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1 Introduction

In modern macroeconomic analyses, dynamic stochastic general equilibrium (DSGE) mod-

els are a workhorse tool for assessing the state of the economy and the effects of policy.

However, the effective zero lower bound (ELB or ZLB; hereafter, we refer to the ZLB) on

the nominal interest rate poses a serious technical challenge. The nonlinearity produced by

the ZLB means that solving a rational expectation equilibrium is computationally difficult.

Estimating the model is even more difficult, because it requires that we repeat the process

of solving the rational expectation equilibrium for a number of parameter values. Neglecting

the ZLB may generate biased estimates and, thus, incorrect policy implications, because

the ZLB often changes the quantitative results, as pointed by Fernández-Villaverde et al.

(2015), Boneva, Braun and Waki (2016), and Nakata (2017). The problem of the ZLB is

particularly serious in the case of Japan because the Japanese economy has been trapped at

the effective ZLB since 1995.

In this study, we attempt to estimate a DSGE model for Japan, where the model is

nonlinear and stochastic. To facilitate the computations, we use one of the simplest New

Keynesian models that abstracts many of the important features of standard DSGE models,

such as consumption habit, capital formation, and wage stickiness. However, we incorporate

nonlinearity and stochastic shocks, which make the ZLB occasionally binding.

We use an estimation to investigate two main points. First, we analyze Japan’s mone-

tary policy. Although many central banks have conducted commitment (forward guidance)

policies under the ZLB in the aftermath of financial crises, estimating such a policy is diffi-

cult because we have to embed the ZLB explicitly in a model. Specifically, we address the

question of which past variable a central bank refers to when its monetary policy has an

inertia. In some cases, the monetary policy rule refers to the actual nominal interest rate in

the previous period, which takes a value greater than or equal to zero. In others, it refers

to the notional interest rate in the previous period, which can take values lower than zero.

Ceteris paribus, the latter type of monetary policy rule is considered to have a larger effect

on the economy at the ZLB, because today’s interest rate is likely to be lower as a result of a

negative notional interest rate.1 Therefore, to assess the effects of a monetary policy, we need

to identify a true monetary policy rule, and then estimate its parameters by fully taking into

account the nonlinearity stemming from the ZLB.2 However, most empirical studies neglect

1Reifschneider and Williams (2000) propose a monetary policy under the ZLB similar to the second type

of monetary policy rule.
2A partial-equilibrium approach may enable us to identify a true monetary policy rule by estimating the

response of nominal interest rates to economic disturbances. In contrast, our estimation based on a DSGE

model takes into account not only the response of nominal interest rates to economic disturbances but also

the effects of the monetary policy on the economy. Thus, if the forward guidance puzzle is significant, that

is, if the theoretical power of forward guidance is too strong (Del Negro, Giannoni, and Patterson (2015)

and McKay, Nakamura, and Steinsson (2016)), then our estimation may support the first type of monetary
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the ZLB, and those that do take it into account derive models that rest on one of the two

monetary policy rules. For example, Aruoba, Cuba-Borda, and Schorfheide (2017) assume

the first type identified above, while Gust et al. (2017) and Richter and Throckmorton

(2016) assume the second type. In addition, we investigate impulse response functions to

shocks given various kinds of monetary policy specifications as well as the probability that

the ZLB constrains monetary policy.

The second focus of this study is the natural rate of interest. The natural rate of interest

is the real interest rate that would lead to price stability (Wicksell (1936)). It plays a

pivotal role in New Keynesian models, such as those of Woodford (2003). For example,

when the actual real interest rate exceeds the natural rate of interest, real economic activity

is dampened and the inflation rate decreases. Krugman (1998) points out the possibility

that the equilibrium real interest rate in Japan decreased, although he does not use the term

natural rate or estimate it quantitatively. By estimating the natural rate of interest, we seek

to explain Japan’s stagnant recessions, the so-called lost decades, since the early 1990s.

To estimate the model that includes the ZLB, we adopt two approaches recently intro-

duced in the literature. First, we use the method the time iteration with linear interpolation

(TL) method recommended by Richter, Throckmorton, and Walker (2014) to solve for the

rational expectation equilibrium. This method is within the class of policy function iterations

and, according to the authors, is flexible, accurate, and speedy. Second, we estimate the pa-

rameters using the Sequential Monte Carlo Squared (SMC2) method, developed by Chopin,

Jacob, and Papaspiliopoulos (2013), and applied to DSGE models by Herbst and Schorfheide

(2015). In this method, we evaluate the likelihood of a nonlinear model, given a certain pa-

rameter set, by generating particles of endogenous variables (often called a particle filter).

Further, by sampling the particles of the parameter sets, we derive the posterior distribution

of the parameters (the Sequential Monte Carlo or SMC method).3 As Chopin, Jacob, and

Papaspiliopoulos (2013), Herbst and Schorfheide (2015), and Fernández-Villaverde, Rubio-

Ramı́rez, and Schorfheide (2016) argue, compared with the particle Markov chain Monte

Carlo (MCMC) technique, the SMC2 method leads to a more reliable posterior inference

and, thus, we do not need large measurement errors.

Our main findings are as follows. First, we show that a nonlinear estimation is crucial

to deriving implications for monetary policy. For example, the Bayesian model selection

chooses a model in which today’s monetary policy depends on the notional interest rate,

policy rule rather than the second type.
3Before the development of the SMC2 method, using the SMC method for parameter estimation was

limited to linear state-space models, where the Kalman filter can be applied to evaluate the likelihood. See,

for example, Chopin (2002) and Herbst and Schorfheide (2014). Alternatively, when estimating nonlinear

state-space models, past studies use a particle filter by combining it with the Markov chain Monte Carlo

(MCMC) technique (e.g., the Metropolis–Hastings (MH) algorithm), developed by Andrieu, Doucet, and

Holenstein (2010), and often called the particle MCMC technique. See also Kitagawa (1996) and Fernandez-

Villaverde and Rubio-Ramirez (2005) for the particle filter.
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which can take negative values in the previous period. This suggests that past experience of

recessions in reducing the nominal interest rate to zero is carried over to today’s monetary

policy, preventing the Bank of Japan from tightening its monetary policy, even if the economy

improves. This type of carry-over policy is interpreted as a forward guidance (commitment)

policy. That is, the Bank of Japan has been implementing forward guidance policy at the

ZLB by committing to continuing the zero-rate policy for a long time. Impulse response

functions to a monetary policy shock vary significantly, depending on the model for the

monetary policy rule and on the sign of the shock.

Second, to our surprise, we find that the ZLB does not produce a bias for the estimated

natural rate of interest. Although the ZLB produces considerable biases for parameter

estimates, which affects policy implications, the estimated natural rate of interest shows

little variation between models with different monetary policy specifications. Even if a

misspecification produces biased parameters, their effect on the natural rate of interest is

canceled out by the effect of biased shocks. The natural rate of interest has often been

negative since the mid-1990s, mainly as a result of weak demand shocks.

This study is not the first attempt to estimate a nonlinear DSGE model with the ZLB.4

The two studies closest to ours are those of Gust et al. (2017) and Richter and Throckmorton

(2016). However, there are three main differences between these works and ours. First, they

use data for the United States, where the ZLB is only relevant for a few years, whereas the

nominal interest rate has been almost zero for two decades in Japan. Thus, the constrained

linear model, which is linear except for the ZLB, performs very poorly for Japan, in contrast

to the findings of Richter and Throckmorton (2016). Second, we use the SMC2 method to

generate particles for both the model variables (shock processes) and the model parameters.

In contrast, the two aforementioned studies use the MCMC technique to estimate the model.

As in the previous two works, we generate particles for endogenous variables in order to

compute the likelihood, because the model is nonlinear and, thus, we cannot employ the

Kalman filter. In addition, in the SMC2 case, we derive the posterior distribution of the

parameters by sampling the particles of the parameter sets. As we later explain in detail,

the SMC2 method enables us to obtain a reliable posterior inference. We do not need to

assume large measurement errors for feasibility, unlike Gust et al. (2017) and Richter and

Throckmorton (2016). Third, Gust et al. (2017) estimate a far richer medium-sized DSGE

model than that of Richter and Throckmorton (2016) or the model used in this paper.

