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1 Introduction

In this study, we consider the dynamical behavior for signaling interactions

with a common interest of a sender and a receiver under the selection–

mutation dynamics. The signaling game with a common interest is a coordi-

nation problem among states, and acts through the strategic use of signals.

The structure of this game almost does not lead the long–run behavior of

each agent through the selection process to the optimal point.

Two approaches are mainly taken to address this problem (Hofbauer and

Hatteger, 2008). The first approach is to study the evolution of signaling

interactions in a finite population under the frequency-dependent Moran

process (Pawlowitsh, 2007). The second approach is to study the dynamic

behavior of signaling interactions when the replicator dynamics is perturbed

in the restricted case (Hofbauer and Huttegger, 2008, 2015).1 We take the

second approach, where, in the general case, the number of states is not equal

to that of the states.

Our benchmark is the classic model of a sender–receiver game as examined

by Lewis (1969) or Nowak and Krakauer (1999). In the beginning of this

game, a sender observes a state of the world picked up from a set of states

by nature. Then, the sender chooses a signal from a set of signals. Next, a

1Hofbauer and Hatteger(2008) studied the case of two states and two signals. Hofbauer
and Hatteger(2015) studied the case of three states and three signals.
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receiver who does not know the state initially is informed of the signal chosen

by the sender. The receiver associates the signal with a state in the set of the

states. When the state observed by the sender is coincident with the state

associated by the receiver, both agents receive a common payoff.2

Previous studies illustrate the difficulty of efficient and stable communi-

cation through signals. A perfect communication is represented by a strict

Nash strategy that guarantees a maximal payoff as well as asymptotic sta-

bility. In a strict Nash strategy, every state is bijectively associated with

one signal and vice versa. Such an equilibrium is called a signaling system

(Lewis, 1969). However, signaling systems exist only when the number of

states is equal to that of the signals (Wärneryd, 1993).

Moreover, the replicator dynamics almost do not converge to the strict

Nash strategy or the evolutionary stable strategy (Pawlowitsch, 2008).3 Neu-

trally stable strategies that belong to a continuous strategy space block it.

They thus stay in continuos strategy space, that is, the suboptimal point. By

perturbing the replicator dynamics with small noises over the strategy distri-

butions uniformlly, most of the rest points are destroyed. Thus, there is no

rest point that satisfies asymptotic stability except for a strict Nash strategy

in the case of three states and three signals (Hofbauer and Huttegger, 2015).

When the number of states is not equal to that of the signals, the neu-

trally stable strategies that the continuous strategy space contains gurantee

a maximal payoff. On the other hand, each rest point of these neutrally

2Sender-receiver games are divided into two classes: asymmetric games between a
sender and a receiver, and symmetric games of both the role of a sender and the role of a
receiver.

3The strict Nash strategies of asymmetric games correspond to the evolutionarily stable
strategy of their symmetrization. See section 2.1.
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stable strategies is not asymptotically stable under the replicator dynamics.

A neighborhood of each rest point of neutrally stable strategies is continu-

ous and not isolated under the replicator dynamics (Pawlowitsh, 2008). In

this paper, we study neutrally stable strategies that have maximal payoff,

and stability of these strategies under the selection–mutation dynamics es-

pecially when the number of signals is larger than that of the states. Our

work makes three important contributions:

• We propose three types of neutrally stable strategies that lead to asymp-

totic stability under the selection–mutation dynamics. We focus on

neutrally stable strategies that have a maximal payoff and formalize

three types of these neutrally stable strategies in the general form.

• We show that there exists a rest point close to each of three neutrally

stable strategies under the selection-mutation dynamics. Most of rest

points that exist under the replicator dynamics are destroied under the

selection–mutation dynamics. This paper studies the structure of rest

points under the selection–mutation dynamics.

• We propose the conditions in which a rest point close to each of the

three neutrally stable strategies is asymptotically stable under the selection–

mutation dynamics. The conditions are represented by the relations

between the number of states, that of signals, and the mutation rates

of a sender and a receiver.

The remainder of this paper is organized as follows. Section 2 pro-

vides the formal model of the sender–receiver game and the definition of

the selection–mutation dynamics. Section 3, 4, and 5 introduces the notions

4



of the extended-signaling system, the unilaterally mixed strategy and the max

hybrid strategy, along with the study of the stablity of these strategies. Sec-

tion 6 compares these strategies, and section 7 concludes the paper.

2 The model

2.1 Sender-receiver games

A sender-receiver game consists of a sender and a receiver. There are n states

of the world given by the set N = {1, 2, . . . , n}, n ≥ 2, and m signals given

by the set M = {1, 2, , . . . ,m},m ≥ 2. Both agents communicate with each

other through m signals in n states of the world.

A sender’s mixed strategy is represented by a stochastic n×m matrix

P ∈ P△
n×m = {P ∈ Rn×m

+ :
m∑
j=1

pij = 1, ∀i},

where a sender associates a state i ∈ N with a signal j ∈ M on the probability

pij when Nature chooses a state i.

A receiver’s mixed strategy is represented by a stochasticm×nmatrix

Q ∈ Q△
m×n = {Q ∈ Rm×n

+ :
n∑

i=1

qji = 1, ∀j},

where a receiver associates a signal j ∈ M with a state i ∈ N on the proba-

bility qji when the sender sends a signal j.

We consider the evolutionary dynamics of sender–receiver games by fo-

cusing on behavioral strategies (see section 2.3). In an extensive form of this

5



games, when nature chooses a state of the world, a sender belongs to a pratic-

ular information set. After the sender sends a signal, a receiver also belongs

to a particular information set. A probability measure over strategies of a

sender and a receiver at each of their information sets specifies a behavioral

strategy (Kuhn, 1953).

For each pair of strategies (P,Q) ∈ P△
n×m ×Q△

m×n, the payoff of a sender

and a receiver is equally defined by

π(P,Q) =
n∑

i=1

(
m∑
j=1

pijqji) = tr(PQ).4

Our game Γn,m = {P△
n×m×Q△

m×n, π(P,Q)} is described as an asymmet-

ric game between a sender and a receiver (Lewis, 1969). When each agent

plays both the role of a sender and the role of a receiver, the sender–receiver

game is called a symmetric game. The symmetric game is introduced by

Wärneryd (1993).

We study the Nash equilibria of the asymmetric game Γn,m. Let B(Q) ∈

P△
n×m and B(P ) ∈ Q△

m×n denote the best-response correspondence of

P and Q respectively. Following Pawlowitsch (2008), and Hofbauer and

Hatteger (2015), we introduce a Nash strategy and a strict Nash strategy in

the sender–receiver games.

Lemma 1. A pair (P,Q) ∈ P△
n×m ×Q△

m×n is

(i) a Nash strategy of Γn,m if and only if P ∈ B(Q) and Q ∈ B(P ),

(ii) a strict Nash strategy of Γn,m if and only if P is a permutation matrix

4For simplicity of notation, we have multiplied the payoff of each agent by the number
of possible states n.
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and Q = P⊤.

A perfect communication where every state is bijectively associated with

one signal and vice versa is called “signaling system” (Lewis, 1969). It is

represented by a strict Nash strategy in asymmetric games. Strict Nash

strategies of assymetric games correspond to their evolutionarily stable

strategies of their symmetrization (Selten, 1980). A strict Nash strategy

exists only when n = m (Trapa and Nowak, 2000). Hence, we turn to a

weaker equilibrium concept (Pawlowitsch, 2008).

Lemma 2. A strategy (P,Q) ∈ P△
n×m×Q△

m×n is a neutrally stable strat-

egy if

(i) (P,Q) is a Nash strategy and

(ii) whenever (P ′, Q′) ∈ B(Q)×B(P )\{(P,Q)}, π(P,Q) ≥ π(P ′, Q′).

The useful characterization of a neutrally stable strategy of Γn,m is (Pawlow-

itsch, 2008):

Proposition 1. Let (P,Q) ∈ P△
n×m × Q△

m×n be a Nash strategy. (P,Q) is

neutrally stable if and only if

(i) at least one of the two matrices, P or Q, has no zero column, and

(ii) neither P nor Q has a column with multiple maximal elements that are

strictly between 0 and 1.

2.2 Types of neutrally stable strategies

Γn,m has a large set of neutrally stable strategies. We focus on neutrally

stable strategies that have a maximal payoff.

Maximal payoff (Nowak, Plotkin, and Krakauer, 1999)
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A maximal payoff of sender–receiver games is given by

max
P,Q

tr(P,Q) = min{m,n}.

When n < m, there are three types of neutrally stable strategies that

have a maximal payoff.

(i) an extended version of a signaling system.5

(ii) a mixed strategy, and

(iii) a hybrid strategy.

At each state, a sender and a receiver who choose these strategies neces-

sarilly receive one payoff by sharing the information of each state with one

signal or multiple signals. Thus, there is no zero column of Q. Proposition 1

indicates that each of these strategies is a neutrally stable strategy.

(i) The first type is an extended version of the signaling system. Both agents

use a signaling system for n states and n signals. A sender does not use the

othe signals m − n. On the other hand, a receiver associates each of these

signals (others) m − n with states or a state. This strategy clearly exists

if n < m. We call this an extended signaling system, that is, when a

receiver associates each signal of the other signals m − n with each state

equally.

Example 1 (an extended signaling system).

5This strategy is represented by an extended permutation matrix (Trapa and Nowak,
2000).
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P ∗
1 =


1 0 0 0

0 0 1 0

0 0 0 1

, Q∗
1 =


1 0 0

1
3

1
3

1
3

0 1 0

0 0 1

.

(ii) Another type is a unilaterally mixed strategy. In this strategy, a

sender associates each state with multiple signals. Then, a receiver associates

these signals with each state. Both agents necessarilly receive one payoff at

each state by communicating with multiple signals. This strategy exists if

n ≤ m
2
.

Example 2 (a unilaterally mixed strategy).

P ⋆
2 =

 1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

, Q⋆
2 =



1 0

1 0

0 1

0 1

0 1


.

(iii) The last type is a hybrid strategy. A sender and a receiver choose a

signaling system for some states and signals, whereas they choose a unilat-

erally mixed strategy for the others. This strategy clearly exists if n < m.

