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Abstract

This study develops a simple distribution-free test of monotonicity of condi-
tional expectations. The test is based solely on ordinary least squares (OLS)
and exploits the property between conditional expectation and projection; we
prove that the monotonicity of a conditional expectation function restricts the
sign of a corresponding projection coefficient. The estimated projection co-
efficient is used for a one-tailed t-test. The test — which is notably simpler
than other monotonicity tests — is applied to bidding data from Japanese con-
struction procurement auctions to empirically test first-price sealed bid auction
models with independent private values (IPV), assuming the data are generated
from a symmetric Bayesian Nash equilibrium. We regress the bid level on the
number of bidders and use the estimated projection coefficient for testing. We
find that the test results depend on public work categories.

1 Introduction

In economic theory, it is fundamental to distinguish the economic model describing
reality from both positive and normative perspectives. For instance in auction theory,
a bidder’s strategy depends on the auction’s environment and its rules. Thus, the
predictions of auction theory – including the optimal design of auctions – depend on
the modeling framework. For instance, if an auction environment is specified with the
common value (CV) paradigm, policies may be introduced by the auction designer to
minimize the impact of the “winner’s curse.” Even when the private values assumption
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is maintained, bidders may be less aggressive as the number of bidders increases,
assuming bidder valuations are affiliated in the sense of Milgrom and Weber (1982).
Deciding upon the applicable framework leads to improved policy and strategy advice.

Economists have derived testable implications of models to investigate the extent
to which the integrity of a proposed model is maintained when presented with actual
data. Monotonicity is a prominent qualitative feature of certain economic models
such as auction models.

In this paper, we develop a simple distribution-free test of monotonicity of con-
ditional expectations. The test is based solely on ordinary least squares (OLS) and
exploits the property between conditional expectation and projection which states
that the monotonicity of the conditional expectation function restricts the sign of
a projection coefficient. The test statistic is the t-value of an estimated projection
coefficient and we perform a one-tailed t-test, which is notably simpler than other
monotonicity tests.

Only a few studies or textbooks discuss the relational properties of these two con-
cepts in spite of their fundamental role in statistical analysis.1 The relation between
conditional expectation functions and projection coefficients is not simple because of
the functional form of the projection coefficients. However, if the monotonicity of a
conditional expectation function is established, the sign of a corresponding projection
coefficient represents the slope of the conditional expectation function.

Furthermore, we apply our test to data from Japanese procurement auctions to
investigate whether auction models of independent private values (IPV) can justify
the data. In procurement auctions, the bidder who submits the lowest bid wins the
contract. We consider a benchmark model of auction theory in which bidders are
risk neutral and engage in a symmetrical Bayesian Nash equilibrium (BNE) strategy,
which we call the standard IPV model. The model has a monotone relation between
bids and the number of bidders. We also consider an extension in which the set of
bidders is uncertain when the actual bidders form their bid. We refer to the standard
IPV model with this extension as the IPV model.

We assume that data are generated from the IPV model, and we empirically
investigate the relation between bids and the number of bidders by regressing the
bid level on the number of bidders in an auction. We focus on selective tendering,
in which bidders are selected by the auctioneer, to avoid considering strategic bidder
entry. In general, there is no fixed relationship between the bid level and the number
of bidders. However, in the standard IPV model, the average bid must decrease

1Wooldridge (2002), Angrist and Pischke (2009), and Hansen (2016) provide a lengthy argument
on this topic. Our discussion in Section 2.2 below parallels the one in these books.
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as the number of bidders increases.2 After controlling for auction heterogeneity, a
positive coefficient for the number of bidders indicates the rejection of the standard
IPV model. A negative coefficient indicates that the standard model survives and
might yet potentially justify the observations.

The test uses a reduced form equation related to an equilibrium bid function. The
analysis is nonparametric, i.e., there is no parametric assumption on the distribution
of bidder costs and the form of conditional expectations regarding bids. Reduced
form coefficients have no exact correspondence to the structural model but are in
some sense sufficient to represent the IPV models.

Tests of monotonicity have been studied in the last twenty years. Ellison and
Ellison (2011) exploits the monotone relationship to investigate strategic entry deter-
rence. Gutknecht (2016) employs a second-order U-process to develop a consistent
test. For other works in the literature, see the reference in Chetverikov (2013) and
Gutknecht (2016). Our test is much simpler and allows multiple explaining and
omitted variables at the cost of a limitation described later.