Studies on developments in the natural rate of interest include the works of Krugman

(1998), Laubach and Williams (2003, 2016), Neiss and Nelson (2003), Andrés, López-Salido,

4Hirose and Sunakawa (2015), Hirose and Inoue (2016), and Aruoba, Cuba-Borda, and Schorfheide (2017)

estimate a model without the ZLB, although they generate data and conduct simulations that incorporate

the ZLB. By assuming that the duration of ZLB, τt, is foreseen perfectly in each period t, Kulish, Morley,

and Robinson (2017) estimate τt and time-varying policy functions given estimated τt. Aoki and Ueno (2012)

and Kim and Pruitt (2017) use forward rate curves and forecasters’ surveys, respectively.
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and Nelson (2009), Hall (2011), Barsky, Justiniano, and Melosi (2014), Ikeda and Saito

(2014), Cúrdia (2015), Cúrdia et al. (2015), Bank of Japan (2016), Del Negro et al. (2017),

Hirose and Sunakawa (2017), and Holston, Laubach, and Williams (2017) among others.

With the exception of the recent work of Hirose and Sunakawa (2017), none of these studies

use the DSGE model while explicitly considering the ZLB. Hirose and Sunakawa (2017)

evaluate the natural rate of interest using the DSGE model with the ZLB for the United

States, but do not estimate the model with the ZLB. Instead, they estimate the model

without the ZLB for the periods before the ZLB constrains the economy and then evaluate

the natural rate of interest using the estimated parameters for the extended periods.

The remainder of this paper is structured as follows. Section 2 briefly explains our model,

and Section 3 outlines our estimation methods. Sections 4 and 5 discuss our estimation

results with regard to monetary policy and the natural rate of interest, respectively. Lastly,

Section 6 concludes.

2 Model

Our model is one of the simplest New Keynesian models. The economy consists of a repre-

sentative household, firms, and a central bank. Firms consist of monopolistically competitive

intermediate-good producers and perfectly competitive final-good producers. We consider

three types of monetary policy, including one that abstracts the ZLB. The economy is subject

to three types of exogenous shocks: a discount factor (preference), technology, and monetary

policy.

2.1 Household

A representative household maximizes its welfare as follows:

Et

[
∞∑
j=0

βjZb
t+j

{
C1−σ
t+j

1− σ
−

(At+j)
1−σ χl1+ω

t+j

1 + ω

}]
, (1)

subject to the budget constraint Ct +Bt/Pt ≤ Wtlt +Rt−1Bt−1/Pt +Tt, where Ct, lt, Pt, Wt,

Rt, and Tt represent consumption, labor services, the aggregate price level, the real wage,

the nominal rate of return, and the lump-sum transfer in period t, respectively. In addition,

Bt represents the holding of one-period riskless bonds at the end of period t. Parameter

β ∈ (0, 1) is the subjective discount factor, σ > 0 measures the inverse of the intertemporal

elasticity of substitution of consumption, ω > 0 is the inverse of the labor supply elasticity,

and χ > 0 is the scale factor. Finally, Zb
t represents a stochastic shock to the discount factor

(preference), with a unit mean and obeying the following AR(1) process:

log(Zb
t ) = ρblog(Zb

t−1) + εbt . (2)
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As in Erceg, Guerrieri, and Gust (2006), we allow for preferences over leisure to shift with

the level of technology, At, to ensure the existence of the balanced growth path.

2.2 Firms

The final-good firm faces perfect competition and produces output Yt by choosing the com-

bination of intermediate inputs Yf,t (f ∈ [0, 1]) that maximizes its profit, subject to the

Dixit-Stiglitz form of aggregations Yt =
{∫ 1

0
Y

ε−1
ε

f,t df
} ε
ε−1

, where ε > 1 represents the elas-

ticity of substitution between intermediate goods.

Intermediate-good firm f produces output Yf,t using the production technology given by

Yf,t = Atlf,t. The technology shock At obeys the I(1) process with a non-zero growth rate of

γa, where µat ≡ log(At/At−1)− γa is given by

µat = ρaµat−1 + εat . (3)

Intermediate-good firm f maximizes its firm value by setting the optimal price Pf,t in period

t in the presence of a Rotemberg-type price adjustment cost:

Et

[
∞∑
j=0

βj
Λt+jZ

b
t+j

ΛtZb
t

(
Pf,t+j
Pt+j

− Wt+j

At+j
− φ

2

(
Pf,t+j
Pf,t+j−1

− π∗
)2
)
Yf,t+j

]
(4)

subject to downward-sloping demand, where Λt and π∗ represent the stochastic discount

factor and the target inflation rate, respectively, and φ captures the degree of the Rotemberg-

type price adjustment cost.

2.3 Central Bank

In this study, we consider three types of monetary policy models. Models 1 and 2 incorporate

the ZLB as

Rt = max (1, R∗t ) , (5)

where R∗t represents the notional interest rate, which can take values less than one. The

actual interest rate Rt cannot be less than one. The third model, Model without the ZLB,

ignores the ZLB constraint. Models 1 and 2 are characterized by the monetary policy rules,

R∗t =
(
R∗t−1

)ρr (
r∗π∗

( πt
π∗

)ψπ ( Yt/At
Y ∗t /At

)ψy)1−ρr

eε
r
t , (6)

and

R∗t = (Rt−1)ρ
r

(
r∗π∗

( πt
π∗

)ψπ ( Yt/At
Y ∗t /At

)ψy)1−ρr

eε
r
t , (7)
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respectively, where ρr, ψπ, and ψy capture the monetary policy responses to the past interest

rate, the inflation rate, and the output gap, respectively. Models 1 and 2 differ only in which

interest rate the central bank refers to. In Model 1, this is the notional interest rate, and

in Model 2 is the actual interest rate. We denote the steady-state natural rate of interest,

the natural level of output, and the inflation rate by r∗, Y ∗t , and πt, respectively, where εrt
represents a stochastic i.i.d. shock to the monetary policy with zero mean.

Compared with Model 2, Model 1 incorporates a stronger commitment for future policy.

Because R∗t can be below zero and depends on R∗t−1, the experiences of adverse shocks in the

past limit the actions of the central bank for long periods. In other words, the central bank

compensates for its inability to lower the policy rate below zero by continuing the zero-rate

policy, ceteris paribus.

2.4 Closing the Model

The goods market is cleared as

Yt = Ct + φ (πt − π∗)2 Yt/2. (8)

In addition, the flexible-price equilibrium is defined as that without the Rotemberg-type

price adjustment cost.

The natural rate of interest r∗t in the model is equal to the real rate of return in this

flexible-price economy. Similarly, the natural level of output Y ∗t is equal to the output in

the economy with flexible prices.

3 Methodology

In this section, we outline how we solve and estimate the nonlinear DSGE model with

the ZLB. We then explain our data and the prior specifications, including the size of the

measurement errors. Finally, we discuss the advantage of the SMC2 method.5

3.1 Model Solution

We solve the rational expectation equilibrium of our model using the time iteration method

with linear interpolation (TL) method. This is within the class of policy function iteration

methods, with Richter, Throckmorton, and Walker (2014) showing that it provides the best

balance between speed and accuracy.

More precisely, we solve for the rational expectation equilibrium or policy function, given

the parameter set θ. Note that, in our model, the policy function of any variable Xt is

5See the Appendix for details. In Appendix A, we explain the method to solve the rational expectation

equilibrium. In Appendix B, we explain the method to estimate our model.
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expressed as Xt = X(µat , Z
b
t , ε

r
t , R

∗
t−1), because there are three shocks and one state variable,

R∗t−1. Intuitively, the TL method begins with a time iteration for a policy function until

the intertemporal equations that describe relations between Xt and Et(Xt+1) are satisfied at

every node. Compared with the fixed-point iteration, it is costly to call a nonlinear solver

on each node. However, the method is more stable, precisely because the policy function

is optimized on each node. We then locally approximate the policy functions using linear

interpolation. Compared with global approximation methods, such as the projection method

using the Chebyshev polynomial basis, linear interpolation is considered to perform better

in an environment where the ZLB produces kinks in the policy functions.

The rational expectation equilibrium obtained using the TL method is not the defla-

tionary equilibrium shown by Benhabib, Schmitt-Grohe, and Uribe (2001). The equilibrium

derived using the TL method is a minimum state variable solution, which, as McCallum

(1999) discusses, rules out an indeterminate equilibrium, such as a deflationary equilibrium.