Example 3 (a hybrid strategy).

P ∗⋆
3 =


1 0 0 0

0 1 0 0

0 0 1
2

1
2

, Q∗⋆
3 =


1 0 0

0 1 0

0 0 1

0 0 1

.
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2.3 Selection-mutation dynamics

We now consider the selection–mutation dynamics on the behavioral strate-

gies, as per Hofbauer and Hutteger (2015). In an extensive form game of a

sender–receiver game, a behavioral strategy is represented by a probability

measure over strategies of a sender and a receiver.

We define an (m−1)-dimensional behavioral strategy simplex of a sender

when the sender observes a state i ∈ N , defined by Si, as

Si = {(pi1, pi2, . . . , pim)|
m∑
j=1

pij = 1, pij ≥ 0 for each j ∈ M}.

Similarly, we define an (n − 1)-dimensional behavioral strategy simplex

of a receiver when the receiver observes a signal j ∈ M , defined by Sj, as

Sj = {(qj1, qj2, . . . , qjn)|
n∑

k=1

qjk = 1, qjk ≥ 0 for each j ∈ N}.

The space of behavioral strategies is defined by S = Πi∈NSi × Πj∈MSj.

Our dynamic selection process is described by a dynamical system of

differential equations defined for all points in S. The dynamical system is

formulated as the following 2mn differential equations: For each i ∈ N and

j ∈ M ,

ṗij = pij(qji −
m∑

s∈M

pisqsi) + ε(1−mpij),

q̇ji = qji(pij −
n∑

t∈N

qjtptj) + δ(1− nqji),

where ε and δ are small, uniform mutation rates. We denote this system
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by Ṡ = Φ(S). This dynamical system is called the selection–mutation

dynamics (Hofbauer, 1985). If ε = δ = 0, the selection–mutation dynamics

coincides with the replicator dynamics.

3 Extended signaling system

In this section, we define and study an extended signaling system. Given

n < m, an extended signaling system has m-n zero-columns of P . We define

the jth column vector of the matrix P , denoted by pj, and the ith column

vector of the matrix Q, denoted by qi, that is, P = (p1,p2, . . . ,pm), and Q =

(q1,q2, . . . ,qn). Let ZP = {j ∈ M | pj is a zero-column of the matrix P} de-

note the set of signals that are not employed, and ZQ = {i ∈ N | qi is a zero-column

of the matrix Q} the set of states that are not conveyed.

Definition 1. We say that a strategy (P ∗, Q∗) ∈ P△
n×m×Q△

m×n is an extended

signaling system if the following properties hold:

(i) |ZP ∗ | = m− n,6

(ii) p∗ij = q∗ji = 1 or p∗ij = q∗ji = 0 for each i ∈ N and each j ∈ M\Z∗
P ,

(iii) q∗ji =
1
n
for each j ∈ Z∗

P and each i ∈ N ,

where
(
p∗ij, q

∗
ji

)
(i,j)∈N×M

denotes the entries of an extended signaling system

(P ∗, Q∗).

Example 4.

P ∗
4 =

 1 0 0

0 1 0

, Q∗
4 =


1 0

0 1

1
2

1
2

,

6In what follows, |X| denotes the cardinality of a set X.
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where ZP ∗
4
= {3}, ZQ∗

1
= ϕ.

We introduce additional notatins to provide clear expositions in this sub-

section. Given an extended signaling system (P ∗, Q∗), we divide the set

N ×M into subsets Ii, i = 1, 2, 3.

I∗1 = {(i, j) ∈ N ×M | p∗ij = 1},

I∗2 = {(i, j) ∈ N ×M | j /∈ ZP ∗ , p∗ij = 0},

I∗3 = {(i, j) ∈ N ×M | j ∈ ZP ∗}.

For (P ∗
4 , Q

∗
4) in Example 4, we can easily check that I1 = {(1, 1), (2, 2)}, I2 =

{(1, 2), (2, 1)}, I3 = {(1, 3), (2, 3)}.

We find a rest point of the selection-mutation dynamics close to each

extended signaling system. The rest point is symmetric for the corresponding

extended signaling system. A rest point of our dynamical system, S ′ = Φ(S),

is generally defined as a point that satisfies Φ
((
pij, qji)(i,j)∈N×M

)
= 0, where

0 ∈ R|N×M | is a zero-column vector.

Definition 2. We say that a rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S has a symmet-

ric form for an extended signaling system (P ∗, Q∗) if there are real values

ε1, ε2, δ1, q1 such that

p̃ij(ε, δ) =


1− (n− 1)ε1 − (m− n)ε2 for each (i, j) ∈ I∗1 ,

ε1 for each (i, j) ∈ I∗2 ,

ε2 for each (i, j) ∈ I∗3 ,
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q̃ji(ε, δ) =


1− (n− 1)δ1 for each (i, j) ∈ I∗1 ,

δ1 for each (i, j) ∈ I∗2 ,

q1 for each (i, j) ∈ I∗3 ,

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

Example 5.

For an extended signaling system,

P ∗
5 =


1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

 , Q∗
5 =



1 0 0

1
3

1
3

1
3

0 0 1

1
3

1
3

1
3

0 1 0


,

the symmetric rest point of the selection–mutation dynamics has a form such

that

P̃5(ε, δ) =


1− 2ε1 − 2ε2 ε2 ε1 ε2 ε1

ε1 ε2 ε1 ε2 1− 2ε1 − 2ε2

ε1 ε2 1− 2ε1 − 2ε2 ε2 ε1

,

Q̃5(ε, δ) =



1− 2δ1 δ1 δ1

q1 q1 q1

δ1 δ1 1− 2δ1

q1 q1 q1

δ1 1− 2δ1 δ1


,

where ZP ∗ = {2, 4}, I∗1 = {(1, 1), (3, 3), (2, 5)},
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I∗2 = {(2, 1), (3, 1), (1, 3), (2, 3), (1, 5), (3, 5)},

I∗3 = {(1, 2), (2, 2), (3, 2), (1, 4), (2, 4), (3, 4)}.

Theorem 1. For each pair of the mutation rates (ε, δ), there is a neigh-

borhood of the point (P ∗, Q∗) that contains a unique symmetric rest point

(P̃ (ε, δ), Q̃(ε, δ)) of the selection–mutation dynamics.

All proofs are relegated to Appendix. Corollary 1 explicitly shows the

form of the first-order approximation to the symmetric rest point close to

the corresponding exteded signaling systems. This form clearly indicates

that an extended signaling system is the limit point of the family of the

symmetric rest points as (ε, δ) goes to (0, 0). Furthermore, using this form,

we derive Thorem 2, which explores the stability of the rest point of our

dynamical system.

Corollary 1. The first-order approximated entries
(
p̃ij(ε, δ), q̃ji(ε, δ)

)
(i,j)∈N×M

of the rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S in a neighborhood of an extended sig-

naling system (P ∗, Q∗) are explicitly given as follows:

p̃ij(ε, δ) =


1− mn−2n+1

n−1
ε for each (i, j) ∈ I∗1 ,

ε for each (i, j) ∈ I∗2 ,

n
n−1

ε for each (i, j) ∈ I∗3 ,

q̃ji(ε, δ) =


1− (n− 1)δ for each (i, j) ∈ I∗1 ,

δ for each (i, j) ∈ I∗2 ,

1
n

for each (i, j) ∈ I∗3 .
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Example 6. The first order approximation of the symmetric rest point close

to the extended signaling system (P ∗
4 , Q

∗
4) in Example 4 is given by

P̃4(ε, δ) =

 1− 3ε ε 2ε

ε 1− 3ε 2ε

, Q̃4(ε, δ) =


1− δ δ

δ 1− δ

1
2

1
2

,

where ZP ∗
4
= {3}.

Sequentially, we demonstrate how the asymptotic stability of the selection-

mutation dynamics at the symmetric rest point depends on the mutation

rates (ε, δ) as well as the numbers of states and signals (n,m). Table 1 is an

example of the first order approximated Jacobian matrix of our dynamical

system evaluated at the symmetric rest point close to the exteded signaling

system (P ∗
4 , Q

∗
4) with (n,m) = (2, 3). Each entry of Table 1 is

[
∂ a row of Table 1

][
∂ a column of Table 1

]
, for examle,

∂ ˙pij
∂pst

. We obtain the characteristic equation of the first-order

approximated Jacobian matrix evaluated at the symmetric rest point close

to the extended-signaling system (P ∗
4 , Q

∗
4) from Table 1.

We turn to the general case, i = 1, . . . , n, j = 1, . . . ,m. Let JΦ(ε, δ, n,m)

denote the Jacobian matrix with respect to ṗij, q̇ji, evaluated at the first-

order approximated rest point close to the corresponding extended-signaling

system of our dynamical system with the mutation rates (ε, δ). JΦ(ε, δ, n,m)

has (2nm)2 entries that are completely listed in Table 2.A. The list consists

of six sub-lists, rows of the entries as follows: the r-th row comprises the

values of
∂ṗij
∂p·

and
∂ṗij
∂q·

with (i, j) ∈ Ir, r = 1, 2, 3;
∂q̇ji
∂p·

and
∂q̇ji
∂q·

with (i, j) ∈
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Ir−3, r = 4, 5, 6. The contents of each cell of the sub-lists are explained in

the following table.

specifying the pair of (s, t)

specifying the pair of (i, j) value of
(

∂ṗij
∂pst

or
∂ṗji
∂qts

or
∂q̇ji
∂pst

or
∂q̇ji
∂qts

)
number of such entries above in the Jacobian matrix

Using this list in Table 2.A, we obtain the general formula of the characteristic

equation of the first-order approximated Jacobian matrix evaluated at the

symmetric rest point close to each extended-signaling system.

Theorem 2. Suppose that ε
δ
< n(n−1)

mn−n2−1
for sufficiently small ε and δ.

Then the symmetric rest point close to the corresponding extended-signaling

system is asymptotically stable.

An extended signaling system is coincident with a signaling system when

n = m. All eigenvalues of the characteristic polynomial from the proof of

Theorem 2 are negative when n = m. Therefore, a rest point close to a

signaling system is asymptotically stable.