Previous surveys by Hendricks and Paarsch (1995) and Laffont (1997) classify
the empirical analyses of auctions into theory testing and structural estimations of
auction models.3,4 The literature on theory testing has a longer history but has been
thin in recent years, whereas the structural estimation literature has expanded as the
result of methodological developments and increases in computational resources (see
Laffont et al. (1995), Guerre et al. (2000)).

As Athey and Haile (2007) note, although various theoretical implications that
can be used to construct formal tests have been derived, there are only scant test
studies. The research by Hendricks et al. (2003) is a careful and persuasive positive
study questioning whether game theory can explain real bidding behavior, but their
tests are not formal in the sense of statistical inference. On the other hand, we can
perform a formal test.

The number of bidders has been considered in the context of common value mod-
els in which focus has been placed on the “winner’s curse.” In common value auctions,
winning suggests that the winner overestimated the true value of the object. More-
over, if the winner is myopic and does not consider this update, the winner loses
benefits, a phenomenon that is referred to as the “winner’s curse.” However, auction
theory assumes that rational bidders take the winner’s curse into account and bid

2Note that this is a statement about buying by the auctioneer such as procurement. In the case
of selling, a larger set of bidders leads to higher bids.

3Another approach comparable to the auction theory approach is the decision theoretic approach.
4Note that in principle, both are complementary. We can develop various specification tests

based on statistics obtained by structural estimation.
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smaller amounts, thus implying that the bid level tends to fall as the number of
bidders increases, i.e., auctions become less competitive. This prediction is sharp,
counter-intuitive and seemingly easy to test with available data and a simple regres-
sion analysis.

To the best of our knowledge, this study is the first to test IPV models using the
number of bidders and every bid from the auctions. The literature testing IPV models
is extremely limited compared with studies regarding the winner’s curse. Empirical
auction research should be interested in the extent to which the benchmark IPV
framework is maintained because identification and estimation procedures are well
established in IPV models when proceeding to structural analysis. Moreover, this
study is the first to use a one-sided t-test for auctions.

Related auction studies include Gilley and Karels (1981), Brannman et al. (1987),
Thiel (1988), Levin and Smith (1991) and Hendricks et al. (2003), while the more
recent literature includes Boone and Mulherin (2008) and Tse et al. (2011). Gilley
and Karels (1981) applied a decision theory approach to develop a statistical model
and controlled the participation of potential bidders by employing a sample selection
correction technique. These authors tested the “pure” common values model with the
data from an outer continental shelf (OCS) petroleum lease sale, revealing that bid-
ders are less competitive as their numbers increase. Brannman et al. (1987) appears
to be the only study investigating the relation between the number of bidders and
the bid level in the context of the IPV model. These authors used only winning bids,
whereas we include all bids. The use of only winning bids is too restrictive for testing
the IPV model. Moreover, we provide a formal interpretation by establishing the
relation between the projection coefficients and the conditional expectation function.

In OCS auctions, it is natural to specify auctions with common value models and
employ the Hendricks and Porter framework (Hendricks et al. (1994, 2003)). However,
in procurement auctions, it is less clear which model should be used (e.g., Hong
and Shum (2002), Thiel (1988)). A handful of studies employ the IPV framework,
although recent works extensively consider entry.

Guerre et al. (2000) and Athey and Haile (2002, 2007) propose more tests of the
IPV model that rely on structural estimates, such as the estimated distribution of
bidder valuations. However, our simple test serves as an initial tool to validate the
standard IPV auction model.

The remainder of this study is organized as follows. In Section 2, we discuss the
monotone relationship between conditional expectation and projection. In Section
3, our test is developed. Section 4 reviews auction theory related to this research.
Section 5 explains the data. Section 6 presents the econometric model and the test.
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The empirical results are presented in Section 7. Section 8 concludes.

2 Monotonicity of Conditional Expectation and Pro-

jection

In this section, we discuss the relation between conditional expectation and projec-
tion. We first focus on the univariate case for simplicity but the argument below is
easily extendable to the multivariate case (see Section 3.1.). Let y and x be ran-
dom variables satisfying the assumption of the finite second moment: E[x2] < ∞
and E[y2] < ∞ (and invertible covariance matrix in the multivariate case). The
projection of y on x, denoted as L[y|x], is written as follows:

L[y|x] ≡ γ0 + γ1x

where γ0 and γ1 are the projection coefficients. There exists a unique projection error
η such that

y = L[y|x] + η

and E[η] = E[xη] = 0. Let E[y|x] be the conditional expectation of y on x. There
exists an unique error ε such that

y = E[y|x] + ε

and E[ε] = E[ε|x] = 0. The only one that relates the two is the following:

L[y|x] = L[E[y|x]|x]. (1)

We reinterpret this law of iteration from the point of view of the linear approximation
of functions.