See Aruoba, Cuba-Borda, and Schorfheide (2017) for an attempt to estimate such an equi-

librium.

3.2 Estimation

We estimate the nonlinear DSGE model with the ZLB using a Bayesian technique. We

estimate the parameters using the SMC2 method developed by Chopin, Jacob, and Pa-

paspiliopoulos (2013) and Herbst and Schorfheide (2015). The method comprises the fol-

lowing four steps. In Step 1 (initialization), we draw Nθ particles for parameters θ. We then

repeat Steps 2 to 4 below for Nφ stages. In Step 2 (correction), given θ, we compute the

likelihood p̂(Yt|θ) and the weight W̃ . In Step 3 (selection), we resample θ and w based on θ

in the previous stage and W̃ in the previous step. Then, in Step 4 (mutation), we propagate

θ and W̃ using the MH algorithm.

In Step 2, we solve the model, given θ using the TL method. Then, after drawing NS

particles for shock processes (µat , Z
b
t , ε

r
t ), we generate the paths of variables Ŷt, compare them

with observed variables Yt, and compute the likelihood p̂(Yt|θ) by assuming the presence

of the measurement error of Yt. Note that because the model is nonlinear, we cannot apply

the Kalman filter. Thus, we use the particle filter, where we replace p(Yt|θ) by p̂(Yt|θ)
using a sufficiently large number of particles NS with respect to shocks.

In our benchmark estimation, we use the particles of NS = 40, 000 and Nθ = 1, 200,

and the stages of Nφ = 10. For the number of particles of the shock processes, NS, we

follow Richter and Throckmorton (2016). To the best of our knowledge, no studies have

determined a criterion for the number of stages Nφ, or the number of parameter particles

Nθ.
6 However, it is worth noting that, in the SMC2 method, particles for parameters are

6More precisely, early studies, such as those of Herbst and Schorfheide (2014, 2015), may provide a clue

as to their choice. However, because we use the likelihood tempering method for the importance sampling,
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uncorrelated between each stage. In contrast, in the MCMC technique, a set of sampled

parameters (such as median and mode) are highly correlated between each stage (iteration)

and, thus, the sampling efficiency is low. This difference means that we cannot apply a

convergence test, as we do for the MCMC technique. Furthermore, we do not need a large

number of stages. In contrast, Gust et al. (2017) use the MCMC with 40,000 iterations.

In our estimation, we choose a relatively large number of parameter particles Nφ = 1, 200,

while keeping the number of stages low NS = 10. A single estimation takes about a week

using a 32-core (Intel Xeon E5-2698v3) computer.

3.3 Data

We use data for Japan from 1983:2Q to 2016:2Q. The beginning period is chosen to coincide

with that of the output gap data, which we use for a robustness analysis. In the benchmark

estimation, we use Yt = {∆logYt, πt, Rt}: the real per-capita GDP growth rate, the CPI

inflation rate, and the overnight call rate. Figure 1 shows the time-series changes in these

variables. In obtaining ∆logYt, we divide the real GDP by the population aged 15 years old

or over. For πt, we exclude the effects of consumption tax changes using X12ARIMA. These

two variables are quarterly changes from the previous quarter, so Rt is divided by four to

make it quarterly. As an alternative to ∆logYt, we later use the output gap (log (Yt/Y
∗
t ))

constructed by the Bank of Japan.

3.4 Prior Specifications

We choose parameter values based on Smets and Wouters (2007) and Sugo and Ueda (2008).

We fix some of the parameters as β = 0.995, χ = 1, and ε = 6. Table 1 shows the prior

distribution of parameters, where κ is defined by (ε−1) (ω + σ) /(φπ∗). Note that, to enhance

readability, we express parameters γa and π∗by 100γa and 100(π∗−1), respectively. We also

discuss the natural rate of interest r∗t by deducting the value one.

For the measurement errors of ∆logYt, πt, and Rt, we assume that their sizes are 0.5%,

0.5%, and 0.25% of their actual standard deviations, respectively. Their sizes are far smaller

than those in Gust et al. (2017) and Richter and Throckmorton (2016), where they are√
0.25 ∼ 50% and

√
0.1 ∼ 30%, respectively. We assume that the measurement error of Rt

is lower than those of ∆logYt and πt, but this difference is minor and has little effect on the

following results.

whereas they use the data tempering method, our estimation is considered to be less subject to the number

of stages.
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3.5 Advantage of the SMC2 over the MCMC

We use the SMC2 method by generating particles for the shock processes (µat , Z
b
t , ε

r
t ) and

for the parameter set θ, using NS and Nθ, respectively. In contrast, Gust et al. (2017)

and Richter and Throckmorton (2016) use the MCMC technique to estimate the model by

generating particles for shock processes only. As Chopin, Jacob, and Papaspiliopoulos (2013),

Herbst and Schorfheide (2015), and Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide

(2016) argue, the SMC2 method can lead to a more reliable posterior inference than that of

the particle MCMC technique. Furthermore, we do not need large measurement errors for

the observable variables, unlike Gust et al. (2017) and Richter and Throckmorton (2016).

In addition, the SMC2 method can be paralleled easily.

To understand these advantages better, we use our estimation result (discussed in the next

section) as an illustrative example. Figure 2 shows a scatter plot where each dot represents

a particle for the value of parameter σ (horizontal axis) and its posterior likelihood (vertical

axis). The dots are dense around σ = 1.4. Their median lies around this level, as shown in

the big filled circle in red. Interestingly, the likelihood becomes largest when σ is around 1.5,

as shown in the big plus at the top of the figure. However, this circle seems to be an outlier,

for three reasons: particles are sparse around this circle; the likelihood drops when σ deviates

slightly from the value; and the computation of the likelihood is subject to errors. The last

point arises because the model is nonlinear and, thus, the Kalman filter cannot be applied.

Therefore, we need to use particles for shock processes and introduce measurement errors

for observable variables to approximate the likelihood. Figure 2 shows that our estimation

is not trapped at this outlier.

What will happen if we use the MCMC technique in this example? In the MCMC, we

compare only two parameter candidates, for example, new candidate σ1 and previously se-

lected σ0. Thus, once the aforementioned plus is selected as either σ1 or σ0, our estimation

tends to be trapped at this point, because the likelihood at its neighborhood is discontinu-

ously lower. In other words, the acceptance probability of the new parameter values is very

low. This problem becomes more serious when the measurement errors for the observable

variables are smaller, because the likelihood becomes more sensitive to parameter changes.

Therefore, we need to assume large measurement errors to keep the acceptance probability

of 25% when using the MCMC. For the same reason, the MCMC is considered to be sensitive

to the shape of the distribution. If the distribution is close to being bimodal, the posterior

inference becomes unstable between the two.7

The SMC2 method can resolve this problem. Because it uses more than two particles for

parameter candidates, and allocates weight W̃ to each particle corresponding to its likelihood,

particles are much less likely to be stuck at the outlier. The posterior distribution becomes

7Herbst and Schorfheide (2015) report that they cannot estimate a Smets and Wouters-type (2007)

medium-scale DSGE model using the MCMC technique with the particle filter.
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diverse, as shown in the figure.8

4 Evaluating Japan’s Monetary Policy during the Low

Inflation Period

4.1 Model Selection and Parameter Estimates

In this section, we discuss Japan’s monetary policy. We first compare the performance

of Model 1, Model 2, and Model without the ZLB using a Bayesian estimation by taking

into account the ZLB and using data at the ZLB. Because of the general equilibrium, our

estimation of the monetary policy rules takes into account not only the response of nominal

interest rates to economic disturbances, but also the effects of the monetary policy on the

macroeconomy.

Table 2 shows the parameter estimates and marginal likelihood for the three types of

models with regard to monetary policy: Model 1, Model 2, and Model without the ZLB.

The marginal likelihood is the highest for Model 1, supporting Model 1 with the posterior

probability of one over Model 2 and Model without the ZLB. Because the nominal interest

rate has been almost zero for the past two decades, the fit of Model without the ZLB is the

worst of the three.

This suggests that the past experience of recessions reducing the nominal interest rate

to zero prevents the Bank of Japan from tightening its monetary policy today, even if the

economy improves. In other words, the Bank of Japan has been conducting a forward

guidance policy at the ZLB by committing to continuing the zero-rate policy.