4 Unilaterally mixed strategy

For each i ∈ N , let Ki ⊂ M denote a set of signals that a sender sends after

nature chooses a state i ∈ N . For each i ∈ N , let each ki ∈ Ki be a signal of

Kl ⊂ K.

Definition 4. We say that a pair of strategies (P ⋆, Q⋆) ∈ P△
n×m ×Q△

m×n is

a unilaterally mixed strategy if the following properties hold:

(i) |M | =
∑N

i |Ki| and Ki ∩ Kj = ∅ for each i, j ∈ N(i ̸= j) and

Ki, Kj ⊂ M ,
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(ii) 0 < piki < 1 with
∑Ki

ki′
piki′ = 1, and q⋆ji = qkii = 1 for each i ∈ N ,

each Ki ⊂ M and each ki ∈ Ki,

(iii) p⋆ij = q⋆ji = 0 for each i ∈ N and each j ∈ M\Ki.

Example 7. A unilaterally mixed strategy:

P ⋆
6 =


0 0 1

2
1
2

0 0 0

0 0 0 0 1
3

1
3

1
3

1
2

1
2

0 0 0 0 0

, Q⋆
6 =



0 0 1

0 0 1

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0


,

where K1 = {3, 4}, K2 = {5, 6, 7}, K3 = {1, 2}.

This depends on the relationship of ε and δ, that is, whether a rest point

close to a unilaterally mixed strategy exists under the selection–mutation

dynamics. For a example, there is always a rest point close to the strategy

including a unilaterally mixed strategy as a part of strategy form when ε =

δ(Hatteger and Hofbauer, 2015). We mainly focus on the case ε ̸= δ. Then

we find that there exists a rest point close to the unilaterally mixed strategy

if piki =
1

|Ki| for each i ∈ N , each Ki ⊂ M and each ki ∈ Ki.

Definition 5. We say that a rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S has a symmetric

form for (P ⋆, Q⋆) if there are real values ε1ij , δ1ji such that

p̃ij(ε, δ) =


1

|Ki| −
1

|Ki|(
∑N\{i}

i′
∑Ki′

ki′
ε1iki′

) for each i ∈ N and each j ∈ Ki,

ε1ij for each i ∈ N and each j ∈ M\Ki,
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q̃ji(ε, δ) =

1−
∑N\{i}

i′ δ1ji′ for each i ∈ N and each j ∈ Ki,

δ1ji for each i ∈ N and each j ∈ M\Ki,

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

The contenuous strategy space contains a rest point close to a unilaterally

mixed strategy under the replicator dynamics. However, the perturbation

of the replicator dynamics destroys most of rest points in the case ε ̸= δ

(Hofbauer and Hatteger, 2015). Similarly, the perturbation destroys each

rest point except for a rest point close to a unilaterally mixed strategy with

pij =
1

|Ki| for each i ∈ N and each Ki ⊂ M . Thus, the rest point close to the

unilaterally stable strategy is isolated

Theorem 3. Suppose that piki =
1

|Ki| for each i ∈ N , eachKi ⊂ M , and each

ki ∈ Ki. For each pair of mutation rates (ε, δ), there is a neighborhood of the

point (P ⋆, Q⋆) that contains a unique symmetric rest point, (P̃ (ε, δ), Q̃(ε, δ)),

of the selection–mutation dynamics.

Sequentially, we have the first-order approximated values of ε1ij , δ1ji for

each i ∈ N , each j ∈ M \Ki.

Corollary 2. The first-order approximated entries
(
p̃ij(ε, δ), q̃ji(ε, δ)

)
(i,j)∈N×M

of the rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S in a neighborhood of a unilaterally

mixed strategy (P ⋆, Q⋆) is explicitly given as follows:

p̃ij(ε, δ) =


1

|Ki| −
m−|Ki|
|Ki| ε) for each i ∈ N and each j ∈ Ki,

ε for each i ∈ N and each j ∈ M\Ki,
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q̃ji(ε, δ) =

1− |Ki|(n− 1)δ for each i ∈ N and each j ∈ Ki,

|Ki′|δ for each i ∈ N and each j ∈ Ki′(i ̸= i′),

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

Example 8. A unilaterally mixed strategy:

P ∗
6 =


ε ε 1

2
− 5

2
ε 1

2
− 5

2
ε ε ε ε

ε ε ε ε 1
3
− 4

3
ε 1

3
− 4

3
ε 1

3
− 4

3
ε

1
2
− 5

2
ε 1

2
− 5

2
ε ε ε ε ε ε

,

Q∗
6 =



2δ 2δ 1− 4δ

2δ 2δ 1− 4δ

1− 4δ 2δ 2δ

1− 4δ 2δ 2δ

3δ 1− 6δ 3δ

3δ 1− 6δ 3δ

3δ 1− 6δ 3δ


,

where K1 = {3, 4}, K2 = {5, 6, 7}, K3 = {1, 2}.

We also obtain the characteristic equation of the first-order approximated

Jacobian matrix evaluated at the symmetric rest point close to each unilat-

erally mixed strategy with |Ki| = 2 for each i ∈ N .

Theorem 4. Suppose that |Ki| = 2 for each i ∈ N and ε
δ
> m(n−1)

4
for

sufficiently small ε and δ. Then, the symmetric rest point close to the corre-

sponding unilaterally mixed strategy is asymptotically stable.
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5 Hybrid strategy

Let L ⊂ N be a subset of N , and K ⊂ M a subset of M . We define a set of

signals after observing a state l ∈ L, denoted by Kl ⊂ K. Let kl ∈ Kl be a

signal of Kl ⊂ K.

Definition 6. We say that a pair of strategies (P ∗⋆, Q∗⋆) ∈ P△
n×m ×Q△

m×n is

a hybrid strategy if the following properties hold:

(i) |K| =
∑L

l |Kl| and m− n = |K| − |L|,

(ii) p∗⋆ij = q∗⋆ji = 1 or p∗⋆ij = q∗⋆ji = 0 for each i ∈ N\L and each j ∈ M\K,

(iii) p∗⋆ij = q∗⋆ji = 0 for each i ∈ N\L and each j ∈ K,

(iv) p∗⋆ij = piki , 0 < piki < 1 with
∑Ki

kl
pikl = 1 and q∗⋆ji = qkii = 1 for each

i ∈ L and each ki ∈ Ki, and

(v) p∗⋆ij = q∗⋆ji = 0 for each i ∈ L and each j ∈ M\Ki,

where
(
p∗⋆ij , q

∗⋆
ji

)
(i,j)∈N×M

denotes the entries of a hybrid strategy (P ∗⋆, Q∗⋆).

A hybrid strategy is coincident with a signaling system when |L| = |K| =

0. A hybrid strategy is coincident with a unilaterally mixed strategy when

|N\L| = |M\K| = 0.

We introduce additional notatoins to provide clear expositions in this

subsections. Given a hybrid strategy (P ∗⋆, Q∗⋆), we divide the set N × M

into subsets, Ii, i = 1, 2, 3, 4, 5, 6,

I∗⋆1 = {(i, j) ∈ N ×M | p∗⋆ij = q∗⋆ = 1, i ∈ N\L and j ∈ M\K},

I∗⋆2 = {(i, j) ∈ N ×M | p∗⋆ij = q∗⋆ji = 0, i ∈ N\L and j ∈ M\K},

I∗⋆3 = {(i, j) ∈ N ×M | p∗⋆ij = q∗⋆ji = 0, i ∈ N\L and j ∈ K},

I∗⋆4 = {(i, j) ∈ N ×M | p∗⋆ij = q∗⋆ji = 0, i ∈ L and j ∈ M\K},
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I∗⋆5 = {(i, j) ∈ N ×M | p∗⋆ij = q∗⋆ji = 0, i ∈ L and j ∈ K\Ki},

I∗⋆6 = {(i, j) ∈ N ×M | p∗⋆ij = 1
|Ki| and q∗⋆ji = 1, i ∈ L and j ∈ Ki}.

Example 9. A hybrid strategy:

P ∗⋆
7 =


0 1 0 0 0 0

1
2

0 0 1
2

0 0

0 0 1
2

0 1
2

0

0 0 0 0 0 1

, Q∗⋆
7 =



0 1 0 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


,

where L = {2, 3}, K = {1, 3, 4, 5}, K2 = {1, 4}, K3 = {3, 5},

I∗⋆1 = {(1, 2), (4, 6)}, I∗⋆2 = {(1, 6), (4, 2)},

I∗⋆3 = {(1, 1), (1, 3), (1, 4), (1, 5), (4, 1), (4, 3), (4, 4), (4, 5), },

I∗⋆4 = {(2, 2), (2, 5), (3, 2), (3, 5)}, I∗⋆5 = {(2, 3), (2, 5), (3, 1), (3, 4)},

I∗⋆6 = {(2, 1), (2, 4), (3, 3), (3, 5)}.

Definition 7. A rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S has a symmetric form for

(P ∗⋆, Q∗⋆) if there are real values ε1, ε2j , ε3i , ε4ij , δ1, δ2i , δ3j , δ4ji such that

p̃ij(ε, δ) =



1− (m− |K| − 1)ε1 −
∑L

l

∑Kl

kl
ε2kl for each (i, j) ∈ I∗⋆1 ,

ε1 for each (i, j) ∈ I∗⋆2 ,

ε2j for each (i, j) ∈ I∗⋆3 ,

ε3i for each (i, j) ∈ I∗⋆4 ,

ε4ij for each (i, j) ∈ I∗⋆5 ,

1
|Ki| −

1
|Ki|((m− |K|)ε3i +

∑L\i
l

∑Kl

kl
ε4ikl ) for each (i, j) ∈ I∗⋆6 ,
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q̃ji(ε, δ) =



1− (n− |L| − 1)δ1 −
∑L

l δ2l for each (i, j) ∈ I∗⋆1 ,

δ1 for each (i, j) ∈ I∗⋆2 ,

δ2i for each (i, j) ∈ I∗⋆4 ,

δ3j for each (i, j) ∈ I∗⋆3 ,

δ4ji for each (i, j) ∈ I∗⋆5 ,

1− (n− |L|)δ3j −
∑L\{i}

l δ4jl for each (i, j) ∈ I∗⋆6 ,

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

A rest point close to a hybrid strategy exists, since it has the hybrid form

of a signaling system and a unilaterally mixed strategy.