Let m(x) ≡ E[y|x]. We consider a strictly increasing m as a benchmark case but
the argument is easily applicable to nondecreasing/increasing or strictly decreasing
cases. We prove that if m is strictly increasing, then γ1 > 0. This result is intuitively
clear but not easy to prove in the case of multiple explanatory variables as is shown
below. If we assume the linearity in conditional expectation, i.e., E[y|x] = α0 + α1x,
the statement is clear, but this imposes a severe restriction on the joint distribution
of (x, y). Essentially, no assumption on the distribution is imposed if only projection
is considered.
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2.1 Linear Approximation of a Function

Definition 1. Let f be a function to be approximated. Let g(x) = γ0 + γ1x be a
linear function. Then, g is said to be a linear approximation of f over [a, b] with
respect to F if (γ0, γ1) minimize∫ b

a

(f(x)− g(x))2dF (x) =

∫ b

a

(f(x)− γ0 − γ1x)2dF (x)

where F is a nondecreasing and right-continuous function. Moreover, g is said to be a
(global) linear approximation of f if g is a linear approximation of f over the domain
of f .

This indicates that the distance between a function f and a linear function g is
minimized. This is a special case of least squares approximation of functions. We
can contrast this with a Taylor approximation, which is essentially a local approach
with tangent lines. In the linear approximation, we take an average over [a, b].

2.2 Conditional Expectation and Projection

Next, we review the result that the projection L[y|x] is a linear approximation of the
conditional expectation E[y|x]. Recall that the coefficients γ = (γ0, γ1) in L[y|x] =

γ0 + γ1x1 are a solution to

min
(c0,c1)

E[(y − c0 − c1x)2].

On the other hand, from equation (1),

L[y|x] = L[E[y|x]|x] = L[m(x)|x].

Thus, γ is a solution to

min
(c0,c1)

E[(m(x)− c0 − c1x)2] = min
(c0,c1)

∫
(m(x)− c0 − c1x)2dF (x)

where F is the cumulative distribution function of x. Hence, the projection L[y|x] is
a linear approximation of the conditional expectation E[y|x] with respect to F .

2.3 Monotonicity

We prove the key original result stating that if m(x) is strictly increasing in x, then
γ1 > 0. An algebraic approach does not work to prove this property because γ =
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E[xx′]−1E[xy] (γ = (γ0, γ1, . . . γk)′ and x = (1, x1, . . . xk)′) is complicated in the
multivariate case (k ≥ 2) and it is not clear how to use the formula (a system of
linear equations) to prove γ1 > 0. If there is only one explanatory variable (k = 1),
the result may be easy. The formula in this case is

γ =

(
γ0

γ1

)
=

(
E[y]− Cov(x,y)

V ar(x)
E[x]

Cov(x,y)
V ar(x)

)
.

If you establish the covariance Cov(x, y) is positive, then γ1 > 0. However, if k ≥ 2,
we cannot rely on this approach. Let x = (1, x1, x2)

′ and suppose we need to prove
γ1 > 0. Then

γ =

 γ0

γ1

γ2

 = E

 1 x1 x2

x1 x21 x1x2

x2 x1x2 x22


−1 E[y]

E[x1y]

E[x2y]

 .

As is observed from the formula above, γ1 has a complicated form and it is difficult to
utilize this expression for the proof. We rely on a more visual and intuitive approach
using basic calculus.

Theorem 1. Let f be a strictly increasing function defined on [a, b]. Let g(x) =

γ0 + γ1x be a linear function. If g is a linear approximation of f , γ1 > 0.

Proof. The first order conditions with respect to γ0 and γ1 yield the two equations
below: ∫ b

a

(f(x)− γ0 − γ1x)dF (x) = 0

and ∫ b

a

x(f(x)− γ0 − γ1x)dF (x) = 0.