In the following discussions, we report the results mainly for Model 1, because the

marginal likelihood is the highest. Hereafter, we call Model 1 the baseline model. The

estimates of the structural parameters, such as σ and ω, are within the range reported in

earlier studies. The inflation target π∗ − 1 is 0.36% quarterly (i.e., 1.44% annually). This

value lies between the Bank of Japan’s formal target, 0.5% quarterly, and the mean of the

actual inflation rates in the sample period, 0.11% quarterly. The trend component of the

technology shock At, γ
a, is −0.028% quarterly, which renders a steady-state natural rate of

interest r∗ − 1 = eσγ
a
/β − 1 of 0.46% quarterly.

By comparing the parameter estimates between Model 1 and Model without the ZLB, we

observe a significant difference in the inverse of the intertemporal elasticity of substitution

of consumption σ, the trend component of the technology shock γa, the inflation target π∗,

8The likelihood tempering approach in the SMC2 method is another reason why the SMC2 performs well.

In the mutation step at each stage, a scaling factor is revised to keep the acceptance probability around

25%. This enables us to obtain smooth posterior distribution of parameters around modes, as the number

of stages increases.
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and the inertia of the monetary policy rule ρr. For these four parameters, Model without the

ZLB yields smaller values than those of Model 1. In particular, smaller γa and π∗ suggest

that the steady-state nominal interest rate is lower, because it is equal to eσγ
a
/β − 1 + π∗.

It is −0.38% in Model without the ZLB, and is 0.82% in Model 1. Model without the ZLB

seems to require a low and negative steady-state nominal interest rate in order to explain

the prolonged zero interest rate that has occurred in Japan.

4.2 The Notional Interest Rate

Figure 3 shows developments in the notional nominal interest rate R∗t − 1 in Models 1 and

2, whereas it coincides with the actual nominal interest rate Rt − 1 in Model without the

ZLB. In Model 1, it has been around −4% annually since 1995. This contributes to reducing

future interest rates. On the other hand, the notional nominal interest rate is around −2%

annually in Model 2, but this does not constrain the future monetary policy.9

Some papers in the finance literature estimate a so-called shadow rate.10 Like the notional

interest rate in our model, the shadow rate can take a negative value, while the actual interest

rate is non-negative. However, the shadow rate is estimated very differently. These papers

focus on the shape of the yield curve only, using a partial-equilibrium approach. They

estimate the shadow rate by extending the Gaussian affine term structure model or the

Black (1995) model by incorporating the ZLB. Thus, it is not directly comparable, but it is

still worth comparing the notional interest rate in our model with the shadow rate in their

models. Here, we borrow the shadow rate reported in Ueno (2017). From Figure 4, we find

that the lowest level of the shadow rate is almost the same as that in the notional interest

rate in Model 1, which is around −1% quarterly. However, the shadow rate decreased more

gradually in the late 1990s than the notional interest rate did. In other words, from the

perspective of the yield curve (shadow rate), the Bank of Japan seems to have been easing

its monetary policy gradually since the mid-1990s. However, judging from the overall effects

on inflation and output, there seems hardly any change in the monetary policy stance since

the mid-1990s.

4.3 Impulse Response Functions

A nonlinear estimation is crucial to deriving implications for monetary policy. To show this,

we calculate impulse response functions (IRFs) to a monetary policy shock and demonstrate

that the IRFs are very different between Model 1, Model 2, and Model without the ZLB.

9In Models 1 and 2, the notional interest rate R∗t does not necessarily coincide with the actual interest

rate Rt, even when the latter became positive. This difference is explained by the measurement error we

introduce when we estimate the model.
10See, for example, Ichiue and Ueno (2006), Krippner (2013), Bauer and Rudebusch (2016), and Ueno

(2017).
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Because the models are nonlinear, the IRFs differ depending on the state of the economy

(µat , Z
b
t , ε

r
t , R

∗
t−1). As an illustration, we express the IRFs conditional on actual states in two

historical periods, 1985:1Q and 2010:1Q, as shown in Figure 5. The former is a period in

which the nominal interest rate is well over zero, whereas the ZLB constrains the economy

in the latter period. Further, because the models are nonlinear, mainly owing to the ZLB,

the IRFs are asymmetric to the sign of the shock. Therefore, we show the IRFs to both

positive (tightening) and negative (easing) monetary policy shocks.11 For comparison, we

give the same size of the monetary policy shocks, that is, 0.01. The left panels in the figure

are the IRFs in 1985:1Q, and the right panels are those in 2010:1Q. The top panels represent

the IRFs of the inflation rate πt, whereas the bottom panels represent those of the nominal

interest rate Rt.

For 1985:1Q, the bottom-left panel of Figure 5 shows that the IRFs of the nominal

interest rate are similar between Model 1, Model 2, and Model without the ZLB. However,

because Model without the ZLB has the smallest inertia (ρr) in its policy rule, the nominal

interest rate converges to zero most quickly. Therefore, as the top-left panel shows, the IRFs

of inflation are the smallest. We also find that the IRFs are symmetric to positive (Pos in

the figure) and negative (Neg in the figure) monetary policy shocks.

In 2010:1Q, the IRFs vary significantly, depending on models and on the sign of the

monetary policy shock. First, in Model without the ZLB, the IRFs are almost symmetric,

because the nominal interest rate can be below zero. The negative monetary policy shock

increases the inflation rate and decreases the nominal interest rate, as the right panels show.

Second, we examine the IRFs in Model 1. The negative monetary policy shock has a

bigger positive effect on inflation in Model 1 than in Model 2, but the effect is smaller

than it is in Model without the ZLB. This result arises because Model 1 involves a strong

commitment to future policy. The monetary policy in period t depends on R∗t−1, which

can take negative values. The negative monetary policy shock in period t decreases R∗t , as

the bottom-right panel shows, which functions to lower future nominal interest rates. This

commitment increases today’s inflation rate. The positive monetary policy shock, on the

other hand, has a smaller negative effect on inflation in Model 1 compared with in Model 2.

Because the monetary policy in period t depends on R∗t−1 in Model 1, the positive monetary

policy shock in Model 1 induces a smaller increase in the nominal interest rate than that in

Model 2 does, as shown in the bottom-right panel.

Third, in Model 2, the negative monetary policy shock has no effect on inflation owing

to the ZLB. Even though R∗t decreases in period 1, this is not sustained after period 2,

which weakens the effect of monetary easing. On the other hand, the positive monetary

11More precisely, we calculate the generalized impulse response functions following Koop, Pesaran, and

Potter (1996). We use the posterior mean estimates in each model and generate the paths of endogenous

variables with and without a monetary policy shock. We then subtract the paths with a monetary policy

shock from those without a monetary policy shock.
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policy shock in Model 2 has a significant negative effect on inflation. This is because the

experience of prolonged recessions does not tie the hand of the central bank and, hence, the

positive monetary policy shock leads to an immediate increase in the nominal interest rate.

It is impossible to know without estimations which model best reflects reality. We have

argued that our estimation supports Model 1, as shown in Table 2. This suggests the

commitment effect of monetary policy or the power of forward guidance.

4.4 How Often Does the ZLB Constrain Monetary Policy?

Table 3 shows the probability that the nominal interest rate is equal to zero after h = 1, 2, 4,

and 8 quarters, given the natural rate of interest. To calculate this, we generate the path of

nominal interest rates from t+ 1 conditional on the level of the natural rate of interest r∗t in

period t. We count the number of events using a Monte Carlo simulation. The probability

of the ZLB is high, that is, around 60% and 40% for h = 1 and 8, respectively, when r∗t is

around 0%. This is significantly higher than the probability of 7.1% reported by Gust et al.

(2017) for the United States.12

Such a high probability of the ZLB is associated with a high (low) probability of deflation

(inflation). We calculate the probability that the inflation rate πt+h reaches 2% (annually),

which is the target of the Bank of Japan, or falls below 0% for at least a certain h (1 ≤ h ≤ 8;

i.e., within two years). If r∗t is around 0%, the inflation rate can reach 2% only with a

probability of 15%. Although we do not show it here, this probability is even lower for

Model 2 and Model without the ZLB, because the estimated π∗ is lower. On the other hand,

the probability of deflation is considerably high. Even if r∗t is as high as 3% quarterly, the

probability is higher than 75%.