Theorem 5. Suppose that piki = 1
|Ki| for each i ∈ L, each Ki ⊂ M and

each ki ∈ Ki. For each pair of mutation rates (ε, δ), there is a neighbor-

hood of the point (P ∗⋆, Q∗⋆) that contains a unique symmetric rest point,

(P̃ (ε, δ), Q̃(ε, δ)), of the selection-mutation dynamics.

Sequentially, we have the explicit form of a rest point.

Corollary 3. Suppose that piki =
1

|Ki| for each i ∈ N , eachKi ⊂ M , and each

ki ∈ Ki. The first-order approximated entries
(
p̃ij(ε, δ), q̃ji(ε, δ)

)
(i,j)∈N×M

of

a rest point (P̃ (ε, δ), Q̃(ε, δ)) ∈ S in a neighborhood of a hybrid strategy

(P ∗⋆, Q∗⋆) are explicitly given as follows:

22



· For real values ε, δ,

p̃ij(ε, δ) =



1− (m− 1)ε for each (i, j) ∈ I∗⋆1 ,

ε for each (i, j) ∈ I∗⋆2 ,

ε for each (i, j) ∈ I∗⋆3 ,

ε for each (i, j) ∈ I∗⋆4 ,

ε for each (i, j) ∈ I∗⋆5 ,

1
|Ki| −

m−|Ki|
|Ki| ε for each (i, j) ∈ I∗⋆6 ,

q̃ji(ε, δ) =



1− (n− 1)δ for each (i, j) ∈ I∗⋆1 ,

δ for each (i, j) ∈ I∗⋆2 ,

|Ki′|δ for each (i, j) ∈ I∗⋆3 with j ∈ Ki′ ,

δ for each (i, j) ∈ I∗⋆4 ,

|Ki′|δ for each (i, j) ∈ I∗⋆5 with j ∈ Ki′ ,

1− |Ki|(n− 1)δ for each (i, j) ∈ I∗⋆6 with j ∈ Ki′ ,

where
(
p̃ij(ε, δ), q̃ji(ε, δ))(i,j)∈N×M are entries of (P̃ (ε, δ), Q̃(ε, δ)).

Example 10. The first order approximation of the symmetric rest point

close to a hybrid strategy (P ∗⋆
7 , Q∗⋆

7 ) in Example 9 is given by

P ∗⋆
7 =


ε 1− 5ε ε ε ε ε

1
2
− 2ε ε ε 1

2
− 2ε ε ε

ε ε 1
2
− 2ε ε 1

2
− 2ε ε

ε ε ε ε ε 1− 5ε

,
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Q∗⋆
7 =



2δ 1− 6δ 2δ 2δ

1− 3δ δ δ δ

2δ 2δ 1− 6δ 2δ

2δ 1− 6δ 2δ 2δ

2δ 2δ 1− 6δ 2δ

δ δ δ 1− 3δ


.

We also obtain the characteristic equation of the first-order approximated

Jacobian matrix evaluated at the symmetric rest point close to each unilat-

erally mixed strategy with |Kl| = 2 for each l ∈ L and each Kl ⊂ K. This

condition leads to |K| = 2|L|.

Theorem 6. Suppose that |L| ≥ 1 and |Kl| = 2 for each l ∈ L and each

Kl ⊂ K, and ε
δ
> |K|(n−1)

4
for sufficiently small ε and δ. Based on Theorem

5, a first-order approximated Jacobian matrix exists, and it is evaluated at

the symmetric rest point close to a hybrid strategy with |Kl| = 2 for each

l ∈ L and each Kl ⊂ K. Then, the symmetric rest point close to the hybrid

strategy is asymptotically stable.

6 Discussion

6.1 Comparisons among strategies

Our conditions in sections 3, 4 and 5 guarantee asymptotic stability of a rest

point close to each of the three neutrally stable strategies for m > n ≥ 2.

• an extended signaling system:

ε
δ
< n(n−1)

mn−n2−1
,
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• a unilaterally mixed strategy with |Ki| = 2 for each i ∈ N and each

Ki ⊂ M :

ε
δ
> m(n−1)

4
, where m = 2n,

• a hybrid strategy with |Kl| = 2 for each l ∈ L and each Kl ⊂ K:

ε
δ
> |K|(n−1)

4
, where m− n = |K| − |L|, |K| = 2|L|, and |L| ≥ 1.

Note that a unilaterally mixed strategy and a hybrid strategy do not

simultaneously exist because both conditions are not compatible for n, m,

|L|, and |K|. By arranging these results, we define three functions from a set

N to a set M , denoted by

me(n) ≡ 1
ε
δ
(n− 1) + n+ 1

n
,

mu(n) ≡ 4 ε
δ

n−1
,

mh(n) ≡ n+
2 ε
δ

n−1
.

where me(n) is the function describing the line that divides two regions: a

stable parameter region for a rest point close to an extended signaling system

and a unstable parameter region for it; mu for a unilaterally mixed strategy

and mh for a hybrid strategy.

We illustrate the foregoing results by means of the following examples.

Example 8. Consider ε
δ
= 1, 10, 1

10
. We obtain the following inequalities.
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Figure 1: ε
δ
= 1

· ε
δ
= 1 (Figure 1); m < 2n+ 1

n
− 1 (an extended signaling system), m < 4

n−1

(a unilaterally mixed strategy), and m < n+ 2
n−1

(a hybrid strategy) .
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Figure 2: ε
δ
= 10

· ε
δ
= 10 (Figure 2); m < 11

10
n+ 1

n
− 1

10
(an extended signaling system),m < 40

n−1

(a unilaterally mixed strategy), and m < n+ 20
n−1

(a hybrid strategy) .
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Figure 3: ε
δ
= 1

10

· ε
δ
= 1

10
(Figure 3); m < 11n + 1

n
− 1 (an extended signaling system),

m < 2
5n−5

(a unilaterally mixed strategy), m < n+ 1
5n−5

(a hybrid strategy)

.

We consider the parameter region over the line m = n (n < m). In the

parameter regions below each me, mu, and mh, a rest point close to each

strategy is asymptotically stable. When ε
δ
= 1, more rest points close to

each extended signaling system is asymptotically stable for 3 ≤ n. When

ε
δ
= 10, more rest points close to each unilaterally mixed strategy is asymp-

totically stable for 2 ≤ n ≤ 5, each hybrid strategy for 5 ≤ n ≤ 14, each

hybrid strategy for 15 ≤ n. When ε
δ
= 1

10
, more rest points close to each ex-

tended signaling system is asymptotically stable. We now turn to the general
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analysis. Differentiating me(n),mu(n) and mh(n) for n, we obtain

∂me(n)
∂n

= 1
ε
δ
+ 1− 1

n2 ,

∂mu(n)
∂n

= − 4 ε
δ

(n−1)2
,

∂mh(n)
∂n

= 1− 2 ε
δ

(n−1)2
.

Thus, the first derivative test gives where me,mu and mh increase and

then decrease.

(i) me increases as δ increases. me always increases for n ≥ 2.

(ii) mu increases as ε increases. mu always decreases for n ≥ 2.

(iii) mh increases as ε increases. mh increases for n > 1+
√

2ε
δ
. mh decreases

for 2 ≤ n < 1 +
√

2ε
δ
.

In sender-receiver games with a common interest, more rest points close

to each extended signaling system exist because δ are bigger, whereas more

rest points close to each unilaterally mixed strategy and each hybrid strategy

exist because ε is bigger.

7 Conclusion

In this paper, we showed that each rest point close to an extended signaling

system, a unilaterally mixed strategy and a hybrid strategy can be asymp-

totically stable under the selection–mutation dynamics when n < m. Our

results in Theorem 2, Theorem 4 and Theorem 6 show the optimal strategy

for stability according to n,m, ε and δ. Under the selection-mutation dy-

namics, a signaling system or a signaling system is not always the optimal

strategy.
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We then studied tha case in which n < m. From symmetry, we also

obtained similiar results when n > m. We omited the case in which n > m

for want of space.

Nevertheless, our investigation is also beset by two limitations. First,

regarding the analysis of a unilaterally mixed strategy and a hybrid strategy,

we only analyze the case in which |Ki| = 2 for i ∈ N or i ∈ L.

Second, regarding all strategies except for an extended signaling system,

a unilaterally mixed strategy, and a hybrid strategy, we did not study the

stability of a rest point close to each strategy except for the aforementioned

strategies. We conjecture that there is no strategy, except for the aforemen-

tioned, that leads to asymptotic stability.
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Appendix

Proof of Theorem 1

Fix a signal j of (i, j) ∈ I3 and denote it by j̄. Since
∑n

i=1 qj̄i = nq1 = 1,

we obtain q1 =
1
n
.

We sequentially find the values of the entries of the symmetric rest points

ε1, ε2, and δ1. The values of ε1, ε2, and δ1 are consistent with the condi-

tions, ṗij = 0 and q̇ji = 0 for each (i, j) ∈ I1, I2, I3. Our dynamical system

S ′ = Φ(S) of the selection-mutation dynamics consists of 2mn differential

equations:

ṗ11 = p11(q11 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp11),

ṗ12 = p12(q21 − p11q11 − p12q21 − · · · − p1mqm1) + ε(1−mp12),
...

ṗnm = pnm(qmn − pn1q1n − pn2q2n − · · · − pnmqmn) + ε(1−mpnm),

q̇11 = q11(p11 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq11),

q·12 = q12(p21 − q11p11 − q12p21 − · · · − q1npn1) + δ(1− nq12),
...

q̇mn = qmn(pnm − qm1p1m − qm2p2m − · · · − qmnpnm) + δ(1− nqmn).