If γ1 ≤ 0, there exists c ∈ [a, b] such that f(x)−g(x) ≤ 0 for [a, c] and f(x)−g(x) ≥ 0

for [c, b]. From the first equation,∫ c

a

(f(x)− g(x))dF (x) +

∫ b

c

(f(x)− g(x))dF (x) = 0.
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Then, given f(x)− g(x) > 0 for x > c,∫ b

a

x(f(x)− g(x))dF (x) =

∫ c

a

x(f(x)− g(x))dF (x) +

∫ b

c

x(f(x)− g(x))dF (x)

= k1

∫ c

a

(f(x)− g(x))dF (x) + k2

∫ b

c

(f(x)− g(x))dF (x)

= k1

(
−
∫ b

c

(f(x)− g(x))dF (x)

)
+ k2

∫ b

c

(f(x)− g(x))dF (x)

= (k2 − k1)
∫ b

c

(f(x)− g(x))dF (x)

> 0

where k1 and k2 are constants satisfying a < k1 < c < k2 < b whose existence is guar-
anteed by the first mean value theorem for integration. This inequality contradicts
the second equation of the first order conditions.

The same argument can be applied to the nonincreasing or nondecreasing cases
or the strictly decreasing case. Finally, we have the following result.

Theorem 2. If the conditional expectation E[y|x] is nondecreasing (nonincreasing)
in x, the projection coefficient of x is nonnegative (nonpositive). If the conditional
expectation E[y|x] is strictly increasing (decreasing) in x, the projection coefficient of
x is positive (negative).

3 Hypothesis Testing of Monotonicity

The result above is used to construct a test of monotonicity. Again, letm(x) ≡ E[y|x]

and γ0+γ1x = L[y|x]. If m is strictly increasing, then γ1 > 0, and the test is specified
below:

H0 : γ1 > 0 versus H1 : γ1 ≤ 0.

The null is that the coefficient of the variable of interest is positive.5 Rejection
of the null implies rejection of the hypothesis that the function is strictly increasing.
“Acceptance” of the null implies the possibility of the conditional expectation function
being strictly increasing.

5If m(x) is nondecreasing, then γ1 is nonnegative, and the test is H0 : γ1 ≥ 0 H1 : γ1 < 0. If
m(x) is strictly decreasing, then γ1 is negative, and the test is H0 : γ1 < 0 H1 : γ1 ≥ 0. If m(x) is
nonincreasing, then γ1 is nonpositive, and the test is H0 : γ1 ≤ 0 H1 : γ1 > 0.
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Figure 1: Conceptual diagram of models and tests
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This is only a one-tailed t-test. The information required to implement this test
is the estimate of projection coefficient γ1 with its standard error. Let γ̂1 be the
projection estimate of γ1, SE[γ̂1] be the standard error of γ̂1, and t[γ̂1] = γ̂1/SE[γ̂1]

be the t-value. The p-value of the test is given by p[γ̂1] = Φ (t[γ̂1]), where Φ is the
CDF of the standard normal distribution. For example, with a significance level
α = 0.05, if t[γ̂1] < −1.645, the null is rejected.

In short, once we establish the monotonicity of conditional expectations, we can
test the monotonicity with a one-tailed t-test. This is the simplest formal test for
monotonicity.

We discuss the implication of the test result with its limitation. The implication
is obvious in rejection. The function cannot be strictly increasing. On the contrary,
“acceptance” adds nothing in general, which is the difference between our test and
other consistent (asymptotic power 1) tests. The function can be strictly increasing,
but the results provide no additional information about distinguishing the two. For
our purpose of testing auction models, however, this limitation is not a crucial fault,
as we discuss later.

The argument above is more easily understandable with a Venn diagram. See
Figure 1. The left box is the set of models which can possibly explain the data.
“Models to be Tested” is the models of interest to be tested. “Monotone” is the set of
models which implies monotonicity. “Null” is the set of models which implies the null
hypothesis. “Nullc” is the complement of “Null”. The right box named “Data” is the
range of test statistics which has “Acceptance” and “Rejection” region. For example,
if the null of a test is H0 : γ1 > 0 with a significance level α = 0.05, “Data”= R,
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“Rejection”= (−∞,−1.645), and “Acceptance”= [−1.645,∞).
Suppose the set of competing models lies in “Monotone”, “Null”, and “Nullc”. In

our test, the correspondence between the models and the regions of the test statistic
is expressed with the solid lines. If the value of the test statistic is in the “Acceptance”
region, the true model is in “Null”. While the models of interest can be true, the true
model needs not be monotone and can be a competing model. If the data yields
rejection, the true model is in “Nullc” and the model of interest cannot be true. With
a consistent test, the correspondence between the models and the regions of the test
statistic is expressed with the dashed lines. If the value of the test statistic is in the
“Acceptance” region, the true model must be monotone. Note that competing models
which also imply monotonicity can be true. In the case of rejection, the true model
is in the complement of “Monotone” and the model of interest cannot be true.