Professionals seem to have similar forecasts for monetary policy and the inflation rate.

The Japan Center for Economic Research conducts a survey of forecasts of around 40 profes-

sionals every month (ESP forecast). According to the survey conducted between December

25, 2015, and January 5, 2016, which was just before the surprise introduction of the neg-

ative interest rate policy, only seven of 35 professionals answered that the next move of

monetary policy is tightening. Furthermore, all seven professionals answered that tightening

would not start within a year. Then, after one year, according to the survey conducted in

December 2016, all 40 professionals answered that the short-term interest rate would remain

unchanged, or even decrease, in December 2017. This evidence supports our simulation

result that the probability of the ZLB is very high.

With regard to the inflation rate, each forecaster reports the distribution of CPI inflation

forecasts. For example, he/she answers the probability that the CPI inflation rate will be

between 0 and 0.25%. Taking the mean of each forecaster’s forecast distribution for the

12Richter and Throckmorton (2016) do not calculate the probability. Instead, they calculate the expected

duration of the zero interest rate, with a mode and mean of 1 and 3.2 quarters, respectively.
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fiscal year of 2017 from the survey conducted in December 2016, we find that the probability

that the inflation rate exceeds 2% is only 0.3%, while the probability that the inflation rate

becomes negative is 8.1%. They attach the highest probability of 30% to the inflation rate

between 0.5 to 075%. Although the deviation of forecasters’ inflation expectations is much

smaller, the fact that forecasters expect deflation rather than 2% inflation is consistent with

our simulation result.

4.5 Validity of Using the (Un)Constrained Linear Model

Computational costs for the estimation of nonlinear DSGE models with the ZLB are high.

One estimation takes almost a week, even in such a simple model as ours. In this regard,

Richter and Throckmorton (2016) argue that a constrained linear model performs well, as

well as mitigating the computational burden. To examine whether their finding holds for

Japan, we estimate the log-linearized DSGE model expressed by equations (9) to (11), but

continue to impose the ZLB constraint properly.13 We call this the constrained linear model.

Moreover, we estimate an unconstrained linear model, where we estimate the log-linearized

DSGE model by ignoring the ZLB. That is, the unconstrained linear model corresponds to

the constrained linear model without the ZLB.

Table 4 shows the estimation results. Although we are able to estimate these two models

with reasonable parameter values, we find a large shift for γa and π∗, which is important for

the steady-state natural rate of interest and the inflation rate. The marginal likelihoods in

these models are significantly lower than that in Model 1.

5 Evaluating Japan’s Natural Rate of Interest

Next, we turn to our second objective: the natural rate of interest for Japan. After we

explain the mathematical expression of the natural rate of interest in our model, we discuss

how our nonlinear estimation influences the estimate of the natural rate of interest, how

much the natural rate of interest has declined during Japan’s lost decades, and why.

5.1 Natural Rate of Interest in the Log-Linearized Model

Our model can be expressed using three key log-linearized equations. Although we do not

use them in our nonlinear estimation, they illustrate the role played by the natural rate of

interest, r∗t .
14 They are

13The constrained linear model in Richter and Throckmorton (2016) may be different because they explain

that they “impose the constraint in the filter but not the solution.”
14Moreover, they serve as an initial value of equilibrium when we solve the model nonlinearly.
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πt − π∗ = βe(1−σ)γaEt [πt+1 − π∗] +
(ε− 1) (ω + σ)

φπ∗
(yt − y∗t ), (9)

yt − y∗t = Et

[
yt+1 − y∗t+1 −

1

σ

(
Rt − r∗π∗

r∗π∗
− πt+1 − π∗

π∗
− r∗t − r∗

r∗

)]
, (10)

and

r∗t = r∗
[
1 + σρaµat + (1− ρb)logZb

t )
]
. (11)

Here, we define the log-linearized variables of {Yt, Y ∗t } by {yt, y∗t } around their non-zero

trends. Note that the steady-state natural rate of interest r∗ is equal to eσγ
a
/β.

This suggests that the natural rate of interest r∗t plays an important role. When r∗t
decreases, both the output gap yt−y∗t and the inflation rate πt decrease, unless the monetary

policy is sufficiently strong to offset this. The decrease in r∗t also causes the nominal interest

rate to decrease. Thus, the possibility of reaching the ZLB increases.

The above equations also suggest that the output gap and the inflation rate depend only

on the natural rate of interest r∗t and the actual real interest rate (Rt−r
∗π∗

r∗π∗ − πt+1−π∗

π∗ ). We

do not need to know µat and Zb
t , separately. These shocks influence the output gap and the

inflation rate only through a change in r∗t . Moreover, equation (11) shows that the monetary

policy shock εrt is irrelevant to the natural rate of interest.

5.2 Developments in the Natural Rate of Interest

In the left panel of Figure 6, we show the time-series path of the natural rate of interest r∗t .

The figure shows a decline in the natural rate of interest. Although it stayed positive until

the late 1990s and its steady-state value is 0.46% quarterly, the natural rate of interest often

became negative in the 2000s and 2010s. During this period, it often fell to around −0.5%

quarterly, and at its worst, to −2%.

The discount factor shock Zb
t is the most important factor in this result. In the left

panel of the figure, we show how much of the model’s fit is attributable to individual shocks

(µat , Z
b
t , ε

r
t ). Similar to Gust et al. (2017), we decompose the variable by calculating the

model’s dynamics, assuming only one of the three shocks is present. Because of the nonlin-

earity, their sum is not necessarily equal to the natural rate of interest. The right panel of

Figure 6 shows the time-series paths of the three types of shocks (µat , Z
b
t , ε

r
t ). It shows that

the discount factor shock Zb
t explains most of the changes in the natural rate of interest in

our estimation periods. The technology shock µat explains very little of the change in the

natural rate of interest, while the monetary policy shock εrt does not explain it at all, which

is consistent with equation (11).
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This result is in line with past studies. Gust et al. (2017) find that the risk premium

shock and the marginal efficiency of the investment shock are important in explaining the

Great Recession in the United States, while the technology and monetary policy shocks

explain little. Sugo and Ueda (2008) estimate the medium-scale DSGE model for Japan,

although they estimate a log-linearized model without the ZLB using the sample until 1995,

when the ZLB did not constrain the Japanese economy. They also find that the investment

shock is the most important. Although our model is far simpler than their models, the

discount factor shock in our model is considered to be in the same class as these shocks.

5.3 Comparisons of the Natural Rate of Interest

5.3.1 Different Monetary Policy Specifications

In the previous section, we showed that the nonlinear estimation significantly modifies the

implications for monetary policy. Is this true for the natural rate of interest as well? Figure

7 shows how much the estimated natural rate of interest changes, depending on the type of

model we estimate. Somewhat surprisingly, the natural rate of interest in Model 2 and in

Model without the ZLB are not significantly different from that in Model 1, even though

Model 2 and Model without the ZLB yield biased estimates, as shown in Table 2. In

particular, during the period of the ZLB since 2000, the natural rate of interest is almost

identical, although it deviates in the 1980s and 1990s. This result is in sharp contrast to that

of Hirose and Sunakawa (2017). Although this difference may come from a difference in data

(i.e., they estimate a model for the United States, not for Japan), it is important to note a

difference in methodology. Instead of estimating a DSGE model with the ZLB, they estimate

the model without the ZLB for the periods before the ZLB constrains the economy and then

evaluate the natural rate of interest using the estimated parameters for the extended periods.

They then find that the natural rate of interest is substantially higher when considering the

ZLB than when neglecting the ZLB, particularly during the ZLB period.

To understand why there is so little variation in the estimated natural rate of interest

in our study, we identify three types of differences between Model 1 and Model without the

ZLB. They are (1) the presence of the ZLB, (2) estimated parameters, and (3) estimated

shocks. More specifically, we simulate the natural rate of interest in Model without the

ZLB by changing one of the three differences: (1) using estimated parameters and shocks

in Model without the ZLB, but now explicitly taking into account the ZLB, (2) using the

estimated parameters in Model 1, and (3) using the estimated shocks in Model 1. Here, (2)

is analogous to Hirose and Sunakawa (2017).