By the symmetric form of the rest points, these equations are divided

into six equations:
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

ṗij = 0 for each (i, j) ∈ I1,

ṗij = 0 for each (i, j) ∈ I2,

ṗij = 0 for each (i, j) ∈ I3,

q̇ji = 0 for each (i, j) ∈ I1,

q̇ji = 0 for each (i, j) ∈ I2,

q̇ji = 0 for each (i, j) ∈ I3.

We remove redundant equations, that is. equations ṗij = 0 and q̇ij = 0

for each (i, j) ∈ I1, and q̇ij = 0, for each (i, j) ∈ I3. Thus, we have the

following three equations:

ṗij = 0 for each (i, j) ∈ I2,

ṗij = 0 for each (i, j) ∈ I3,

q̇ji = 0 for each (i, j) ∈ I2.

By substituting the entries (p̃ij, q̃ji) of Definition 2 and q1 = 1
n
into the

above equations, we obtain the following reduced system F = 0 that consists

of fI(ε1, ε2, δ1; ε, δ) = 0, I = 1, 2, 3:

F = 0 ⇔


f1(ε1, ε2, δ1; ε, δ) = 0, for each (i, j) ∈ I2,

f2(ε1, ε2, δ1; ε, δ) = 0, for each (i, j) ∈ I3,

f3(ε1, ε2, δ1; ε, δ) = 0, for each (i, j) ∈ I2.

⇔



p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I2,

p̃ij[q̃ij −
∑

(i,s)∈N×M

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I3,

q̃ji[p̃ij −
∑

(t,j)∈N×M

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each (i, j) ∈ I2,
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⇔



p̃ij[q̃ij −
∑

(i,s)∈I1

p̃isq̃sj −
∑

(i,s)∈I2

p̃isq̃sj −
∑

(i,s)∈I3

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I2,

p̃ij[q̃ij −
∑

(i,s)∈I1

p̃isq̃sj −
∑

(i,s)∈I2

p̃isq̃sj −
∑

(i,s)∈I3

p̃isq̃sj] + ε(1−mp̃ij) = 0 for each (i, j) ∈ I3,

q̃ji[p̃ji −
∑

(t,j)∈I1

q̃jtp̃tj −
∑

(t,j)∈I2

q̃jtp̃tj −
∑

(t,j)∈I3

q̃jtp̃tj] + δ(1− nq̃ji) = 0 for each (i, j) ∈ I2,

⇔


ε1

{
δ1 − (n− 1)ε1δ1 − [1− (n− 1)ε1 − (m− n)ε2] [1− (n− 1)δ1]− 1

n
(m− n)ε2

}
+ ε(1−mε1) = 0,

ε2
{

1
n
− (n− 1)ε1δ1 − [1− (n− 1)ε1 − (m− n)ε2] [1− (n− 1)δ1]− 1

n
(m− n)ε2

}
+ ε(1−mε2) = 0,

δ1 {ε1 − (n− 1)δ1ε1 − [1− (n− 1)δ1] [1− (n− 1)ε1 − (m− n)ε2]}+ δ(1− nδ1) = 0.

Let Df denote the Jacobian matrix of f1, f2, f3 with respect to ε1, ε2, δ1,

that is,

Df =


∂f1
∂ε1

∂f1
∂ε2

∂f1
∂δ1

∂f2
∂ε1

∂f2
∂ε2

∂f2
∂δ1

∂f3
∂ε1

∂f3
∂ε2

∂f3
∂δ1

 .

Let det(Df(x)) denote the determinant ofDf(x) at point x = (ε1, ε2, δ1; ε, δ).

Since

Df(0) =


−1 0 0

0 1−n
n

0

0 0 −1


at the point (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0), we have det(Df

(
0)
)
̸= 0 with

n ≥ 2.

By the implicit function theorem, our reduced system F = 0 defines

ε1, ε2, and δ1 as continuously differentiable functions of ε and δ in some

neighborhood of (ε1, ε2, δ1; ε, δ) = (0, 0, 0; 0, 0).7 We denote these functions

by ε1(ε, δ), ε2(ε, δ), and δ1(ε, δ).

7That is, we obtain unique candidates of values of ε1, ε2, and δ1, for each pair of
mutation rates, (ε, δ).
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Inserting qji =
1
n
and pij = ε2 for each (i, j) ∈ I3, into

q̇ji = qji(pij −
n∑

t=1

qjtptj) + δ(1− nqji) with (i, j) ∈ I3,

we obtain

q̇ji = q̃ji(p̃ij−
n∑

t=1

q̃jtp̃tj)+δ(1−nq̃ji) =
1

n
(ε2−n× 1

n
×ε2)+δ(1−n× 1

n
) = 0.

The constant values, q̃ji =
1
n
and p̃ij = ε2 for each (i, j) ∈ I3, of the symmetric

rest point are consistent with the condition required of the rest point, q̇ji = 0.

It remains to be proven that the functions ε1(ε, δ), ε2(ε, δ), and δ1(ε, δ)

satisfy the equations ṗij = 0 and q̇ji = 0 for each (i, j) ∈ I1 which are

removed. From our fixed form of the rest point, we can assert that, for each

(i, j) ∈ I2, ṗij = ε̇1(ε, δ) = 0, q̇ji = δ̇1(ε, δ) = 0, and for each (i, j) ∈ I3,

ṗij = ε̇2(ε, δ) = 0. Since we also fix pij = 1 − (n − 1)ε1 − (m − n)ε2 and

qji = 1 − (n − 1)δ1 for each (i, j) ∈ I1, we obtain ṗij = −(n − 1)ε̇1(ε, δ) −

(m− n)ε̇2(ε, δ) = 0 and q̇ji = −(n− 1)δ̇1(ε, δ) = 0.

Therefore, we conclude that, for all (i, j) ∈ M × N , ṗij = q̇ji = 0 with

(ε1, ε2, δ1) = (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ)), which proves the theorem. □

Proof of Corollary 1

Tayler’s formula for the function (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ)) about (ε, δ) =
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(0, 0) is given by


ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

 =


ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

+


∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

 .

Because (ε1(0, 0), ε2(0, 0), δ1(0, 0)) is a solution of the system

fI(ε1(0, 0), ε2(0, 0), δ1(0, 0); 0, 0) = 0, I = 1, 2, 3,

we obtain (ε1(0, 0), ε2(0, 0), δ1(0, 0)) = (0, 0, 0).

By the implicit function theorem and the fact that

Df(0) =


−1 0 0

0 1−n
n

0

0 0 −1

 ,

we obtain
∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)

 = −(Df(0)−1)


∂f1
∂ε

(0) ∂f1
∂δ

(0)

∂f2
∂ε

(0) ∂f2
∂δ

(0)

∂f3
∂ε

(0) ∂f3
∂δ

(0)



= −


−1 0 0

0 1−n
n

0

0 0 −1


−1

1 0

1 0

0 1

 =


1 0

n
n−1

0

0 1

 ,
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where 0 = (0, 0, 0; 0, 0). Thus, Tayler’s formula described above becomes


ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

 =


ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

+


∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)

∂ε2
∂ε

(0, 0) ∂ε2
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)



=


1 0

n
n−1

0

0 1


 ε

δ

+


o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

 ,

where oI(ε, δ),I = 1, 2, 3, stands for the second- or higher-order terms of ε

and δ. Thus, we obtain the first-order approximated values of ε1, ε2, and δ1,

respectively, as follows:

ε1 = ε+ o1(ε, δ),

ε2 = n
n−1

ε+ o2(ε, δ),

δ1 = δ + o3(ε, δ).

Replacing ε1, ε2, and δ1 in Definition 3 by these values above, we find the

first-order approximated rest point. □

Proof of Theorem 2

The characteristic equation of the first-order approximated Jacobian ma-

trix evaluated at the symmetric rest point close to any extended-signaling

system is given by
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[λ− mn−3n+2
n−1

ε− (n− 1)δ + 1]n−1

×[λ+ ε− nδ + 1]n(n−1)

×[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n

×[λ− mn−n
n−1

ε+ δ + 1]n(n−1)

×[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×[λ− mn−n2−1
n−1

ε+ nδ]

×[λ+ 1
n−1

(n3 − n2 + n−mn2 +mn)ε+ (1− n)δ + 1− 1
n
]

×[λ+ (mn− n2 − n+ 2)ε+ (1− n)δ + 1] = 0

where λ is the eigenvalue.

We briefly explain the procedure for obtaining the above equation. Let

A = JΦ−λI, that is, detA, denote the characteristic polynomial. Let aij ∈ A

be the entries of the matrix A, and Aij the corresponding (i, j)th cofactor.

Then, we disregard any term that is a second- or higher-order term in ε, δ

because of the continuity of the characteristic polynomial with respect to ε

and δ.8 Consequently, we may regard most of the entries of the Jacobian

matrix, except its diagonal factors, as 0, or linear forms of ε and δ. Referring

to Table2.A and noting that |I1| = n, |I2| = (n − 1), and |I3| = n(m − n),

we expand the matrix A along any ith row. We thus obtain the following

polynomial.

8This is a normal procedure for determining the stability of a rest point, which Hofbauer
and Hutteger (2015) also follow.
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detA

=
∑2nm

k=1 (−1)i+kaikAik

= [−λ+ mn−3n+2
n−1

ε+ (n− 1)δ − 1]n[−λ− ε+ nδ − 1]n(n−1)[λ− n
n−1

ε+ (n− 1)δ − 1 + 1
n
]n(m−n)

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ − 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n)

−(− n
n−1

ε)(− 1
n
− 2n−mn−1

n(n−1)
ε)[−λ+ mn−3n+2

n−1
ε+ (n− 1)δ + 1]n−1[−λ− ε+ nδ + 1]n(n−1)[−λ− n

n−1
ε+ (n− 1)δ + 1 + 1

n
]n(m−n)−1

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ + 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n) × n(m− n)

−( 1
n
− 1

n2 )
n

n−1
ε[−λ+ mn−3n+2

n−1
ε+ (n− 1)δ − 1]n−1[−λ− ε+ nδ − 1]n(n−1)[−λ− n

n−1
ε+ (n− 1)δ − 1 + 1

n
]n(m−n)−1

×[−λ+ −2n+mn+1
n−1

ε+ (n− 2)δ − 1]n[−λ+ mn−n
n−1

ε− δ − 1]n(n−1)[−λ− 1
n−1

ε− nδ]n(m−n)−1 × n(m− n).