3.1 Multivariate Case

Our test is extendable to a multivariate case paralleling the above argument. Let x =

(x1, . . . , xA) and z = (z1, . . . , zB). Suppose f(x, z) is strictly increasing in each xj for
all x−j and z, where x−j = (x1, . . . , xj−1, xj+1, . . . , xA). Then, a linear approximation
of f is presented as

g(x, z) = γ0 + γ1x1 + γ2x2 + · · ·+ γAxA + γA+1z1 + · · ·+ γA+BzB

and γj > 0 (1 ≤ j ≤ A). With this expression, E[y|x, z] and L[y|x, z] have the same
relation as the two in the univariate case, and we have a test

H0 : ∀j ∈ {1, . . . , A} γj > 0 and H1 : ∃j ∈ {1, . . . , A} γj ≤ 0.

The test statistic can be constructed from {γj}(1≤j≤A) (See Kodde and Palm (1986)).

4 Auction Models and Implications

We apply our test to specification testing of the IPV auction model. Before proceeding
to the application, we review auction models to derive a testable implication.

Let {1, 2, . . . , n} be the set of bidders where n ≥ 2. An indivisible contract is
auctioned in a first-price sealed bid auction in which the lowest bidder wins the
contract. Let x ∈ [0, x] be the privately known cost of completing the contract for
a bidder. The private cost of each bidder is drawn from a common distribution
whose absolutely continuous cumulative distribution function is denoted as F . In
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other words, bidders are ex-ante symmetric. In addition, the structure of the game
is common knowledge among bidders.

We focus on a standard symmetric Bayesian Nash equilibrium. The equilibrium
bid β is given by

β(x;n) = x+

∫ x

x

(1− F (t))n−1

(1− F (x))n−1
dt.

Taking the difference with respect to the number of bidders n, we have

β(x;n+ 1)− β(x;n) =

∫ x

x

(
1− F (t)

1− F (x)
− 1

)
(1− F (t))n−1

(1− F (x))n−1
dt.

Because

1− F (t)

1− F (x)
− 1 ≤ 0

for x ≤ x, and x ≤ t, we conclude that

β(x;n+ 1) < β(x;n)

for all x ∈ [0, x] and n ≥ 2. This finding supports the intuition that more competitors
lead to more aggressive bids. Hence, FB|n, the cumulative distribution function of
bids conditional on the number of bidders being n, first-order stochastically dominates
FB|n+1 and

E[B|n] > E[B|n+ 1]

for all n ≥ 2, where B is a bidder’s bid. The test proposed in this study relies on
the latter property. If bid B is regressed on the number of bidders n, the coefficient
should be negative. This is a testable implication of the standard first-price auction
model with IPV.

4.1 Unknown Number of Bidders

In addition to the standard model, we also consider the unknown number of bidders
model because in the application, we use data that contain (possibly) both types
of auctions. Some auctions are conducted with the set of bidders hidden prior to
bidding. However, it is impossible to distinguish based on the data which auctions
disclosed the list of bidders prior to bidding.

The study of auctions with the unknown number of bidders was started by McAfee
and McMillan (1987) and Harstad et al. (1990) and generalized by Myerson (1998)
and Milchtaich (2004). We use the simple property that when the number of bidders
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is not known to each other, then bidder’s strategy cannot depend on the number of
bidders. We follow Harstad et al. (1990) for the description of the unknown number
of bidders model.

The number of actual bidders na is uncertain and stochastic at the time of bidding
in this case. Let p(na) be the ex ante probability of the number of actual bidders
being na. Each bidder is assumed to be selected symmetrically; in other words,
each potential bidder is selected with an equal probability conditional on na. The
probability that the number of other actual bidders is ña for an actual bidder p̃(ña)

is
p̃(ña) =

nap(na)∑N
k=1 kp(k)

(na = ña + 1)

where N is the number of potential bidders. The unique symmetric equilibrium
strategy is as follows:

β∗(x) =
n∑

k=1

wk(x)β(x; k)

where β is given before and

wk(x) =
F (x)k−1p̃(k)∑
i F (x)i−1p̃(i)

.

Note that β∗ does not depend on the number of actual bidders.

4.2 Unobserved Heterogeneity

Unobserved heterogeneity has received much attention in recent years (e.g., Arcidi-
acono and Miller (2011), Shiu and Hu (2013)). In empirical auction analysis, Kras-
nokutskaya (2011, 2012) consider a specific functional form for the observable and
unobservable components of auctions. Roberts and Schlenker (2013), Aradillas-López
et al. (2013), Armstrong (2013), and Hu et al. (2013) consider a more general func-
tional form. Unobserved heterogeneity in auction is omitted variables which are ob-
served by the bidders but not by the econometrician. We discuss an omitted variable
problem in a general context.