Figure 8 shows the paths of the counterfactual natural rate of interest. As in the case

of type (1), we show that the presence of the ZLB does not influence the natural rate of

interest, per se. Because the natural rate of interest rests on the flexible-price economy, by

definition, the ZLB does not matter in its movements, per se. For types (2) and (3), the
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figure suggests that the parameter difference has a similar size, but opposite effect on the

natural rate of interest as that of the shock difference. Type (2) increases the natural rate

of interest, as in Hirose and Sunakawa (2017). This stems from the fact that the estimate of

the steady-state natural rate of interest r∗ in Model 1 is higher than that in Model without

the ZLB as shown in Table 2. However, type (3) decreases the natural rate of interest by

the same size, because the estimated shocks of (µat , Z
b
t ) are lower for Model 1. This result

suggests that we should estimate the parameters and shocks simultaneously.

5.3.2 Laubach-Williams (2003) and Hodrick–Prescott Filter

Next, we compare the natural rate of interest based on our model with that based on Laubach

and Williams (2003) and that based on the Hodrick–Prescott (HP) filter. Laubach and

Williams (2003) and Holston, Laubach, and Williams (2017) estimate the backward-looking

IS and Phillips curves jointly and calculate the natural rate of interest using the Kalman

filter, where they calculate the ex ante real interest rate by estimating the one-year ahead

inflation expectation from a univariate AR(3) model. In their model, the natural rate of

interest is given by

r∗t = gt + zt, (12)

where gt and zt capture the trend growth rate of the natural output and other determinants

such as demand disturbances, respectively. Therefore, gt and zt in their model correspond

to log(At/At−1) = µat + γa and logZb
t in our model, respectively. However, there is one

important difference. Laubach and Williams (2003) and Holston, Laubach, and Williams

(2017) assume that both gt and zt obey an I(1) process (i.e., the natural output is I(2)),

while both log(At/At−1) and logZb
t in our model obey an I(0) process.

We apply their approach to the Japanese data and report the one-sided (filtered) estimate

of the natural rate of interest. For the HP filter, we set the smoothing parameter λ to 1,600

and smooth the same ex ante real interest rate we used to calculate the natural rate of

interest based on Laubach and Williams (2003).

Figure 9 shows that the one-sided estimate of the natural rate of interest based on

Laubach and Williams (2003) moves very closely to that based on our model. Although

Laubach and Williams’s (2003) approach does not take into account the ZLB, the movements

of the natural rate of interest are similar when the nominal interest rate is effectively at the

ZLB. This result is consistent with our previous finding that the nonlinear estimation barely

changes the estimate of the natural rate of interest, as shown in Figures 7 and 8. Furthermore,

we confirm that most of the fluctuations of the natural rate of interest based on Laubach

and Williams (2003) are caused by zt, although we do not show this here. This result is

again consistent with ours. The fluctuations of the natural rate of interest based on the HP

filter are far smoother, although their means do not change significantly.
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5.3.3 Use of the Output Gap Data

Finally, we check the robustness of our estimation using an alternative measure of output,

that is, the output gap. We estimate the same model using either the output gap instead of

the growth of real GDP or using both the output gap and the growth of real GDP. Table 5

shows that the parameter estimates are much the same. However, as Figure 10 shows, the

path of the natural rate of interest comes to differ quantitatively. In particular, when we

use the output gap instead of the growth of real GDP, the natural rate of interest becomes

more volatile. Nevertheless, qualitatively, the three lines are very similar.

6 Concluding Remarks

In this study, we estimated a nonlinear DSGE model with the ZLB using a Bayesian tech-

nique. There are several potential avenues for future research. The first would be to estimate

a richer DSGE model, embedding capital, wage stickiness, financial frictions, and so on. We

are aware that the intrinsic persistence in our model is low, which makes the economy return

to the steady state rather quickly. This could be one reason why we succeeded in estimating

the nonlinear DSGE model with the ZLB, even though the duration of the ZLB is relatively

long in Japan. However, embedding these features poses a computational challenge owing

to the curse of dimensionality. Moreover, we suspect that it becomes more difficult to find a

determinate equilibrium for a set of parameters, because such stickiness lengthens the dura-

tion of the ZLB further, and makes it more likely that the equilibrium will be indeterminate,

as argued by Aruoba, Cuba-Borda, and Schorfheide (2017).

This point leads to the second avenue for our future research: estimating a regime-

switching model. In particualr, we consider three types of regime shifts. As in Aruoba, Cuba-

Borda, and Schorfheide (2017), the equilibrium may fluctuate between a normal determinate

equilibrium and a deflationary indeterminate equilibrium. Alternatively, the equilibrium

may fluctuate between the regime of active monetary policy and passive fiscal policy and the

regime of passive monetary policy and active fiscal policy. Another option is that there could

be discontinuous changes in some structural parameters, such as the steady-state growth rate

of technology (γa) and the inflation target (π∗). Most importantly, the existence of a kink

has been often pointed out for the GDP growth rate when a big adverse shock hits the

economy (around 1991 for Japan and 2008 for the United States), which may call for a

regime-switching model for γa.

Third, our method can be applied to other types of models, where nonlinearity plays

an important role. Examples include currency and financial crises, where crises occur as a

tail-risk event and have significant impacts on the economy.
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[2] Andrés, Javier, J. David López-Salido, and Edward Nelson (2009) “Money and the

Natural Rate of Interest: Structural Estimates for the United States and the Euro

Area,” Journal of Economic Dynamics and Control, 33(3), 758–776.

[3] Aoki, Kosuke and Yoichi Ueno (2012), “Identification of Structural Shocks under the

Zero Lower Bound on Nominal Interest Rates,” Bank of Japan Working Paper 12-E-8.
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A Appendix

A.1 Model Solution

We derive the rational expectation equilibrium of our model using the time iteration method

with linear interpolation (TL) method. The model’s equilibrium conditions are written as a

vector-valued function, f(·), containing the minimum state vector (vt,wt), say

E[f(vt+1,wt+1,vt,wt)|Ωt] = 0,

where v is a vector of exogenous variables, w is a vector of endogenous variables, and Ωt

is an information set of agents. In our study, there are three models, M = {Model 1,

Model 2, Model w/o ZLB}, and v =
{
εat , ε

b
t , ε

r
t

}
, w =

{
yt, ct, πt, y

∗
t , Rt, R

∗
t , r
∗
t , µ

a
t , z

b
t

}
and

z =
{
R∗t−1, µ

a
t , z

b
t , ε

r
t

}
, where yt ≡ Yt/At, ct ≡ Ct/At, and y∗t ≡ Y ∗t /At.

Given function f(·), we can obtain a model’s decision rules (or policy functions), Φ(�),

as a function of the state vector. The TL locally approximates the time-invariant policy

function at each node in the state space, zt, that is,

Φ(zt) ' Φ̂(zt).

We choose to iterate on Φ(zt) for { yt, y∗t , πt } and solve for the rational expectations

equilibrium by substituting Φ(zt) into the future variables of the function f(·). We discretize

nine grid points on each of the continuous state variables,
{
R∗t−1, µ

a
t , z

b
t

}
, and five grid points

on the exogenous shock of εrt , which implies 3, 645(= 9 ∗ 9 ∗ 9 ∗ 5) nodes in total.

The policy function iteration algorithm takes the following steps. Let i ∈ {0, · · · , I}
denote the iterations of the algorithm and n ∈ {1, · · · , N} denote the nodes of the policy

function, Φ(zt).

1. For i = 0, we make an initial conjecture of the policy function, Φ0(zt) , from the log-

linearized model without the ZLB. To do so, we use Sims’ (2002) gensys algorithm.

2. For iteration i ∈ {1, · · · , I} and node n ∈ {1, · · · , N}, we execute the following proce-

dures:

(a) Solve for endogenous variables
{
ct, Rt, R

∗
t , r
∗, µat , z

b
t

}
, given y(zt−1), y∗(zt−1), π(zt−1)

under the ZLB.

(b) Approximate the future variables { E(πt+1), E(yt+1), E(y∗t+1)} using a piecewise

linear interpolation of the policy function Φi−1(zt). Then, substitute the future

variables into E[f(·)|Ωt], conditional on the exogenous variables in the next pe-

riod, vt+1, equal to zero.15

15In this respect, our estimated model is not purely stochastic. We tried to estimate the model by
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(c) Use the nonlinear solver, Sims’ csolve, to find the policy function, Φi(zt), which

minimizes the errors in intertemporal equations, that is, E[f(·)|Ωt] = 0.

