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Abstract

We construct a new method to describe firm distributions within tech-

nology fields and investigate the relationship between those distributions

and aggregate innovation. To locate firms in a technology space, we apply

multidimensional scaling for inter-firm technological dissimilarity, com-

puted from patent citation overlaps among firms. Our estimated firm dis-

tributions show, on average, increasing trends in technological distance

and polarization in the United States. We construct a model of inter-group

competition in which polarization stimulates aggregate R&D. The model

fits data before 1990; however, the impact of polarization reverses after-

ward, which is attributed to major US patent reforms in the 1980s.
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1 Introduction

Since Jaffe (1986) introduced technological distance (or proximity) between
firms using patent data to capture knowledge spillovers, researchers in eco-
nomics and innovation management have used it to estimate technological re-
lations among firms (Jaffe (1989), Rosenkopf and Almeida (2003), Benner and
Waldfogel (2008), Bloom et al. (2013), and so on). Primarily, they consider the
effect of accessible knowledge, estimated from firms’ positions in technology
spaces, on innovation, stock value, productivity, M&A, and alliances at the firm
level.

Unlike the firm-level impacts from technological distance in previous stud-
ies, this study estimates the distribution of firm positions in technological spaces
and investigates the relationship between the distribution shape and aggregate
innovation outputs. Our main question is as follows: What type of distributions
stimulates innovation? To see the key factors in answering this question, imag-
ine the three extreme distributions in a technological space as follows. First,
if most firms concentrate on a technological position, they unintentionally help
each other through knowledge spillovers. This is because one firm can learn
and facilitate new technology developed by another relatively easily, when they
are closely related.1 Second, the spillover effect is relatively small if we have
widespread firm distribution in a technology space. This is opposite to con-
centrated distributions.2 Lastly, and the most importantly, consider the middle.
Suppose we have a firm distribution in a technology space, such that there are
two poles, that is, concentration points, distant from each other.

A possible scenario associated with this type of distribution is inter-group

competition. Firms around each pole use distinct fundamental technologies and
they compete a race to become the (de facto) standard in the technology field.3 A
research output created in a technology group influences the group’s probability
of winning the race because it contributes to sophistication of the core technol-

1As we consider within-category relations between firms, the distance in the product market
tends to be low and only weakly depends on technological distance. Bloom et al. (2013) consider
both types of distances in a broad technology field.

2Knowledge spillover is not the only impact of technological distance in determining in-
novations. Closer relation may cause patent infringements that discourage R&D investment.
Diversity could be a virtue of widespread distributions (Weitzman (1998)).

3This scenario may be considered a race between technological trajectories or paradigms.
(cf. Dosi (1982))
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ogy and the spillover effect from the new idea remains confined in the same
technology group in which firms are close in technological distance. When a
technology group wins and dominates the market, firms in the other groups have
to change their technology management and the cost of losing is higher when the
winning group is technologically distant. Then, if two large groups are distant
from each other, each firm in one group has more incentives to innovate. Knowl-
edge spillover within the group enhances this effect because of the group’s large
size.

Several instances of competition for the de facto standard, such as the video-
tape format war between betamax and VHS, and between producers of operating
systems for computers, indicate the historical existence of technology groups
and inter-group competition. Open innovation strategies can induce technology
groups. A typical example is IBM releasing its software patents in 2005 and
inducing others to develop Linux. Recently, the Toyota motor company made
its fuel cell vehicle patents free for use to facilitate the entry of other firms,
an example of a firm trying to generate a technology group (TOYOTA Motor
Corporation (2015)). Our theoretical model shows how distributional statistics
(average distance, concentration, and polarization) relate to the average R&D in
each technology field.

Inter-group competition can be captured by the degree of polarization, devel-
oped in the series of papers by Esteban and Ray (Esteban and Ray (1994), Duclos
et al. (2004), and Esteban and Ray (2011)). Intuitively, high polarization occurs
when two distinct density masses (poles) have a large distance between them,
while low polarization occurs when a distribution has only one mass point, or if
the distribution is equally dispersed, like a uniform distribution. We extend the
continuous version of the polarization defined in Duclos et al. (2004) (referred
to as DER below) for two-dimensional spaces and apply it to firm distributions
in technology spaces. To our knowledge, this study is the first to apply their
formalization of polarization to R&D activities. An additional contribution of
this study is the extension of the one-dimensional polarization measure to two
dimensions.

Our main findings are as follows. First, we find that average technological
distance and average polarization have displayed upward trends in the United
States. Second, we estimate the impacts of polarization on the number of citation-
weighted patent applications. Our model of inter-group competition implies that
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polarization raises innovation. However, the model fits data only before 1990
and this impact reverses completely afterwards. The negative impact on patent
quality from polarization, only observed in the later periods, can explain this
reversion. Thus, we attribute the structural change to major patent reforms in
the United States in the 1980s, which changes institutions from anti-patent to
pro-patent, as the reform caused degradation of patent quality (Jaffe and Lerner
(2004)). This suggests that the desired distribution in a technology space de-
pends on institutions.