Let x be the variable of interest, z be the other observable conditioning variables
including the intercept and w be the omitted variable.6 Suppose E[y|x, z, w] is strictly
increasing in x for all z and w. The law of total expectations yields that

E[y|x = x0, z = z0] =

∫
E[y|x = x0, z = z0, w = w0]fw|x,z(w0|x0, z0)dw0

6We assume here that x and w are scalar random variables and z is a vector of random variables,
but we are able to consider a more general case of all variables being a vector.
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where fw|x,z is the PDF of w conditional on (x, z). Though an increase in x shifts
the integrand E[y|x, z, w] upward, this also changes the weight fw|x,z and the mono-
tonicity in x does not hold in general. Hence, our test cannot be applied without
additional assumptions or data. One possible condition to guarantee the monotonic-
ity is the coincidence of the shift direction of E[y|x, z, w] and fw|x,z: if E[y|x, z, w] is
increasing in w for all (x, z) and E[y|x, z, w] and fw|x,z move in the w-direction as x
increases for all z, this would imply the monotonicity of E[y|x, z] in x.

Another approach is a more basic one using the omitted variables argument in
OLS estimation. Let the projection of y on (x,w, z) be

y = γxx+ z′γz + γww + ε. (γx > 0)

On the other hand, the projection of y on (x, z) is written as follows:

y = αxx+ z′αz + η.

Then (
αx

αw

)
=

(
γx

γw

)
+ E

[(
x

w

)(
x

w

)′]−1
E

[(
x

w

)
z′

]
γz.

If x is uncorrelated with z, γx = αx and our test can be applied. If x is correlated
with z, we can use instrumental variables to correct for the omitted variables bias.

4.3 Other Models and Implications of the Test

When we perform descriptive (reduced form) analysis, we should be clearer about
what can be said based on the sign of coefficient estimates. It is generally difficult to
formally test specifications only from reduced form analysis in auction theory. One
exception is basic IPV models.

Previous studies that have empirically investigated common value auction models
typically use the number of bidders and the bid level to test the winner’s curse
effect. However, this approach tests the models in an informal way. Note that even
in common value models, the magnitude of the discouraging winner’s curse effect
cannot be easily determined. Although theory suggests that bids tend to be less
aggressive as the number of bidders increases, the competition effect may prevail,
and increasing the number of bidders in some cases leads to more aggressive bids.

Even in the private value models, bidders can be less aggressive as the number
of bidders increases when values are affiliated, as shown by Pinkse and Tan (2005).
Thus, rejection in the test does not necessarily imply that affiliated private values
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(APV) models are inappropriate.

5 Data

We employ publicly available data from the Kanto Regional Development Bureau
(KRDB) of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT).
The Japanese Regional Development Bureaus are responsible for managing trans-
portation and water infra-structure, parks, and public buildings in the nation.7 They
hold auctions for contracts of various types of construction, maintenance, and repair
projects involving roads, bridges, and public buildings. The KRDB covers Ibaraki,
Tochigi, Gunma, Chiba, Tokyo, and Kanagawa prefectures, and portions of Nagano
and Shizuoka prefectures.

The data on public works contract procurement auctions were obtained from the
KRDB. The data for each contract auction include the contract name, bid date,
category, the name office which offers the contract, and engineer’s estimate of the
contract, in addition to the bidder names and bids. We use selective tendering data
from 2005, in which the Japanese central government employed selective tendering for
procurement auctions of construction contracts for smaller public works contracts.8

The system subsequently moved toward an open bid format, and selective tendering
drastically decreased after 2005.

We restrict our attention to selective tendering because we must account for the
strategic entry of bidders in open tendering. In open tendering, we must distinguish
between potential bidders and actual bidders, and potential bidders typically cannot
be observed or are not easy to identify. In models with strategic entry, the rela-
tion between the number of actual bidders observed and the bid level may not be
monotone.9 By focusing on selective tendering, entry is much less important and the
possible model is closer to the benchmark, which enables us to test the IPV model
more accurately.

Table 1 reports summary statistics for the number of bidders and engineer’s esti-
mates of auctions. Table 2 is a frequency table of the number of bidders. Although

7Japan has eight Regional Development Bureaus, including the KRDB. For a more detailed
description of their work, see http://www.kkr.mlit.go.jp/en/.