3. Define maxdist = max( |yin − yi−1
n |, |y∗,in − y∗,i−1

n |, |πin − πi−1
n |). Repeat step 2 until the

policy function converges, say, to maxdist < 10−4, for all nodes, n.

A.2 Estimation

To obtain draws from the posterior distribution of parameters, θ, of a nonlinear DSGE model,

we use the Sequential Monte Carlo Squared (SMC2) sampler, combined with the particle

filter, instead of popular methods such as the MCMC sampler. Because MCMC samplers

cannot be parallelized when generating the draws, they take quite a long time. In contrast,

the SMC2 method and particle filter can be used easily and, in addition, may calculate a

more accurate approximation of the posterior distribution than that of the MCMC samplers.

We explain the algorithms of the SMC2 and particle filter following Herbst and Schorfheide

(2015) and Fernandez-Villaverde et al. (2016).

A.2.1 Algorithm of the Sequential Monte Carlo Squared

Suppose φn, forn = 0, · · · , Nφ, is a sequence that slowly increases from zero to one. We

define a sequence of bridge distributions, {πn(θ)}Nφn=0, that converge to the target posterior

distribution for n = Nφ and φn = 1, as

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

, for n = 0, · · · , Nφ, φn ↑ 1,

where p(θ) and p(Y |θ) are the prior density and likelihood function, respectively. We adopt

the likelihood tempering approach that generates the bridge distributions, {πn(θ)}Nφn=0, by

taking power transformation of p(Y |θ) with the parameter, φn, that is, [p(Y |θ)]φn .

The SMC2 with the likelihood tempering takes the following steps. Let i ∈ {1, · · · , Nθ}
denote the particles of the parameter sets, θi, and n ∈ {0, · · · , Nφ} denote the stage of the

algorithm. Herbst and Schorfheide (2015) recommend a convex tempering schedule in the

form of φn = (n/Nφ)λ with λ = 2 for a small-scale DSGE model.

1. Initialization

(a) Set the initial stage as n = 0, and draw the initial particles of parameters, θi0,

from a prior distribution p(θ).

considering that the exogenous variables in the next period, vt+1 obey a normal distribution, but could not

obtain reasonable results. We suspect this is because there is no equilibrium or that the equilibrium becomes

indeterminate or unstable in an economy such as Japan, where the ZLB has constrained the monetary policy

for a long time. See Hills, Nakata, and Schmidt (2016).
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(b) Set the weight of each particle of the initial stage as W i
0 = 1, for i = 1, · · · , Nθ.

Then, for stage n ∈ {1, · · · , Nφ} and particle i ∈ {1, · · · , Nθ}, we repeat Steps 2 to 4

below.

2. Correction. Calculate the normalized weight, W̃ i
n, for each particle as

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

for i = 1, · · · , Nθ,

where w̃it is an incremental weight derived from

w̃in = [p(Y |θin−1)]φn−φn−1 ,

and the likelihood, p̂(Y |θ), is approximated from the particle filter, as explained in the

next subsection.

Note that the correction step is a classic importance sampling step, in which particle

weights are updated to reflect the stage n distribution, πn(θ). Because this step does

not change the particle value, we can skip this step only by calculating the power

transformation of p(Y |θ) with the parameter, φn.

3. Selection (Resampling).

(a) Calculate an effective particle sample size, ÊSSn, which is defined as

ÊSSn = Nθ/

(
1

Nθ

Nθ∑
i=1

(W̃ i
n)2

)
.

(b) If ÊSSn < Nθ/2, then resample the particles, {θ̂n}Nθi=1, via multinomial resampling

and set W i
n = 1.

(c) Otherwise, let θ̂in = θin−1 and W i
n = W̃ i

n.

4. Mutation. Propagate the particles {θ̂in, W i
n} via the random walk MH algorithm with

the proposal density,

ϑ|θ̂n
i
∼ N

(
θ̂n

i
, c2

nΣ
(
θ̂n

))
,

where N(·) is the nominal distribution and Σ
(
θ̂n

)
denotes the covariance matrix of

parameter θ̂n for all particles i ∈ {1, · · · , Nθ} at the n-th stage. In order to keep the

acceptance rate around 25%, we set a scaling factor cn for n > 2 as

cn = cn−1f(An−1),

where An represents the acceptance rate in the mutation step at the n-th stage and

the function f(x) is given by

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.
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5. For the final stage of n = Nφ, calculate the final importance sampling approximation

of posterior estimator, Eπ[h(θ)], as

hNφ,Nθ =

Nθ∑
i=1

h(θiNφ)W i
Nφ
.

We note that, in the final stage, the approximated marginal likelihood of the model is

also obtained as a by-product. It can be shown that

PSMC(Y ) =

Nφ∏
n=1

(
1

Nθ

Nθ∑
i=1

w̃inW
i
n−1

)

converges almost surely to p(Y ) as the number of particles Nθ →∞.

A.2.2 Algorithm of the Particle Filter

Suppose that a state-space representation for the nonlinear DSGE model consists of

yobst = Ψ(st, θ) + ut, ut ∼ N(0, Σu),

st = Φ(st−1, εt, θ), εt ∼ N(0, Σε),

where yobst and st denote the observable and state variables, respectively. In our study, we

set yobst = { ln(yt/yt−1), πt, Rt} and st =
{
yt, ct, πt, y

∗
t , Rt, R

∗
t , r

∗
t , µ

a
t , z

b
t

}
. A measure-

ment error vector, ut, and an exogenous shock vector, εt =
{
εat , ε

b
t , ε

r
t

}
, follow a normal

distribution with covariance matrices, Σu and Σε, respectively. The nonlinear policy func-

tions, Φ(st, εt, θ), are derived from Appendix A.1, while the function Ψ(st, θ) represents

the linkage between yobst and st.

The particle filter algorithm is as follows. Let j ∈ {0, · · · , NS} denote the particles of

the state variables and exogenous shocks.

1. For period t = 0, draw the NS initial particles of the state variables at period 0, say

sj0|0, from the distribution around the steady state derived from the policy functions,

p(s0 | Σε, θ).

2. For period t ∈ {1, · · · , T} and particle j ∈ {1, · · · , NS}, take the following three steps.

(a) Step of forecasting the state variables: sjt|t−1. Generate NS particles of the shock

vector εjt from N(0, Σε). Using the nonlinear policy function, we obtain NS

particles of forecasts of the state variables corresponding to the shocks generated

in the above:

sjt|t−1 = Φ(sjt−1|t−1, ε
j
t |θ).
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(b) Step of forecasting the observable variables. Calculate the approximated predic-

tive density of yobst given by

p(yobst |Y obs
1:t−1, θ) +

1

NS

NS∑
j=1

wjt ,

where wjt is the normal predictive density of the particle j measured from Ψ(sjt|t−1, θ)

and the covariance matrix of the measurement error Σu in period t, say,

wjt = (2π)−n/2|Σu|−1/2exp

{
−1

2
(yobst −Ψ(sjt|t−1, θ))

′Σ−1
u (yobst −Ψ(sjt|t−1, θ))

}
,

where n is the dimension of yt.

(c) Step of updating the state variables: sjt|t. Resample NS particles of the state

variables from a multinomial distribution. That is,

sjt|t = resample out of (s1
t|t−1, · · · sj

t|t−1, · · · sNs

t|t−1) with probabilty (wjt/Σw
j
t ).