To obtain the distributions of firms in technology spaces, we use the two
methods by Stuart and Podolny (1996): patent citation overlaps and multi-dimensional
scaling, with major modifications. We choose patent citation overlaps to exam-
ine technological similarity, as this method allows us to observe the distribution
of firms within technological categories. Other standard methods utilize patent
portfolios, within-firm distributions of patents across categories (Jaffe (1986),
Jaffe (1989), Benner and Waldfogel (2008), Bar and Leiponen (2012), Bloom
et al. (2013), etc.); however, they are not suitable for considering changes in-
side the categories.4 As the original definition of citation overlap between two
firms in Stuart and Podolny (1996) is not independent of a third firm, we mod-
ify it to satisfy the independence of pair-wise similarity from the third firms, as
illustrated in the next section.5

Multidimensional scaling (MDS, hereafter) is a statistical tool to estimate
the location of entities by minimizing the sum of squared gaps between dissim-
ilarity and the resulting distance, when dissimilarities among entities are given.
Dissimilarity does not have to be a mathematical distance in MDS. MDS is not
popular in economics; however, it is a typical way to analyze relational data in
behavioral sciences (cf. Cox and Cox (2001)).

Data We use the NBER US patent dataset.6 The dataset provides information
on patents granted by the USPTO up to 2006. For patents granted after 1975, the

4Akcigit et al. (2013) define a measure based on patent-level technological distance using
overlaps of technology classes among citations to measure the misallocation of technology.

5Stuart and Podolny (1996) are interested in firms’ “local search” for a new technology.
Firms only have bounded information and tend to look at R&D activities of closely related firms.
Thus, they use the “community matrix,” developed in social psychology to describe personal
familiarity.

6http://www.nber.org/patents/. A detailed description of the dataset is in Hall et al. (2001).
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dataset supplies the citation list of each patent (only for those registered in the
US patent office). The dataset also provides information about changes in patent
ownership. Thus, we can identify the original inventors of technologies. Primar-
ily, we consider the two-digit classification defined in Hall et al. (2001), which
they call subcategories. We omit 6 “miscellaneous” subcategories out of 37 sub-
categories as they are not suitable for our purposes. The list of subcategories
is summarized in Table 7 in Appendix B. The NBER US patent dataset con-
tains firm identification numbers defined by Compustat for private firms, with
which we link the patent data to firm data. The technological distributions are
computed for 21 five-year moving windows such as 1976-1980, 1977-1981, ...,
1996-2000.7

The rest of the paper is organized as follows. Section 2 contains the de-
scription of the measurement methodologies, including citation overlaps, multi-
dimensional scaling, and two-dimensional kernel density estimation. Section 3
presents a simple model to connect polarization and R&D, and defines the de-
gree of polarization in a two-dimensional space. In Section 4, we investigate the
impact of polarization on innovation and Section 5 discusses our results.

2 Technological Distance among Firms in each Tech-
nological Category

As mentioned in the introduction, the traditional measures of technological dis-
tance are based on the patent portfolio vector of each firm, which contains infor-
mation about the within-firm distribution of patent holdings over technological
categories. For investigating firm distributions within categories, another type of
technological distance is needed. In this section, we construct a new measure of
technological (dis-)similarity among firms based on patent citation overlaps.

2.1 Citation Overlaps

The first-order citation overlaps between firm i and j are from patent citation
lists of the two firms within a period, say Pi and Pj. Since some patents are

7Stuart and Podolny (1996) also use five-year windows. Benner and Waldfogel (2008) rec-
ommend aggregating of patent data across years into five- or ten-year periods.
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Figure 1: Citation overlaps.

frequently cited by the same firm, the elements in each list is not unique in gen-
eral. We consider such a frequently cited patent as important for the firm. When
a citation overlap occurs at such an important patent, the overlap contributes
to technological closeness more than an overlap that occurred among one-time
cited patents.8 To incorporate this idea, we keep repetition in each citation list.
Define O(Pi,Pj) as the patents in Pi that overlap those in Pj with repetition (we
do not say “intersection” because the elements are not unique in general). The
first-order citation overlap, ω1

i j, is defined as

ω
1
i j ≡

∣∣O(Pi,Pj)
∣∣+ ∣∣O(Pj,Pi)

∣∣ , (1)

where |P| is the number of patents in a list, P. Figure 1 illustrates an exapmle
with Pi = {1,1,2,3,4} and Pj = {1,3,5}, where each number indicates a patent.
ω1

i j counts the patents in the shaded area.
Even though a citation does not directly overlap, it could be technologically

related indirectly. In the current example, patent 2 cited by firm i cites patent 5,
which is cited by firm j. Moreover, patent 4 in firm i’s citation list and patent
5 in firm j’s list cite the same patent 6. To capture these indirect overlaps, we
define the second-order overlaps.

Let P̃i j be the items of Pi that do not overlap Pj. Let Ci(p) be patent p’s

8For example, the citation list pair of {1,1,1,2} and {1} should be more overlapped than a
pair like {1,2,2,2} and {1}.
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citations but not included in Pi.9 The idea of the second-order overlap is that we
put a positive weight on pk ∈ P̃i j if pk cites a patent in P̃ji or a patent cited by any
patent in P̃ji. Thus, it consists of two components. The first component picks up
patents in P̃i j citing any of P̃ji,

ω
21
i j =

ni j

∑
k=1

∣∣O(Ci(pk), P̃ji
)∣∣

|Ci(pk)|
. (2)

ω21
ji is similarly defined.

The second component of the second-order overlaps considers the patents in
P̃i j that do not overlap P̃ji, say P̃′i j. Suppose P̃′i j contains n′i j items. Then check
whether each patent in P̃′i j cites any patent cited by patents in P̃ji,

ω
22
i j =

n′i j

∑
k=1

∣∣O(Ci(pk),C j
(
P̃ji
))∣∣

|Ci(pk)|
, (3)

where Ci(P)≡ {Ci(pk)}
n′i j
k=1, abusing notation. ω22

ji is analogous.
The total citation overlap index is the ratio of the sum of the above overlaps

to the total number of citations of both firms.

