱh = 1.

Then, since for any h = 1, . . . , n, ᾱh ≥ 0, we also have that

ᾱk ≤ 1.

Therefore, Proposition 2 is valid.

6.6 Proof of Proposition 3

By Proposition 1, it is sufficient to show the following Lemma.

Lemma 6. For any k = 1, . . . , n, it holds that

(1−
k∑

h=1

ᾱh)
( k∑
h=1

1

h
+ (n− k)

1

n
− 1
)
=

k∑
h=1

ᾱh(1−
k

n
).
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Proof of Lemma 6. Let k = 1, . . . , n. Note that (1) is equivalent to

1−
k∑

h=1

ᾱh =
1− k

n∑k
h=1

1

h
+ 1− 2k

n

,

which is also equivalent to

(1−
k∑

h=1

ᾱh)(
k∑

h=1

1

h
+ 1− 2k

n
) = 1− k

n
.

Note that the left-hand side of the above equation is equal to

(1−
k∑

h=1

ᾱh)(
k∑

h=1

1

h
+ (n− k)

1

n
− 1 + 1− k

n
).

Hence, we have

(1−
k∑

h=1

ᾱh)(
k∑

h=1

1

h
+ (n− k)

1

n
− 1) =

k∑
h=1

ᾱh(1−
k

n
).

Therefore, Proposition 3 is valid.

6.7 Proof of Theorem 3

Let k∗ = 1, . . . , n be such that

k∗ ∈ argmax
k≥1

{ k∑
h=1

ᾱh(1−
k

n
)
}
.

Notice that k∗ ̸= n. For simplicity of notation, denote A∗ ≡
∑k∗

h=1 ᾱh. Note
that

k∗∑
h=1

1

h
+ (n− k∗)

1

n
− 1 > 0 and 1− k∗

n
> 0.

Hence, (1− A)
(∑k∗

h=1
1
h
+ (n− k∗) 1

n
− 1
)
is a strictly decreasing function of

A, and A(1− k∗

n
) is a strictly increasing function of A. Since these are equal

at A∗, max{(1 − A)
(∑k∗

h=1
1
h
+ (n − k∗) 1

n
− 1
)
, A(1 − k∗

n
)} has the smallest

value at A∗. Thus, the supremal welfare loss of any α-mechanism is larger
than or equal to that of the ᾱ-mechanism. Therefore, Theorem 3 is valid.
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6.8 Proof of Corollary 1

As mentioned in Remarks 3 and 4, the 1-Ohseto mechanism achieves the
smallest supremal welfare loss among the Ohseto mechanisms, with a value
of

1− 1

n
.

Note that

ᾱ1 =
1

2
.

Hence, it holds that

ᾱ1(1−
1

n
) < 1− 1

n
.

For any k = 2, . . . , n, we also have

k∑
h=1

ᾱh(1−
k

n
) ≤ 1− k

n
< 1− 1

n
.

Thus, for any k = 1, . . . , n, it holds that

k∑
h=1

ᾱh(1−
k

n
) < 1− 1

n
.

Therefore, Corollary 1 is valid.
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Figure 1: The supremal welfare loss of three mechanisms: the Moulin mecha-
nism (Black), the 1-Ohseto mechanism (Red), and the ᾱ-mechanism (Blue).
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