This polynomial is the sum of three parts. The first part comprises all

the diagonal factors of the characteristic polynomial detA, that is, [−λ +

mn−3n+2
n−1

ε+ (n− 1)δ− 1]n[−λ− ε+ nδ− 1]n(n−1)[−λ− n
n−1

ε+ (n− 1)δ− 1+

1
n
]n(m−n)[−λ + −2n+mn+1

n−1
ε + (n − 2)δ − 1]n[−λ + mn−n

n−1
ε − δ − 1]n(n−1)[−λ −

1
n−1

ε − nδ]n(m−n). In Table2.A,
∂ṗij
∂pij

or
∂ ˙qji
∂qji

for s = i, t = j of each column

correspond to each diagonal factor.

The second part with the negative sign comprises all the diagonal factors

except an entry
∂ṗij
∂pst

for (i, j) ∈ I1, (s, t) ∈ I3, s = i, t = j, and an entry

∂ṗij
∂pst

for (i, j) ∈ I1, (s, t) ∈ I3, s = i. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I1, (s, t) ∈ I3, s = i, t = j is − n
n−1

ε. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I1, (s, t) ∈ I3, s = i is − 1
n
− 2n−mn−1

n(n−1)
ε. The number of such terms is n(m−n).

The third with the negative sign is composed of all diagonal factors except

an entry
∂ṗij
∂pst

for (i, j) ∈ I3, (s, t) ∈ I3, t = j, s = i and an entry
∂ṗij
∂qts

for

(i, j) ∈ I3, (s, t) ∈ I3, s = i, t = j. The value of an entry
∂ṗij
∂pst

for (i, j) ∈

I3, (s, t) ∈ I3, t = j, s = i is 1
n
− 1

n2 . The value of an entry
∂ṗij
∂qts

for (i, j) ∈

I3, (s, t) ∈ I3, s = i, t = j is n
n−1

ε. The number of such terms is n(m− n).

By factoring and arranging these parts, we obtain the characteristic poly-

nomial as follows.
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[λ− mn−3n+2
n−1

ε− (n− 1)δ + 1]n−1[λ+ ε− nδ + 1]n(n−1)[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n[λ− mn−n
n−1

ε+ δ + 1]n(n−1)[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×
(
[λ− mn−3n+2

n−1
ε− (n− 1)δ + 1][λ+ n

n−1
ε− (n− 1)δ + 1− 1

n
][λ+ 1

n−1
ε+ nδ]

+(− n
n−1

ε)(− 1
n
− 2n−mn−1

n(n−1)
ε)[λ+ n

n−1
ε− (n− 1)δ + 1− 1

n
]× n(m− n)

+( 1
n
− 1

n2 )
n

n−1
ε[λ− mn−3n+2

n−1
ε− (n− 1)δ + 1]× n(m− n)

)
= [λ− mn−3n+2

n−1
ε− (n− 1)δ + 1]n−1

×[λ+ ε− nδ + 1]n(n−1)

×[λ+ n
n−1

ε− (n− 1)δ + 1− 1
n
]n(m−n)−1

×[λ− −2n+mn+1
n−1

ε− (n− 2)δ + 1]n

×[λ− mn−n
n−1

ε+ δ + 1]n(n−1)

×[λ+ 1
n−1

ε+ nδ]n(m−n)−1

×[λ− mn−n2−1
n−1

ε+ nδ]

×[λ+ 1
n−1

(n3 − n2 + n−mn2 +mn)ε+ (1− n)δ + 1− 1
n
]

×[λ+ (mn− n2 − n+ 2)ε+ (1− n)δ + 1].

□

Proof of Theorem 3

We now find the values of the entries of the symmetric rest points, ε1ij ,

δ1ji , for each i ∈ N and each j ∈ M\Ki. These entries are consistent with

the conditions required for the rest points, ṗij = 0 and q̇ji = 0 for each i ∈ N

and j ∈ M .

Our dynamical system S ′ = Φ(S) of the selection–mutation dynamics

consists of 2mn differential equations. They are divided into four equations



ṗij = 0 for each i ∈ N and each j ∈ Ki,

ṗij = 0 for each i ∈ N and each j ∈ M\Ki,

q̇ji = 0 for each i ∈ N and each j ∈ Ki,

q̇ji = 0 for each i ∈ N and each j ∈ M\Ki.

We remove redundant equations, ṗij = 0 and q̇ji = 0 for each i ∈
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N and each j ∈ Ki. Thus, we obtain ṗij = 0 and q̇ji = 0 for each i ∈ N and

each j ∈ M\Ki.

By substituting the entries (p̃ij, q̃ji) of Definition 5 into the above equa-

tions, we obtain the following reduced system F = 0 that consists of fI(ε1ij , δ1ji ; ε, δ) =

0, I = 1, 2, for each i ∈ N and each j ∈ M\Ki:

F = 0

⇔

 f1(ε1ij , δ1ji ; ε, δ) = 0, for each i ∈ Nand each j ∈ M\Ki

f2(ε1ij , δ1ji ; ε, δ) = 0, for each i ∈ Nand each j ∈ M\Ki.

⇔



ε1ij

{
δ1ji − |Ki|( 1

|Ki| −
1

|Ki|(
∑N\{i}

l

∑Kl

kl
ε1ikl )(1−

∑N\{i}
l δ1kli)− (

∑N\{i}
l

∑Kl

kl
)ε1iklδ1kli

}
+ ε(1−mε1ji) = 0,

for each i ∈ N and each j ∈ M\Ki,

δ1ji

{
ε1ij −

∑N\{i}
l δ1jlε1lj − ( 1

|Ki′ |
− 1

|Ki′ |
(
∑N\{i′}

l

∑Kl

kl
ε1ikl ))(1−

∑N\{i′}
l δ1li)

}
+ δ(1− nδ1ji) = 0.

for each i ∈ Nand each j ∈ M\Ki(j ∈ Ki′ , i ̸= i′).

From this, we see that (ε1ij , δ1ji ; ε, δ) = (0, 0; 0, 0) for each i ∈ N and

each j ∈ M\Ki is a solution to the reduced system, that is, fI(0, 0; 0, 0) = 0,

I = 1, 2, for each i ∈ N and each j ∈ M\Ki. Let Df be the Jacobian matrix

of f1, f2 with respect to ε1ij , δ1ji . At the point (ε1ij , δ1ji ; ε, δ) = (0, 0; 0, 0) for

each i ∈ N and each j ∈ M\Ki, we have det(Df
(
0)
)
̸= 0. □

Proof of Corollary 2

Tayler’s formula for the function (ε1ij(ε, δ), δ1ji(ε, δ)) with each i ∈ N and

each j ∈ M\Ki about (ε, δ) = (0, 0) is:
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for each i, ..., i′ ∈ N and each j, ..., j′ ∈ M\Ki,

ε1ij(ε, δ)
...

ε1i′j′ (ε, δ)

δ1ji(ε, δ)
...

δ1j′i′ (ε, δ)


=



ε1ij(0, 0)
...

ε1i′j′ (0, 0)

δ1ji(0, 0)
...

δ1j′i′ (0, 0)


+



∂ε1ij
∂ε

(0, 0)
∂ε1ij
∂δ

(0, 0)
...

∂ε1i′j′

∂ε
(0, 0)

∂ε1i′j′

∂δ
(0, 0)

∂δ1ji
∂ε

(0, 0)
∂δ1ji
∂δ

(0, 0)
...

∂δ1j′i′

∂ε
(0, 0)

∂δ1j′i′

∂δ
(0, 0)



 ε

δ

+



o1ij(ε, δ)
...

o1i′j′ (ε, δ)

o2ji(ε, δ)
...

o2j′i′ (ε, δ)


.

Because (ε1ij(0, 0), δ1ji(0, 0)) for each i ∈ N and each j ∈ M\Ki is a

solution of the system

fI(ε1ij(0, 0), δ1ji(0, 0); 0, 0) = 0, I = 1, 2, for each i ∈ N and each j ∈

M\Ki, we have (ε1ij(0, 0), δ1ji(0, 0)) = (0, 0) for each i ∈ N and each j ∈

M\Ki.

By the implicit function theorem and the fact that

Df(0) =



−1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 −1 0 0 0

0 0 0 − 1
|Kl|

0 0

0 0 0 0
. . . 0

0 0 0 0 0 − 1
|Kl′ |


,

for each i, ..., i′ ∈ N, each l, ..., l′ ∈ N(i ̸= l, ..., i′ ̸= l′), and for each j ∈

Kl, ..., j
′ ∈ Kl′ .

we obtain for each i, ..., i′ ∈ N, each l, ..., l′ ∈ N(i ̸= l, ..., i′ ̸= l′), and for each j ∈
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Kl, ..., j
′ ∈ Kl′ ,

∂ε1ij
∂ε

(0, 0)
∂ε1ij
∂δ

(0, 0)
...

...
∂ε1i′j′

∂ε
(0, 0)

∂ε1i′j′

∂δ
(0, 0)

∂δ1ji
∂ε

(0, 0)
∂δ1ji
∂δ

(0, 0)
...

...
∂δ1j′i′

∂ε
(0, 0)

∂δ1j′i′

∂δ
(0, 0)


= −(Df(0)−1)



∂f1
∂ε

(0) ∂f1
∂δ

(0)
...

...

∂f1
∂ε

(0) ∂f1
∂δ

(0)

∂f2
∂ε

(0) ∂f3
∂δ

(0)
...

...

∂f2
∂ε

(0) ∂f3
∂δ

(0)



= −



−1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 −1 0 0 0

0 0 0 − 1
|Kl|

0 0

0 0 0 0
. . . 0

0 0 0 0 0 − 1
|Kl′ |



−1

1 0
...

...

1 0

0 1
...

...