ωi j =
ω1

i j +η(ω21
i j +ω21

ji )+η2(ω22
i j +ω22

ji )

|Pi|+
∣∣Pj
∣∣ , (4)

where η ∈ (0,1). We interpret η as the discount factor of technological relevance
as generations go back. If a new technology is a child of citations, parent level
relations are more significant than relations among grand parents. Note that
ωii = 1, ωi j ∈ [0,1] and, ωi j = ω ji.

Example Suppose that Pi = {1,1,2,3,4} and Pj = {1,3,5} as in Figure 1. The
first-order overlap is the number of common patents, namely ω1

i j = |{1,1,3}|+
|{1,3}| = 5. Next, look at the patents in Pi that do not overlap Pj, P̃i j = {2,4}.
We put some weights for the patents in P̃i j according to the relations with P̃ji =

{5}.
Suppose that patent 2 cites patent 5 and 7, patent 4 cites patents 3 and 6,

9This elimination is reasonable to avoid overevaluation of similarity. If we use all citations
of p in calculation and if some citations are included in the first-order overlaps, we add relation
between firm i’s own citations on different levels.
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and patent 5 cites patents 6 and 8. Since we eliminate patents overlapped on the
first-order stage, Ci(2) = {5,7}, Ci(4) = {6}, and C j(5) = {6,8}. Then,

ω
21
i j =

∣∣O(Ci(2), P̃ji
)∣∣

|Ci(2)|
+

∣∣O(Ci(4), P̃ji
)∣∣

|Ci(4)|
=

1
2
.

Similarly, ω21
ji = 0. The second component of the second-order overlap is de-

fined for patents with zero weight in calculation of ω21. In the current example,
P̃′i j = {4} and P̃′ji = {5}. Look at whether patent 4’s citations overlap citations
of patent 5 (excluding overlapped patents at the first-order level). Here,

ω
22
i j =

∣∣O(Ci(4),C j(5)
)∣∣

|Ci(4)|
= 1 and ω

22
ji =

∣∣O(C j(5),Ci(4)
)∣∣∣∣C j(5)

∣∣ =
1
2

Finally, the total overlap index is defined as

ωi j =
5+η(1

2 +0)+η2(1+ 1
2)

3+5
,

with some constant η ∈ (0,1).

Surely, we can define third- or higher-order overlaps but they require te-
dious computations. On the other hand, first-order overlaps do not give us much
information about similarity of firms because there are not many direct cita-
tion overlaps, especially before the mid-1980s.10 Hence, we use the first- and
second-order overlaps.

The citation overlap index defined in (4) is an index of technological similar-
ity. We transform the citation overlap index such that

di j =− log(ωi j), (5)

as long as ωi j > 0. di j is nonnegative, symmetric, dii = 0 but the triangle inequal-
ity does not hold. Thus we call it technological dissimilarity rather than distance.
We will explain how to deal with pairs with ωi j = 0 in the next subsection.

Technological dissimilarities are defined in each subcategory and in each pe-
riod (five-year window), τ . Dτ is the matrix of di j, where firm i and j applied for

10The average number of citations in a patent dramatically increases during the 1980s. See
Hall et al. (2001).
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at least one patent (which is granted later) in the current subcategory during pe-
riod τ . We omit the subscript indicating subcategories for notational simplicity.

We also calculate dynamic citation overlaps in each subcategory. A firm in
period τ−1 has a citation overlap index with firms in period τ (often including
the same firm). We calculate the citation overlaps in the same way, derive dτ−1,τ

i j

as the dissimilarity between firm i in period τ − 1 and firm j in period τ , and
define D̂τ−1,τ as the dynamic dissimilarity matrix.

The overall dissimilarity matrix, Dτ , for τ ≥ 2 is

Dτ ≡

 Dτ−1 0

D̂τ−1,τ Dτ

 , (6)

where

Dτ =



0 0 . . . 0

dτ
2,1 0 . . . 0

dτ
3,1 dτ

3,2
. . . 0

...
... . . . ...

dτ
nτ ,1 dτ

nτ ,2 . . . 0


, D̂τ−1,τ =



dτ−1,τ
1,1 dτ−1,τ

1,2 . . . dτ−1,τ
1,nτ−1

dτ−1,τ
2,1 dτ−1,τ

2,2 . . . dτ−1,τ
2,nτ−1

...
... . . . ...

dτ−1,τ
nτ ,1 dτ−1,τ

nτ ,2 . . . dτ−1,τ
nτ ,nτ−1


,

where nτ is the number of firms. We define Dτ as a lower triangular matrix
because it has full information from symmetry.