3. For the final period of t = T , collect all predictive densities of yt from period 1 to T ,

calculated above. Using these, the log likelihood of the model is approximated as

ln p(Y obs
1:t |θ) +

T∑
t=1

ln

(
1

NS

NS∑
j=1

wjt

)
.
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Table 1: Prior Distribution

Parameter Mean S.D. Shape

σ 1.5 0.3 Normal

γa 0 0.5 Normal

ω 3 0.5 Normal

κ 0.05 0.006 Normal

π∗ 0 0.5 Normal

Parameter Mean S.D. Shape

ρr 0.5 0.2 Beta

ψπ 1.5 0.15 Normal

ψy 0.125 0.025 Normal

ω 3 0.5 Normal

ρa 0.5 0.2 Beta

σa, σb, σr
√

0.02 5 (d.f.) Inv Gamma

Table 2: Posterior Distribution and Marginal Likelihood

Model 1 Model 2 Model w/o ZLB

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.534 (1.472, 1.584) 1.037 (1.004, 1.083)

γa -0.028 (-0.119, 0.05) 0.123 (0.068, 0.172) -0.419 (-0.539, -0.31)

ω 2.477 (2.298, 2.674) 3.163 (2.908, 3.413) 3.188 (3.071, 3.287)

κ 0.055 (0.05, 0.062) 0.053 (0.05, 0.055) 0.047 (0.045, 0.049)

π∗ 0.360 (-0.117, 0.619) 0.050 (-0.148, 0.274) -0.447 (-0.728, -0.246)

r∗ 0.464 (0.343, 0.574) 0.691 (0.607, 0.764) 0.067 (-0.055, 0.181)

ρr 0.521 (0.475, 0.611) 0.685 (0.644, 0.721) 0.214 (0.182, 0.24)

ψπ 1.689 (1.627, 1.745) 1.776 (1.739, 1.811) 1.509 (1.453, 1.553)

ψy 0.105 (0.091, 0.123) 0.113 (0.098, 0.125) 0.133 (0.127, 0.141)

ρa 0.254 (0.129, 0.446) 0.201 (0.096, 0.292) 0.122 (0.093, 0.147)

ρb 0.750 (0.693, 0.802) 0.754 (0.728, 0.776) 0.740 (0.689, 0.788)

σa 1.175 (0.906, 1.367) 1.320 (1.146, 1.524) 1.773 (1.675, 1.859)

σb 1.797 (1.435, 2.318) 2.229 (2.018, 2.442) 1.354 (1.191, 1.558)

σr 1.439 (1.14, 1.673) 1.173 (1.022, 1.349) 0.921 (0.809, 1.012)

Likelihood -261.753 -275.9136 -364.815
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Table 3: Probability of the ZLB, 2% Inflation (Annually), and Deflation

Natural rate (r∗t ) Prob ( Rt+h = 0% | r∗t ) Prob ( πt+h > 0.5%|r∗t ) Prob ( πt+h < 0%|r∗t )

for h = 1 for h = 2 for h = 4 for h = 8 ∃h for 1 ≤ h ≤ 8

r∗t ≥ 3% 7.00% 14.35% 23.35% 31.65% 60.20% 76.60%

2% ≤ r∗t < 3% 12.64% 19.59% 26.37% 33.80% 47.16% 81.28%

1% ≤ r∗t < 2% 25.97% 28.62% 32.60% 35.61% 28.44% 88.10%

0% ≤ r∗t < 1% 52.40% 44.56% 39.94% 38.17% 15.36% 94.11%

−1% ≤ r∗t < 0% 61.86% 51.74% 43.58% 39.43% 10.40% 97.48%

r∗t < −1% 69.60% 58.83% 51.60% 41.63% 7.03% 99.70%

r∗t = r∗ 35.12% 36.79% 37.52% 37.29% 15.16% 94.26%

Table 4: Estimation Results of the (Un)Constrained Linear Model

Model 1 Constrained linear Unconstrained linear

(benchmark) (Model 1) (Model w/o ZLB)

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.287 (1.237, 1.387) 1.152 (1.039, 1.249)

γa -0.028 (-0.119, 0.05) 0.140 (0.031, 0.22) 0.544 (0.44, 0.633)

ω 2.477 (2.298, 2.674) 2.702 (2.569, 2.936) 2.260 (2.125, 2.377)

κ 0.055 (0.05, 0.062) 0.050 (0.048, 0.052) 0.047 (0.046, 0.048)

π∗ 0.360 (-0.117, 0.619) -0.138 (-0.316, -0.03) 0.844 (0.69, 1.006)

r∗ 0.464 (0.343, 0.574) 0.679 (0.541, 0.792) 1.126 (1.037, 1.207)

ρr 0.521 (0.475, 0.611) 0.386 (0.354, 0.406) 0.414 (0.377, 0.449)

ψπ 1.689 (1.627, 1.745) 1.426 (1.379, 1.476) 1.534 (1.503, 1.563)

ψy 0.105 (0.091, 0.123) 0.127 (0.123, 0.13) 0.124 (0.116, 0.132)

ρa 0.254 (0.129, 0.446) 0.157 (0.115, 0.211) 0.206 (0.183, 0.239)

ρb 0.750 (0.693, 0.802) 0.659 (0.647, 0.682) 0.698 (0.666, 0.727)

σa 1.175 (0.906, 1.367) 1.285 (1.131, 1.412) 1.649 (1.534, 1.773)

σb 1.797 (1.435, 2.318) 1.483 (1.418, 1.565) 1.867 (1.617, 2.066)

σr 1.439 (1.14, 1.673) 1.182 (1.023, 1.41) 1.065 (0.979, 1.154)

Likelihood -261.75 -279.29 -395.65

Post prob 1.000 0.000 0.000
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Table 5: Estimation Results when Using the Output Gap Data

Growth Data Gap instead of growth Gap and growth

(benchmark)

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.596 (1.547, 1.686) 1.513 (1.468, 1.586)

γa -0.028 (-0.119, 0.05) -0.056 (-0.088, -0.003) -0.077 (-0.132, -0.041)

ω 2.477 (2.298, 2.674) 3.030 (2.81, 3.137) 2.743 (2.585, 2.841)

κ 0.055 (0.05, 0.062) 0.044 (0.042, 0.046) 0.055 (0.054, 0.056)

π∗ 0.360 (-0.117, 0.619) 0.154 (0.078, 0.186) 0.648 (0.549, 0.714)

r∗ 0.464 (0.343, 0.574) 0.414 (0.364, 0.497) 0.385 (0.292, 0.441)

ρr 0.521 (0.475, 0.611) 0.664 (0.645, 0.675) 0.597 (0.575, 0.631)

ψπ 1.689 (1.627, 1.745) 1.468 (1.458, 1.477) 1.431 (1.407, 1.472)

ψy 0.105 (0.091, 0.123) 0.113 (0.11, 0.116) 0.101 (0.098, 0.103)

ρa 0.254 (0.129, 0.446) 0.202 (0.153, 0.233) 0.222 (0.157, 0.262)

ρb 0.750 (0.693, 0.802) 0.680 (0.673, 0.687) 0.801 (0.794, 0.81)

σa 1.175 (0.906, 1.367) 3.473 (2.988, 4.367) 1.412 (1.202, 1.766)

σb 1.797 (1.435, 2.318) 2.285 (2.225, 2.383) 1.946 (1.623, 2.133)

σr 1.439 (1.14, 1.673) 0.823 (0.773, 0.906) 1.473 (1.424, 1.535)

Figure 1: Data
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Figure 2: Particles for Parameter σ and their Likelihood
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Note: Each dot represents a particle for the value of parameter σ and its posterior likelihood. The big filled circle in red

indicates the median, whereas the big plus at the top indicates the maximum of the likelihoods in all the dots.

Figure 3: Notional Nominal Interest Rate R∗t
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Figure 4: Comparison with the Notional Nominal Interest Rate and the Shadow Rate
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Figure 5: Impulse Responses to a Monetary Policy Shock
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Figure 6: Natural Rate of Interest and the Contribution of the Estimated Shocks
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Figure 7: Natural Rate of Interest: Model Comparison (1)
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Figure 8: Natural Rate of Interest: Counterfactual Simulation
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Note: “Model 0” represents the natural rate of interest based on the Model without the ZLB. (1) “Model 0 w/ ZLB,” (2)

“Model 0 w/ Model 1 Parameters,” and (3) “Model 0 w/ Model 1 Shocks” represent the simulated natural rate of interest using

(1) estimated parameters and shocks in the Model without the ZLB, but now explicitly taking into account the ZLB, (2) using

estimated parameters in Model 1, and (3) using estimated shocks in Model 1, respectively.

Figure 9: Natural Rate of Interest: Model Comparison (2)
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Figure 10: Natural Rate of Interest When Using the Output Gap Data

1985 1990 1995 2000 2005 2010 2015
-5

-4

-3

-2

-1

0

1

2

3

4

5

 
q
u
a
r
t
e
r
l
y
,
 
%
 

Benchmark

Gap & Growth

Gap

35