8We focus on “pure” selective tendering (“tsujo shimei kyoso nyusatsu” in Japanese). In this
format, bidders who are not selected never bid. In addition, there are other selection formats
involving two-step selection processes.

9Note that even when the set of potential bidders is known to the econometrician, the test cannot
be applied because the relation between the number of potential bidders and the bid level may not
be monotone. Li et al. (2009) demonstrate that if a model considers strategic entry, bidders may
become less aggressive as the number of potential bidders increases, even in the IPV framework.
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these numbers range from 5 to 24, approximately 95% of auctions have 10 to 13 bid-
ders. The MLIT formally defines 21 categories for public works procurement while
the data include 18 construction categories with auctions and bids. Summary statis-
tics for the total number of contracts and bids for each category are included in Table
3. We focus on the categories in which the total number of bids exceeds 300.

6 Econometric Model and Testing

Now we describe our econometric model for testing. We include auction-specific
covariates zt of auction t described below, and we assume that bidder valuations are
drawn from a conditional cumulative distribution function F (·|zt). The econometric
model is

Btk = γ0 + γnumnumBidst + γestestt + γoffofficet + γmonmontht + ηtk (2)

where Btk is the bid of bidder k, numBidst is the number of bidders, estt is the
engineer estimate, officet is the managing office, montht is the month, and ηtk is the
projection error for auction t. The explaining variables constitute zt. Note that zt
has no bidder subscript because we consider the symmetric auction model and bidder
specific information is not used. Because we consider projection, E[ztηtk] = 0 but
E[ηtk|zt] 6= 0 in general. E[Btk|zt] is arbitrary and not generally linear. Equation (2)
is a linear approximation of the expected equilibrium bid conditional on zt.

The standard IPV model implies that γnum < 0. If the set of bidders is uncertain,
a bidder’s strategy cannot depend on the number of bidders. If we control auction-
specific covariates, the average bid does not depend on the realization of the number
of bidders, which means γnum = 0. Overall, the test can be organized as follows:

H0 : γnum ≤ 0 H1 : γnum > 0.

IfH0 is not rejected, the IPV model, which allows both cases of a known and unknown
set of bidders, is not rejected in and could justify the data. If H0 is rejected, the
IPV model cannot be justified based on the data and must be excluded from our
consideration.

We discuss implications from the test result as for the empirical analysis of auc-
tions. We compare two tests, one of which is ours and the other of which is a consistent
test such as the one by Gutknecht (2016). If the null is rejected in both tests, this
implies that the IPV model is not true with a same significance level. However, if
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the null is not rejected, this implies in our test that the IPV model survives as a
candidate to explain the data, but other competing models like the CV and APV
models also remain candidates. The “acceptance” result implies in the other test that
the hypothesis of decreasing function cannot be supported by the data because the
test has a power of 1, and we can more convincingly believe in the nondecreasing re-
lationship. However, the argument stops there. Note that in the CV or APV models,
the nondecreasing relationship is possible. In both tests, “acceptance” means the IPV
model is possible, but other possibilities like the CV or APV models cannot be ex-
cluded. Thus our test is sufficient for our purpose. In Figure 1, the model of interest
is the IPV model and the competing models include the CV and APV models.

7 Estimation Results

Using the above equation, we regress the bid level on the number of bidders, the
cost estimates, and dummies for offices and months in each selected public works
category. The OLS estimation results for each category are included in Table 4. Our
interest is in the columns “NumBids” and “p-value.” The “NumBids” column reports
the estimate of coefficient γnum, whereas “p-value” reports the p-value of the test.

We find that the estimation results vary by category. The coefficient of the engi-
neer estimate is significantly positive – as expected – but the values differ. The coef-
ficients of the number of bidders vary considerably, and even the signs are reversed.
In over half of the selected categories, the coefficient for the number of bidders is not
significant. This result may imply that the set of bidders is not disclosed in most
auctions in these categories. In categories 1 (public engineering), 5 (construction
engineering), 12 (coating work) and 20 (communication equipment installation), the
coefficients are significant. In categories 1, 5 and 12, the coefficients are significantly
negative, which implies that the IPV model is maintained. The bidders become ag-
gressive as their numbers increase. Our main focus is the p-value of the test. In
categories 4 (landscape gardening), 19 (machinery installation) and 20, the hypothe-
sis is rejected at the 10% significance level. In addition, the null is strongly rejected,
particularly in category 20.