2.2 Mapping Firm Locations: Multi-dimensional Scaling

Now we estimate the distribution of firms in technological spaces by using the
dissimilarity matrix defined in the previous subsection. As in Stuart and Podolny
(1996), we estimate firm locations by multi-dimensional scaling (MDS) with 2
dimensions.11

MDS estimates a distribution of firms such that the pairwise distances among

11When we apply one-dimensional MDS to our dissimilarity matrixes, we obtain the average
stress of 0.55 whereas two-dimensional MDS returns 0.37 on average. This is a large gain of
accuracy.
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firms are consistent with the original dissimilarities. More precisely, it estimates
the distribution to minimize the stress, S, defined as

S =

[
∑

n
i=1 ∑

n
j>i wi j(δi j−di j)

2

∑
n
i=1 ∑

n
j>i wi jd2

i j

] 1
2

, (7)

where δi j is the Euclidean distance between estimated positions of firm i and j

in a two-dimensional space and wi j is a weight.
We estimate the distribution of firms in a technological space by a dynamic

procedure. First, we run MDS over the first five-year window, τ = 1 (1976-
1980 except subcategory 33 (biotechnology), which starts with 1986-90 because
only a few firms apply patents in this subcategory until the late 1980s.), with the
dissimilarity matrix, D1.12 Let X1 be the resultant distribution of firms. Next,
to find the locations of firms within the second five-year window, we consider
a dissimilarity matrix, D2 defined in (6) and run MDS under the constraint that
the locations of firms within the previous five-year window, X1, are fixed. The
initial distribution of the MDS procedure at this stage consists of X1, which is
predetermined, and a random distribution of firms in τ = 2. Since the outcome
contains both X1 and X2, we omit X1 to get X2. This process is repeated until the
final five-year window.

Since infinite dissimilarity (or ωi j = 0) cannot be processed by the MDS
procedure, the standard code for MDS ignores such information and allocates
random distance without any restriction.13 In our procedure, we dropped firm
i if ωi j = 0 for any j.14 Even after we dropped all firms that do not have any
technological relatives, it is not rare to have some ωi j equals zero. For such pairs
of firms, we impose the following constraint in our MDS procedure:

(wi j,di j) =

(1,− log ω̄i j) if δi j <− log ω̄i j,

(0,not defined) otherwise,
(8)

12Since MDS is sensitive to initial distributions, we repeated the MDS procedure 100 times
with random initial distributions and selected the outcome with the smallest stress. The initial
distributions are generated by a bivariate normal distribution with mean (0,0) and the same
standard deviation vector as Dτ . We also used 100 random distributions for MDS in the later
stages.

13Our code is based on mdscale.m contained in Matlab Statistics Toolbox.
14The ratio of firms dropped is about 5-6% on average. It varies across categories and de-

creases over time.
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where
ω̄i j ≡

2
|Ci|+

∣∣C j
∣∣ . (9)

In words, the weight on di j is zero and relative locations of firm i and j are
randomly determined as long as the resulting distance δi j is not shorter than the
threshold level, − log ω̄i j, where ω̄i j is the first-order overlap as if they have just
one direct citation overlap. But once δi j is closer than the threshold level, the
weight is set at 1 and a positive value is added to the stress, (7), according to the
gap from the threshold.15

Figure 2 is an example of firm distribution estimated by MDS for mutually
exclusive five-year windows. The five panels in the top row are firm distribu-
tions in each five-year window. The panels in the bottom row draw contours of
estimated densities of those firm distributions by using kernel density estimation
(lighter color indicates greater density). We estimated these distributions for all
subcategories and all five-year moving windows in the sample.

MDS estimates distances among entities and generates a map satisfying these
distances. The stress defined in (7) is neutral for rotation and inversion of the
whole map. Since we consider the dynamic dissimilarity matrix to bridge dif-
ferent five-year windows, the orientations are anchored by distributions in the
previous five-year windows. However, notice that the axes in Figure 2 do not
have any meaning. Firms are just distributed with the estimated relative posi-
tioning.16

2.3 Average Dissimilarity and Distances after MDS

Figure 3 shows the average dissimilarity and the average post-MDS distance
among subcategories. The weighted dissimilarity/distance are a weighted aver-
age of those with weights of a number of firms in each category. The figure tells

15One may consider that di j = 1−ωi j is a natural definition of the technological dissimilarity
without constraints like (8). However, it is too restrictive in that a pair of firms without overlaps
has a constant dissimilarity of 1. Since more than 70% of pairs of firms have ω = 0 in our sample,
attaching an arbitrary constant dissimilarity to those pairs results in firm distribution that almost
ignores observed positive ω’s. Instead, we assumed that patent citation overlaps only provide
partial information about technological dissimilarity. This is partly because only granted patents
are recorded in the dataset, not all technology is patented, and technological relationships are
not observed up to second-order overlaps. The constraint (8) introduces varying thresholds and
randomness to take into account unobserved technological relations.

16The figures for other subcategories and year windows are available upon request.
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Figure 2: Example of post-MDS firm distribution. Technological subcategory
46 (Semiconductor devices). The top row is the MDS result and the second
row is the contours of the estimated density by two-dimensional kernel density
estimation.

us that the average technological distance in technology fields has been getting
larger over time.

This fact does not specify changes in the distribution of firm location on tech-
nological maps. Figure 4 draws two examples of distributional changes when
the average distance increases. The distribution may simply become more frag-
mented with a higher standard deviation. Alternatively, the original distribution
is split into two humps, that is, there are two poles and technological groups
emerge around those poles.