0 1



=



−1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 −1 0 0 0

0 0 0 −|Kl| 0 0

0 0 0 0
. . . 0

0 0 0 0 0 −|Kl′ |


,

where 0 = (0, 0; 0, 0). From the above equation, we obtain for each i, ..., i′ ∈
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N, each l, ..., l′ ∈ N(i ̸= l, ..., i′ ̸= l′), and each j ∈ Kl, ..., j
′ ∈ Kl′

ε1ij(ε, δ)
...

ε1ij(ε, δ)

δ1ji(ε, δ)
...

δ1ji(ε, δ)


=



ε1ij(0, 0)
...

ε1i′j′ (0, 0)

δ1ji(0, 0)
...

δ1j′i′ (0, 0)


+



∂ε1ij
∂ε

(0, 0)
∂ε1ij
∂δ

(0, 0)
...

∂ε1i′j′

∂ε
(0, 0)

∂ε1i′j′

∂δ
(0, 0)

∂δ1ji
∂ε

(0, 0)
∂δ1ji
∂δ

(0, 0)
...

∂δ1j′i′

∂ε
(0, 0)

∂δ1j′i′

∂δ
(0, 0)



 ε

δ

+



o1ij(ε, δ)
...

o1i′j′ (ε, δ)

o2ji(ε, δ)
...

o2j′i′ (ε, δ)



=



1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0

0 0 0 |Kl| 0 0

0 0 0 0
. . . 0

0 0 0 0 0 |Kl′|


,



ε
...

ε

δ
...

δ


+



o1ij(ε, δ)
...

o1i′j′ (ε, δ)

o2ji(ε, δ)
...

o2j′i′ (ε, δ)


,

where oI(ε, δ),I = 1, 2, stands for the second- or higher-order terms of ε

and δ. Thus, we obtain the first-order approximated values of ε1 and δ1,

respectively, as follows: for each i, ..., i′ ∈ N, each l, ..., l′ ∈ N(i ̸= l, ..., i′ ̸=

l′), and each j ∈ Kl, ..., j
′ ∈ Kl′ ,

ε1ij = ε+ o1ij(ε, δ),
...

ε1i′j′ = ε+ o1i′j′ (ε, δ),

δ1ji = |Kl|δ + o2ji(ε, δ).
...

δ1j′i′ = |Kl′ |δ + o2j′i′ (ε, δ).
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Replacing ε1ij and δ1ji for each i ∈ N and each j ∈ M\Ki in Definition 3

by these values above, we find the first-order approximated rest point. □

Proof of Theorem 4

We follow similiar procedure in the proof of Theorem 2. The characteristic

equation of the first-order approximated Jacobian matrix evaluated at the

symmetric rest point close to any unilaterally mixed strategy is given by

[λ+ 2ε]
m−2

2

×[λ− (m− 4)ε− 2(m− 2)δ + 1]
m−2

2

×[λ+ 2ε− 2nδ + 1](n−1)m

×[λ− m−2
2

ε− (n− 2)δ + 1
2
]m−1

×[λ− m
2
ε− (n− 2)δ + 1

2
]m(n−1)

×[λ+ (4−m)ε+ (2− 2n− 1
2
m+ mn

2
)δ + 1]

×[λ+ (1− 1
2
m)ε+ (2− n)δ + 1

2
]

×[λ+ 2ε− m(n−1)
2

δ] = 0

where λ is the eigenvalue. □

Proof of Theorem 5

We find the values of the entries of the symmetric rest point, ε1, ε2kl , ε3l , ε4lkl′

and δ1, δ2l , δ3kl′
, δ4kl′ l

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl and each

kl′ ∈ Kl′ . These entries are consistent with the conditions required for the

rest point, ṗij = 0 and q̇ji = 0 for each (i, j) ∈ I∗⋆1 , I∗⋆2 , I∗⋆3 , I∗⋆4 , I∗⋆5 , I∗⋆6 .

Our dynamical system S ′ = Φ(S) of the selection–mutation dynamics

consists of 2mn differential equations. They are divided into 12 equations:

F = 0 ⇔

 ṗij = 0 for each (i, j) ∈ I∗⋆1 , I∗⋆2 , I∗⋆3 , I∗⋆4 , I∗⋆5 , I∗⋆6 ,

q̇ji = 0 for each (i, j) ∈ I∗⋆1 , I∗⋆2 , I∗⋆3 , I∗⋆4 , I∗⋆5 , I∗⋆6 .
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We remove redundant equations, that is, ṗij = 0 and q̇ji = 0 for each

(i, j) ∈ I∗⋆1 , I∗⋆6 . Thus, we obtain the following eight equations, ṗij = 0 and

q̇ji = 0, for each (i, j) ∈ I∗⋆2 , I∗⋆3 , I∗⋆4 , I∗⋆5 .

By substituting the entries (p̃ij, q̃ji) of Definition 7 into the above equa-

tions, we obtain the following reduced system, F = 0, which

consists of fI(ε1, ε2kl , ε3l , ε4lkl′
, δ1, δ2l , δ3kl′

, δ4kl′ l
; ε, δ) = 0, I = 1, 2, 3, 4, 5, 6, 7, 8,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl and each kl′ ∈ Kl′ :

F (ε1, ε2kl , ε3l , ε4lkl′
, δ1, δ2l , δ3kl′

, δ4kl′ l
; ε, δ) = 0, for each l ∈ L, each

l′ ∈ L\{l}, each kl ∈ Kl and each kl′ ∈ Kl′

⇔



f1(ε1, ε2kl , δ1, δ2l , δ3kl′
, ε, δ) = 0, for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl and each kl′ ∈ Kl′ ,

f2(ε1, ε2kl , ε3l , δ1, δ2l , δ3kl′
, ε, δ) = 0, for each l ∈ L and each kl ∈ Kl,

f3(ε3l , ε4lkl′
, δ1, δ2l , δ4kl′ l

; ε, δ) = 0, for each l ∈ L, each l′ ∈ L\{l}, and each kl′ ∈ Kl′ ,

f4(ε3l , ε4lkl′
, δ2l , δ4kl′ l

; ε, δ) = 0, for each l ∈ L, each l′ ∈ L\{l}, and each kl′ ∈ Kl′ ,

f5(ε1, ε3l , δ1, δ2l , ε, δ) = 0, for each l ∈ L,

f6(ε1, ε3l , δ1, δ2l , ε, δ) = 0, for each l ∈ L,

f7(ε3l , ε4lkl′
, δ3kl′

, δ4kl′ l
; ε, δ) = 0, for each l ∈ L, each l′ ∈ L\{l}, and each kl′ ∈ Kl′ ,

f8(ε3l , ε4lkl′
, δ3kl′

, δ4kl′ l
; ε, δ) = 0for each l ∈ L, each l′ ∈ L\{l}, and each kl′ ∈ Kl′ ,

⇔



ε1

{
δ1 − (m− |K| − 1)ε1δ1 −

[
1− (m− |K| − 1)ε1 −

∑L
l

∑Kl

kl
ε2kl

] [
1− (n− |L| − 1)δ1 −

∑L
l δ2l

]
−
∑L

l

∑Kl

kl
ε2klδ3kl

}
+ ε(1−mε1) = 0,

ε2kl

{
δ3kl − (m− |K| − 1)ε1δ1 −

[
1− (m− |K| − 1)ε1 −

∑L
l

∑Kl

kl
ε2kl

] [
1− (n− |L| − 1)δ1 −

∑L
l δ2l

]
−

∑L
l

∑Kl

kl
ε2klδ3kl

}
+ ε(1−mε2kl ) = 0,

, for each l ∈ L, each kl ∈ Kl, and each kl ∈ Kl,

ε3l

{
δ2l − |Kl|( 1

|Kl|
− 1

|Kl|
((m− |K| − 1)ε3l +

∑L\{l}
l′

∑Kl′
kl′

ε4lkl′
))(1− (n− |L| − 1)δ3kl′

−
∑L\{l}

l′ δ4kll′
)− (m− |K|)ε3lδ2l −

∑L\{l}
l′

∑Kl′
kl′

ε4lkl′
δ4kl′ l

}
+ ε(1−mε3l) = 0,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ ,

ε4lkl′

{
δ4kl′ l

− |Kl|( 1
|Kl|

− 1
|Kl|

((m− |K| − 1)ε3l +
∑L\{l}

l′
∑Kl′

kl′
ε4lkl′

))(1− (n− |L| − 1)δ3kl −
∑L\{l}

l′ δ4kll′
)− (m− |K|)ε3lδ2l −

∑L\{l}
l′

∑Kl′
kl′

ε4lkl′
δ4kl′ l

}
+ ε(1−mε4lkl′

) = 0,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ ,

δ1

{
ε1 − (n− |L| − 1)δ1ε1 − (1− (n− |L| − 1)δ1 −

∑L
l δ2l)(1− (m− |K| − 1)ε1 −

∑L
l

∑Kl

kl
ε2kl )−

∑L
l ε3lδ2l

}
+ δ(1− nδ1) = 0,

δ2l

{
ε3l − (n− |L| − 1)δ1ε1 − (1− (n− |L| − 1)δ1 −

∑L
l δ2l)(1− (m− |K| − 1)ε1 −

∑L
l

∑Kl

kl
ε2kl )−

∑L
l ε3lδ2l

}
+ δ(1− nδ2l) = 0,

for each l ∈ L,

δ3kl′

{
ε2kl′

− (n− |L|)δ3kl′ ε2kl′ −
∑L\{l′}

l δ4kl′ l
ε4lkl′

−
[
1− (n− |L| − 1)δ3kl′

−
∑L\{l′}

l δ4kl′ l

] [
1

|Kl′ |
− 1

|Kl′ |
((m− |Kl′|)ε3kl′ +

∑L\l
l′

∑Kl

kl
ε4lkl )

]}
+ δ(1− nδ3kl′

) = 0,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ ,

δ4kl′ l

{
ε4lkl′

− (n− |L|)δ3kl′ ε2kl′ −
∑L\l

l′ δ4kl′ l
ε4lkl′

−
[
1− (n− |L| − 1)δ3kl′

−
∑L\l

l′ δ4kl′ l

] [
1

|Kl′ |
− 1

|Kl′ |
((m− k)ε3kl′

+
∑L\l

l

∑Kl

l ε4l′kl
)
]}

+ δ(1− nδ4kl′ l
) = 0,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ .

From this, we see that (ε1, ε2kl , ε3l , ε4lkl′
, δ1, δ2l , δ3kl′

, δ4kl′ l
; ε, δ) = (0, 0, 0, 0, 0, 0, 0, 0; 0, 0)
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for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ , is a so-

lution to the reduced system, that is, fI(0, 0, 0, 0, 0, 0, 0, 0; 0, 0) = 0, I =

1, 2, 3, 4, 5, 6, 7, 8. Let Df be the Jacobian matrix of f1, f2, f3, f4, f5, f6, f7, f8

with respect to ε1, ε2kl , ε3l , ε4lkl′
, δ1, δ2l , δ3kl′

, δ4kl′ l
for each l ∈ L, each l′ ∈

L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ .

At the point (ε1, ε2kl , ε3kl , ε4lkl′
, δ1, δ2l , δ3kl′

, δ4kl′ l
; ε, δ) = (0, 0, 0, 0, 0, 0; 0, 0)

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ , we obtain

det(Df
(
0)
)
̸= 0. □

Proof of Corollary 3

We prove the case in which the value of 1
|Kl|

for each l ∈ L and each

kl ∈ Kl is a constant for simplicity. The Tayler’s formula for the function

(ε1(ε, δ), ε2lkl (ε, δ), ε3l(ε, δ), ε4lkl(ε, δ), δ1(ε, δ), δ2l(ε, δ), δ3kl′
(ε, δ), δ4lkl′

(ε, δ))

about (ε, δ) = (0, 0) is given by,

for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ ,

ε1(ε, δ)

ε2kl (ε, δ)

ε3l(ε, δ)

ε4lkl (ε, δ)

δ1(ε, δ)

δ2l(ε, δ)

δ3kl′
(ε, δ)

δ4lkl′
(ε, δ)



=



ε1(0, 0)

ε2kl (0, 0)

ε3l(0, 0)

ε4lkl (0, 0)

δ1(0, 0)

δ2l(0, 0)

δ3kl′
(0, 0)

δ4lkl′
(0, 0)



+



∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)
∂ε2kl
∂ε

(0, 0)
∂ε2kl
∂δ

(0, 0)
∂ε3l
∂ε

(0, 0)
∂ε3l
∂δ

(0, 0)
∂ε4lkl
∂ε

(0, 0)
∂ε4lkl
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)
∂δ2l
∂ε

(0, 0)
∂δ2l
∂δ

(0, 0)
∂δ3kl′
∂ε

(0, 0)
∂δ3kl′
∂δ

(0, 0)
∂δ4lkl′

∂ε
(0, 0)

∂δ4lkl′
∂δ

(0, 0)



 ε

δ

+



o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)

o5(ε, δ)

o6(ε, δ)

o7(ε, δ)

o8(ε, δ)



.

Because (ε1(0, 0), ε2kl (0, 0), ε3l(0, 0), ε4lkl (0, 0), δ1(0, 0), δ2l(0, 0), δ3kl′
(0, 0), δ4lkl′

(0, 0))
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for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ is a solution

of the system

fI(ε1(0, 0), ε2kl (0, 0), ε3l(0, 0), ε4lkl (0, 0), δ1(0, 0), δ2l(0, 0), δ3kl′
(0, 0), δ4lkl′

(0, 0); 0, 0) =

0, I = 1, 2, 3, 4, 5, 6, 7, 8, for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl and each

kl′ ∈ Kl′ . we obtain, for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl and each

kl′ ∈ Kl′ , (ε1(0, 0), ε2kl (0, 0), ε3l(0, 0), ε4lkl (0, 0), δ1(0, 0), δ2l(0, 0), δ3kl (0, 0), δ4lkl′
(0, 0))

.

By the implicit function theorem and the fact that

Df(0) =



−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 − 1
|Kl′ |

0

0 0 0 0 0 0 0 − 1
|Kl′ |



.
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we obtain, for each l ∈ L, each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ ,

∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)
∂ε2kl
∂ε

(0, 0)
∂ε2kl
∂δ

(0, 0)
∂ε3l
∂ε

(0, 0)
∂ε3l
∂δ

(0, 0)
∂ε4lkl
∂ε

(0, 0)
∂ε4lkl
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)
∂δ2l
∂ε

(0, 0)
∂δ2l
∂δ

(0, 0)
∂δ3kl′
∂ε

(0, 0)
∂δ3kl′
∂δ

(0, 0)
∂δ4lkl′

∂ε
(0, 0)

∂δ4lkl′
∂δ

(0, 0)



= −(Df(0)−1)



∂f1
∂ε

(0) ∂f1
∂δ

(0)

∂f2
∂ε

(0) ∂f2
∂δ

(0)

∂f3
∂ε

(0) ∂f3
∂δ

(0)

∂f4
∂ε

(0) ∂f4
∂δ

(0)

∂f5
∂ε

(0) ∂f5
∂δ

(0)

∂f6
∂ε

(0) ∂f6
∂δ

(0)

∂f7
∂ε

(0) ∂f7
∂δ

(0)

∂f8
∂ε

(0) ∂f8
∂δ

(0)



= −



−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 − 1
|Kl′ |

0

0 0 0 0 0 0 0 − 1
|Kl′ |



−1

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1



=



1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1



,

where 0 = (0, 0, 0; 0, 0). The above equation can be rewritten for each l ∈ L,
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each l′ ∈ L\{l}, each kl ∈ Kl, and each kl′ ∈ Kl′ as

ε1(ε, δ)

ε2kl (ε, δ)

ε3l(ε, δ)

ε4lkl (ε, δ)

δ1(ε, δ)

δ2l(ε, δ)

δ3kl′
(ε, δ)

δ4lkl′
(ε, δ)



=



ε1(0, 0)

ε2kl (0, 0)

ε3l(0, 0)

ε4lkl (0, 0)

δ1(0, 0)

δ2l(0, 0)

δ3kl′
(0, 0)

δ4lkl′
(0, 0)



+



∂ε1
∂ε

(0, 0) ∂ε1
∂δ

(0, 0)
∂ε2kl
∂ε

(0, 0)
∂ε2kl
∂δ

(0, 0)
∂ε3l
∂ε

(0, 0)
∂ε3l
∂δ

(0, 0)
∂ε4lkl
∂ε

(0, 0)
∂ε4lkl
∂δ

(0, 0)

∂δ1
∂ε

(0, 0) ∂δ1
∂δ

(0, 0)
∂δ2l
∂ε

(0, 0)
∂δ2l
∂δ

(0, 0)
∂δ3kl′
∂ε

(0, 0)
∂δ3kl′
∂δ

(0, 0)
∂δ4lkl′

∂ε
(0, 0)

∂δ4lkl′
∂δ

(0, 0)



 ε

δ

+



o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)

o5(ε, δ)

o6(ε, δ)

o7(ε, δ)

o8(ε, δ)



=



1 0

1 0

1 0

1 0

0 1

0 1

0 |Kl′|

0 |Kl′|



 ε

δ

+



o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)

o5(ε, δ)

o6(ε, δ)

o7(ε, δ)

o8(ε, δ)



,

where oI(ε, δ),I = 1, 2, 3, 4, 5, 6, 7, 8, stands for the second- or higher-order

terms of ε and δ. Thus, we obtain the first-order approximated values of

ε1, ε2kl , ε3l , ε4lkl , and δ1, δ2l , δ3kl′
, δ4lkl′

for each l ∈ L, each l′ ∈ L\{l}, each
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kl ∈ Kl, and each kl′ ∈ Kl′ , respectively, as follows:

ε1 = ε+ o1(ε, δ),

ε2kl = ε+ o2(ε, δ),

ε3l = ε+ o3(ε, δ),

ε4lkl = ε+ o4(ε, δ),

δ1 = δ + o5(ε, δ),

δ2l = δ + o6(ε, δ),

δ3kl′
= |Kl′ |δ + o7(ε, δ),

δ4lkl′
= |Kl′ |δ + o8(ε, δ).

Replacing ε1, ε2kl , ε3l , ε4lkl , and δ1, δ2l , δ3kl′
, δ4lkl′

for each l ∈ L, each l′ ∈

L\{l}, each kl ∈ Kl and each kl′ ∈ Kl′ in Definition 7 by these values above,

we find the first-order approximated rest point. In the case in which the

value of 1
|Kl′ |

for each l′ ∈ L is not a constant, we can prove the theorem

through the same procedure as corollary 2. □

Proof of Theorem 6

We follow a similiar procedure in the proof of Theorem 2. The character-

istic equation of the first-order approximated Jacobian matrix evaluated at

the symmetric rest point close to any extended-signaling system is given by
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[λ− (m− 2)ε− (n− 1)δ + 1]m−|K|

×[λ+ ε− nδ + 1](m−|K|−1)(m−|K|)

×[λ+ ε− (n+ 1)δ + 1](m−|K|)|K|

×[λ+ 2ε− (2n− 1)δ + 1]|L|(m−|K|)

×[λ+ 2ε− 2nδ + 1](|L|−1)|K|

×[λ− (m− 1)ε− (n− 2)δ + 1](m−|K|)

×[λ−mε+ δ + 1](m−|K|)(n−1)

×[λ− m
2
ε+ δ + 1

2
](m−|K|)|K|

×[λ− m
2
ε+ δ + 1

2
](|L|−1)|K|

×[λ+ 2ε]
|K|−2

2

×[λ− (m− 4)ε− 2(n− 1)δ + 1]
|K|−2

2

×[λ− m−2
2

ε− (n− 2)δ + 1
2
]|K|−1

×[λ+ (4−m)ε+ (2− 2n+ kn
2
− 1

2
k)δ + 1]

×[λ+ (1− 1
2
m)ε+ (2− n)δ + 1

2
]

×[λ+ 2ε− k
2
(n− 1)δ] = 0

where λ is the eigenvalue. □
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ṗ 2

2
0

0
0

−
δ

−
1
+
2ε

+
δ

−
1 2
+

3 2
ε

0
−
ε

0
3ε

0
−
2ε

∂
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