The results imply that in these categories, the IPV model cannot be maintained.
The rejection implies that affiliated signals or common value components may explain
the results, or a violation of competitive bidding, such as colluding behavior, may have
occurred. Another possible explanation when assuming common value components
and the unknown set of bidders is that auction covariates are positively correlated
with the number of bidders and that bidders are less aggressive because of the high
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number of bidders expected. Moreover, there might have been unobserved auction
heterogeneity which reversed the sign of the true projection coefficient of the number
of bidders.

Finally, there is one caveat that must be stated regarding this interpretation of
the results. In Japanese procurement, the engineer’s estimate is treated as a secret
reserve price, whereby bids above it never win the contract and the value is hidden
prior to bidding. If we wish to evaluate the result in a more rigorous manner, we
need to establish the monotone relationship in the model of the secret reserve price.
Nonetheless, it is reasonable to conjecture that the monotone relationship holds in
this case and the empirical analysis provides meaningful results.

8 Conclusions

We have established a structural interpretation of projection coefficients and devel-
oped a simple distribution free test of monotonicity. We have applied our test to data
from Japanese procurement auctions to investigate whether auction models of IPV
can justify the data and find that in some public works categories, the IPV model
is rejected. The proposed test is simple and based solely on OLS, and it does not
require a specific restriction regarding the cost distribution.

The limitation of the approach in this study is that the test does not deeply
exploit the structure of the model. Thus, if the null is not rejected, there are many
other possible models and it is necessary to continue exploring to distinguish the
model’s structure. In our application, CV and APV models are possible regardless of
the test results. Unobserved heterogeneity may complicate the interpretation of the
results. Nonetheless, due to its simplicity, our test could serve as an initial tool for
an empirical analysis with both the structural estimation and the test of the theory.
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Table 1: Summary statistics

min mean s.d. median max N

Number of bidders 5 11.51 2.16 11 24 1032
Engineer estimates 2.86 39.70 25.76 32.86 96.00 1032

Notes: “Engineer estimates” is measured in millions of Japanese yen.

Table 2: Frequency of the number of bidders

Number of bidders Freq. Percent

≤ 9 15 1.45
10 372 36.05
11 237 22.97
12 145 14.05
13 223 21.61
14 ≤ 40 3.88
Total 1,032 100

Notes: This table reports the frequency of the number of bidders in auctions. The number
of bidders that are equal to or smaller than 9, and equal to or larger than 14 are aggregated
into “≤ 9” and “14 ≤”, respectively.
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Table 3: Total number of contracts and bids

Cat. No. Cat. Name Num. Cont. Num. Bids

1 Public engineering 177 2011
2 Paving work 34 410
3 Steel bridge superstructure work 3 35
4 Landscape gardening 56 638
5 Construction engineering 103 1225
6 Wooden building construction 0 0
7 Electrical work 36 426
8 Piping work 27 332
9 Cement concrete work 1 13
10 Prestressed concrete work 2 21
11 Slope surface treatment 8 98
12 Coating work 39 576
13 Maintenance and repair work 396 4466
14 Dredging work 5 53
15 Grouting work 0 0
16 Piling work 0 0
17 Well drilling work 1 13
18 Prefabricated building construction 2 24
19 Machinery installation 41 421
20 Communication equipment installation 80 888
21 Receiving and transforming facility installation 21 233

Notes: This table presents the total number of contracts and bids of selective tenders for
each category in 2005. “Cat. No.” indicates category number, which we assigned, and
“Num. Cont.” indicates the number of contracts.
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Table 4: OLS estimation results

Category NumBids S.E. Engineer est. S.E. p-value N

1 -0.320* 0.178 0.867*** 0.0221 0.964 2,011
2 -0.241 0.615 0.730*** 0.107 0.653 410
4 0.294 0.200 0.920*** 0.0272 0.0706 638
5 -0.993*** 0.294 0.849*** 0.0271 1 1,225
7 0.341 0.620 1.062*** 0.0602 0.291 426
8 1.487 4.302 0.907*** 0.179 0.365 332
12 -0.662* 0.360 0.777*** 0.0453 0.967 576
13 0.0291 0.103 0.846*** 0.0113 0.389 4,466
19 1.644 1.146 0.428*** 0.0860 0.0757 421
20 2.565*** 0.610 0.444*** 0.0524 1.29E-05 888

Notes: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respec-
tively. Standard errors are reported in the “S.E.” column. “NumBids” stands for the
coefficient of the number of bidders for each auction, and “Engineer est.” stands for the
coefficient of the reserve price. “p-value” indicates the p-value for the one-tailed t-test of
H0 : γnum ≤ 0 against H1 : γnum > 0. For all categories, months and offices are controlled
with dummy variables.
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