3 Polarization

3.1 A Simple Model for Inter-group Competition

Esteban and Ray (1994) presents the fundamental idea of polarization. Their
definition of the measure of polarization on one-dimensional distribution is pro-
portional to

m

∑
i

m

∑
j

n1+α

i n jδi j, α ∈ [0.25,1], (10)

where i, j = 1,2, ...,m are groups, ni is the share of group i, and δi j is the distance
between groups. To capture inter-group competition, both homogeneity within a
group and heterogeneity across groups should be accentuated because a conflict
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Figure 3: Average dissimilarity/distance.

tends to be harsh when there are two large distant groups. Polarization defined in
(10) satisfies these requirements, whereas inequality measures such as the Gini
coefficient and the Herfindahl-Hirschman index (HHI) accentuate only one of
those aspects. Esteban and Ray (2011) construct a model of group contests and
describe how the overall efforts depend on the degree of inter-group competition
and show that the combination of Gini, HHI, and polarization explain severity
of conflicts well.

We apply this polarization measure to the distribution of firms by interpret-
ing group contests as R&D races for becoming a dominant technology. Suppose
that each technological category corresponds to an industry. Intra-group homo-
geneity matters because the probability of winning a race is higher and, more-
over, more knowledge spillovers are likely in the future if more applications
are created by firms with the same fundamental technology. At the same time,
inter-group heterogeneity matters because firms in one technological group have
more incentive to make R&D to win the race when they have rivals which are
technologically distant because losing firms will pay greater cost to catch up the
winners’ technology to survive.

Suppose there are m≥ 1 technology groups that compete a race for standard
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Figure 4: Examples of changes in distribution, given an increase in the average
distance.

in a technology field. The number of firms in group i is Ni. Denote N = ∑
m
i=1 Ni

and ni =
Ni
N . Let rih be research done by firm h in group i and 1

2r2
ih is its cost.

Probability of winning the race for group i is

pi =
Ri

R
, (11)

where

Ri ≡

[
Ni

∑
h=1

r
1
ε

ih

]ε

−ψ

Ni

∑
h=1

rih, ε ≥ 1, ψ ∈ (0,1), (12)

R≡
m

∑
i=1

Ri.

Ri is the group-level aggregation of R&D. We consider a complementarity among
R&D activities within groups, which is represented by ε ≥ 1. However, the com-
plementarity effect is weaken by duplication of research. Thus, some portion of
research do not contribute to the aggregate R&D. Parameter ψ stands for the
degree of duplication.

The expected payoff function for firm h in group i has three component. The
first component is the profit when the fundamental technology of group i be-
comes the standard in the industry. We assume that the winning group grabs the
whole demands in the market, so that firms in losing groups earn no profit. We
assume the profit of firms in the winning group is π̄

ni
. The second component

comes from catch-up cost when a rival group wins. If group j wins, firms in
group i switch their own fundamental technology to the winning technology to
survive in the market. The catch-up cost depends on how different their tech-
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nologies are. Let δi j be the technological distance between the two group and
S(δi j) be the switching or catch-up cost. S is strictly increasing and S(0) = 0.
The third component is the cost of R&D. In sum,

πih(rih) = pi
π̄

ni
−

m

∑
j=1

p jS(δi j)−
1
2

r2
ih,

=
π̄

ni
−∑

j 6=i
p j

[
π̄

ni
+S(δi j)

]
− 1

2
r2

ih. (13)

Define

∆i j =

0, for j = i,
π̄

ni
+S(δi j), for j 6= i.

(14)

Then, we write the maximization problem for firm h in group i as

max−
m

∑
j=1

p j∆i j−
1
2

r2
ih. (15)

At any interior solution, we have

1
R

−ψ + r
1
ε
−1

ih

(
Ni

∑
l=1

r
1
ε

il

)ε−1
 m

∑
j=1

p j∆i j = rih. (16)

The optimal choice of rih is unique and does not depend on h under the current
assumptions, the equilibrium is symmetric in each group. Thus, we write ri = rih.
Then condition (16) becomes

σi

R

m

∑
j=1

p j∆i j = ri (17)

where
σi ≡−ψ +Nε−1

i (18)

in equilibrium. σi is the marginal contribution of individual R&D in a symmetric
equilibrium.
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Connection to Polarization Let ρ ≡ R
N , which is the aggregate R&D outputs

per firm. Multiply both sides of equation (17) by σini,

σini
σi

R

m

∑
j=1

p j∆i j = σiniri ⇔ σini

m

∑
j=1

σi p j
∆i j

R
= σiniri

⇔ σini

m

∑
j=1

φi jn j
∆i j

N
= ρσiniri, (19)

where φi j ≡ σi×
p j
n j

. Taking the sum over i, we have

m

∑
i=1

m

∑
j=1

σiniφi jn j
∆i j

N
= ρ

2. (20)

For simplicity, we consider the case in which φi j = σ̄ ≡−ψ + N̄ε−1, where
N̄ = N

m . This constraint is innocuous if groups are symmetric, where σi = σ̄ and
p j
n j

= 1. We ignore the difference in research productivity in individual research
decisions by fixing σi at σ̄ , and, by imposing p j

n j
= 1, we assume that firms

consider the complementarity effects within rival groups constant. Hence, we
focus on the effects from distance and group size on research incentives, which
are essential for polarization.

Let ρ̂ satisfy

ρ̂
2 ≡

m

∑
i=1

m

∑
j=1

σinin j
σ̄∆i j

N
. (21)

We consider ρ̂ as a proxy for aggregate R&D outputs per firm. Developing the
right-hand side,

m

∑
i=1

m

∑
j=1

σinin j
σ̄∆i j

N

=− σ̄ψ

N

m

∑
i=1

m

∑
j=1

nin j∆i j +
σ̄

N

m

∑
i=1

m

∑
j=1

nin jNε−1
i ∆i j (22)
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The first term of (22) is

− σ̄ψ

N

m

∑
i=1

∑
j 6=i

nin j

(
π̄

ni
+S(δi j)

)
=− σ̄ψ

N

[
π̄

m

∑
i=1

(1−ni)+
m

∑
i=1

∑
j 6=i

nin jS(δi j)

]

=− σ̄ψ

N

[
(m−1)π̄ +

m

∑
i=1

∑
j 6=i

nin jS(δi j)

]

The second term of (22) is

σ̄

N2−ε

m

∑
i=1

∑
j 6=i

nε
i n j

(
π̄

ni
+S(δi j)

)
=

σ̄

N2−ε

m

∑
i=1

[
π̄nε−1

i ∑
j 6=i

n j +∑
j 6=i

nε
i n jS(δi j)

]

=
σ̄

N2−ε

[
π̄

(
m

∑
i=1

nε−1
i −

m

∑
i=1

nε
i

)
+

m

∑
i=1

m

∑
j=1

nε
i n jS(δi j)

]

Summing up those terms and assume S(δ ) = aδ (a > 0) for simplicity,

ρ̂
2 =− σ̄ψ(m−1)π̄

N
− aσ̄ψ

N

m

∑
i=1

m

∑
j=1

nin jδi j︸ ︷︷ ︸
average distance

+
σ̄ π̄

N2−ε

(
m

∑
i=1

nε−1
i −

m

∑
i=1

nε
i

)
︸ ︷︷ ︸

fragmentation

+
aσ̄

N2−ε

m

∑
i=1

m

∑
j=1

nε
i n jδi j︸ ︷︷ ︸

polarization

(23)

The average individual R&D is related to three distributional statistics: the
average distance (the summation in the second term); fragmentation or negative
of concentration, the parenthesis in the third term, which is equivalent to 1 minus
HHI when ε = 2; and the polarization (when ε is in the appropriate region), the
summation in the forth term.

In the current model, technological distance stimulate individual R&D be-
cause a losing firm must pay higher cost to catch up the new mainstream tech-
nology if the winning group is further away in the technology space. This aspect
is captured by polarization and thus the coefficient is positive. But at the same
time, more efforts imply more duplications in research within groups. Hence,
the R&D incentive stimulated by distance is weaken by degree of duplication,
which is represented in the negative sign on the average distance. The degree
of fragmentation has a positive coefficient, in other words, concentration works
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negatively because of the free-rider’s problem.
Keeping the current model in mind, we move to continuous technology space

and introduce the extended version for continuous distributions which is devel-
oped by DER in the next subsection.

3.2 Polarization Measure on Two-dimensional Spaces

DER extend the measure of polarization in (10) to be applicable for continuous
distributions. Our polarization measure follows DER,

Pα( f )≡
∫
R2

∫
R2

f (x)1+α f (y)δ (x,y)dydx, (24)

where f is the density of firms, δ (x,y) is the Euclidean distance, and α is a pos-
itive parameter in between [0.2,0.5]. Only the difference from DER is that our
polarization is defined over distributions with two-dimensional domains (one-
dimension in DER), which makes the valid range of α narrow. We can easily
show that the upper bound of α is the inverse of the number of dimension (proof
is in Appendix A). The lower bound is complicated. We describe how to get the
lower bound of valid α also in Appendix A. In the regressions in the following
section, we report the results for both bounds of α .17

The average distance, G, and concentration, H, of density f are defined as
follows.

G( f )≡
∫
R2

∫
R2

f (x) f (y)δ (x,y)dydx, (25)

H( f )≡
∫
R2

f (x)2dx, (26)

Note that G is equivalent to polarization with α = 0.
We estimate fkτ , the density of firms in category k and period τ , by the two-

dimensional kernel density estimation (2D-KDE).18 Let f̂kτ be the estimated dis-
tribution. The estimates of (24)-(26) over firm locations in technological fields

17When α > 0.2, squeezing both humps of a distribution with two humps (like the bottom
part in the right side of Figure 4) in a symmetric way increases polarization. When α < 0.5,
squeezing the whole distribution reduces polarization.

18For two-dimensional kernel density estimation, we used the code described in Botev et al.
(2010).
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Figure 5: Average polarization indices.

obtained by the procedure in Section 2, Xkτ = {x1,x2, ...,xnkτ
}, are

P̂α
kτ ≡

1
n2

kτ

nkτ

∑
i=1

nkτ

∑
j=1

f̂kτ(xi)
α

δ (xi,x j), (27)

Ĥkτ ≡
1

nkτ

nkτ

∑
i=1

f̂kτ(xi). (28)

Ĝkτ is the special case with α = 0 in (27), thus

Ĝkτ ≡
1

n2
kτ

nkτ

∑
i=1

nkτ

∑
j=1

δ (xi,x j) (29)

Figure 5 depicts the estimated polarizations averaged over subcategories.
The weighted average is computed by setting the share of the number of firms
within each period (five-year window) as weights for the subcategories. Clearly,
the average polarizations have upward trends regardless of the values of α .

Table 1 shows the descriptive statistics that are used in regressions in the next
section.
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Table 1: Summary statistics.
Obs. Mean SD Min Max

Average dissimilarity 649 6.160758 .6917609 2.632249 7.368289

Ĝ 647 6.032016 .6695385 2.353421 7.570821

P̂0.2 639 2.12773 .1579996 1.472612 2.530501

P̂0.5 639 .4595821 .0249231 .3863933 .5175242

Ĥ 639 .0070822 .0014643 .0042083 .014769

Num. of firms 651 246.4101 141.7449 0 1019

Stress 647 .3729808 .0617119 5.09e-09 .4728863

Num.patent app. 648 3812.71 4782.57 1 40835

CW.patent app. 648 43875.55 56416.79 2 335869

4 The Impact of Polarization on Innovation

4.1 Basic Results

In this section, we investigate the empirical relationship between polarization
and innovation. For the measure of innovation, we use citation-weighted number
of patent applications, akt , where k is subcategory and t is year of application.
Note that we denote t as a year and τ(t) as the five-year window from t− 5 to
t− 1. Below, we estimate the impact of the distribution properties during τ(t)

on innovations in t.
It is important to note that the citation-weighted patent applications after the

late 1990s are less informative in our sample and, thus, we drop the citation-
weighted patent application in and after 1998 from our estimation. Figure 6
illustrates the citation-weighted patent applications over the sample periods. The
citation-weighted patent applications hit a peak around 1995 and declined sharply
after 1997, whereas the unweighted patent applications continue to increase.
This is simply because of the time lags between application and citation. Since
the NBER US Patent dataset contains only granted patents, citation-weights are
highly affected by this time-lag problem.19

Since akt is count data, we apply the Poisson regression model and the nega-
tive binomial regression model. The equation to be estimated with these models

19Hall et al. (2001) introduced weights for dealing with this problem but the current problem
is not resolved because zero citation multiplied by any weight is zero.
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Figure 6: Non- and citation-weighted number of patent applications.

is

akt = exp
{

β
a
0 +β

a
1 log P̂α

k,τ(t)+β
a
2 log Ĥk,τ(t)+β

a
3 log Ĝk,τ(t)

+β
a
4 logAk,τ(t)+β

a
5 logYk,τ(t)+β

a
6 logLk,τ(t)+β

a
7 νk +β

a
8 νt + ε

a
kt
}
, (30)

where Ak,τ(t) is the citation-weighted stock of patents at the beginning of τ(t) as
the proxy of knowledge stock in the subcategory (described in detail in Appendix
B), Yk,τ(t) is the average of total sales of all related firms during τ(t), Lk,τ(t) is the
average of total employment of those firms, and νk and νt are dummy variables
for subcategories and years. This regression evaluates the impact of distribution
properties during the past 5 years on the amount of new innovations.

We also consider the impact of distribution properties on growth rate of
citation-weighted applications over five-year windows, γkt ≡ akt

akt−5
−1. The equa-

tion to be estimated by panel regression with subcategory fixed effects is

γkt = β
γ

0 +β
γ

1 log P̂α

k,τ(t)+β
γ

2 log Ĥk,τ(t)+β
γ

3 log Ĝk,τ(t)

+β
γ

4 logAk,τ(t)+β
γ

5 logYk,τ(t)+β
γ

6 logLk,τ(t)+β
γ

7 νk +β
γ

8 νt + ε
γ

kt . (31)
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Table 2 shows the regression results. Columns (1-6) omitted explanatory
variables about knowledge stock and business size (all regressions include sub-
category and year dummies). Because citation-weighted patents are count data
and highly skewed, the negative binomial regression is appropriate. Columns (3)
and (4) report significant positive coefficient on polarization with both the upper
and lower boundaries of α , and significantly negative coefficients for concen-
tration and the average distance. These signs are consistent with the model in
Section 3.1. The change rate of citation-weighted patent applications, γkt , also
have similar results (Columns (5) and (6), linear regressions). However, this
result is not robust. Looking at Columns (1) and (2), which conduct Poisson
regressions, we find the opposite signs of coefficients for polarization. Since
the estimates of Poisson regression are consistent regardless of the distributional
assumption, we need to change the model specification.

Columns (7-12) are results controlled by knowledge stock and business sizes.
The knowledge stock has a positive impact on levels of innovation akt and neg-
ative but insignificant impact on growth of innovation. These are natural results
in the knowledge accumulation process. The sales volume always has a positive
impact because it represents size of demands for subcategories. The coefficients
of employment are negative most probably because the combination of sales and
employment represents average productivity. The inconsistency between Pois-
son and negative binomial regressions seen before is now resolved. However, the
significance levels in negative binomial regressions (Columns (9) and (10)) be-
comes low and the sign of coefficients are inconsistent with the model. Only the
regressions (11) and (12) about γkt weakly keep the consistency with the model
and previous simple model specification.

So far, our hypothesis of inter-group competition does not seem to work
well. And the characteristics of firm distributions in technology spaces are not
related to aggregate innovations. But this result drastically changes if we split
the sample by years. We consider a structural shift in the next subsection.
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Table 2: Citation-weighted patent application vs polarization measures.
(1)Poisson (2)Poisson (3)NegBin (4)NegBin (5) (6) (7)Poisson (8)Poisson (9)NegBin (10)NegBin (11) (12)

akt akt akt akt γkt γkt akt akt akt akt γkt γkt

log P̂0.2
kτ(t) -2.726∗∗∗ 4.843∗∗∗ 6.148∗∗∗ -3.492∗∗∗ -2.222 5.248∗∗∗

(-38.78) (2.82) (3.27) (-48.89) (-1.58) (2.64)

log P̂0.5
kτ(t) -2.111∗∗∗ 2.049∗∗ 2.340∗∗ -2.154∗∗∗ -1.154 1.718

(-57.41) (2.18) (2.26) (-57.87) (-1.53) (1.60)

log Ĥkτ(t) -0.370∗∗∗ 0.0230∗ -0.488∗∗ -0.665∗∗ -0.480∗ -0.633∗ 0.173∗∗∗ 0.506∗∗∗ 0.0395 0.182 -0.434∗ -0.500

(-35.79) (1.66) (-2.07) (-2.05) (-1.86) (-1.78) (16.40) (36.15) (0.22) (0.73) (-1.66) (-1.39)

log Ĝkτ(t) 1.199∗∗∗ 0.413∗∗∗ -4.109∗∗∗ -1.519∗∗ -6.291∗∗∗ -2.834∗∗∗ 1.927∗∗∗ 0.523∗∗∗ 0.873 -0.166 -5.633∗∗∗ -2.550∗∗∗

(19.23) (12.58) (-2.80) (-1.97) (-3.92) (-3.35) (30.62) (15.83) (0.75) (-0.28) (-3.40) (-3.00)

logAkτ(t) 0.851∗∗∗ 0.846∗∗∗ 0.636∗∗∗ 0.638∗∗∗ -0.0668 -0.0745

(203.35) (202.16) (8.47) (8.49) (-0.62) (-0.69)

logYkτ(t) 0.791∗∗∗ 0.794∗∗∗ 0.681∗∗∗ 0.677∗∗∗ 0.426∗∗∗ 0.460∗∗∗

(111.48) (112.09) (6.73) (6.71) (2.94) (3.17)

logLkτ(t) -0.517∗∗∗ -0.520∗∗∗ -0.404∗∗∗ -0.405∗∗∗ -0.476∗∗∗ -0.487∗∗∗

(-62.07) (-62.38) (-3.22) (-3.22) (-2.68) (-2.73)

Const. 6.507∗∗∗ 6.163∗∗∗ 9.689∗∗∗ 9.399∗∗∗ 4.596∗∗∗ 4.065∗∗∗ -7.538∗∗∗ -7.644∗∗∗ -4.448∗∗∗ -4.394∗∗∗ 3.379∗∗∗ 2.454∗

(191.02) (183.85) (12.20) (11.56) (5.34) (4.62) (-136.47) (-140.45) (-4.47) (-4.45) (2.59) (1.90)

Overdispersion -2.686∗∗∗ -2.680∗∗∗ -3.221∗∗∗ -3.221∗∗∗

(-43.40) (-43.31) (-51.47) (-51.46)

N 516 516 516 516 516 516 516 516 516 516 516 516

adj. R2 0.143 0.133 0.154 0.146

pseudo R2 0.947 0.947 0.146 0.146 0.978 0.978 0.172 0.172

t-statistics in parentheses. All regressions consider fixed effects of technological categories and year dummies.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.2 A Structural Change through 1980s

In response to “productivity slow down” from 1970s, industries in the United
States had experienced major institutional changes. The biggest issue related to
the current context is the patent reform. The patent policy in the United States
had dramatically shifted from anti-patent to pro-patent through the early 1980s.
Patents had become much more valuable than before and patenting a technology
or idea has become one of the most important strategies for firms. At the same
time, Jaffe and Lerner (2004) point out that the reform significantly reduced the
quality of patent examination because of the flood of patent applications.20

This structural shift might affect the relationship between polarization and
innovation. Our interpretation of polarization as the degree of inter-group com-
petition may not hold if a bunch of useless patents clustering around some main
technologies. More importantly, under the pro-patent system, inter-group com-
petition may stimulate patent litigation rather than R&D investment, which dis-
courages innovation (Lanjouw and Schankerman (2004)).

To see whether any structural shift exists, we conducted the Chow test to
the above negative binomial regression. Figure 7 illustrates the log-likelihood
ratio test statistics for each cut-off year. We can see there is a highly signifi-
cant structural change between former periods and later periods and the peak of
significance is 1990. Since the estimations tell the impact of polarization in the
preceding 5 years on the patent applications in the current year, the threshold of
1990 implies the polarization of distribution within 1985-1989, around that time
the patent reform prevailed.

Table 3 reports the regression results using equations (30) and (31) for sam-
ples divided into periods before 1990 and after. We can see a clear structural
change between the results. For t ≤ 1990 (Columns (1)-(4)), the estimates of
polarization is significantly positive. Further, the coefficients of HHI and the
average distance have signs that are consistent with the model in the previous
section and they are mainly significant. To the contrary, the results for t > 1990
(Columns (5)-(8)) are totally different. In regressions (5) and (6), all coefficients
are highly significant but the signs of the coefficients for distributional charac-
teristics are reversed. The story of inter-group competition cannot be applied.

20Kortum and Lerner (1998) explain the surge in patent application during 1980s by the
change in R&D management rather than the patent reform. Hall and Ziedonis (2001) attribute
the change to patent management.
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Figure 7: Log-likelihood ratio statistics. All cutoff years reject the null hypoth-
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sample regression.

Figure 8 illustrates the relationship between polarization (for α = 0.5) and
the number of patent applications after controlled by the other variables for sam-
ples before and in 1990, after 1990, and for the full sample.

The impacts of polarization are not small quantitatively. The non-weighted
average polarizations illustrated in Figure 5 change by 3.8% and 2.6% in the for-
mer period for α = 0.2 and 0.5, respectively, and by 5.2% and 2.6% in the later
period for α = 0.2 and 0.5, respectively. Hence, the occurrence of innovations is
increased by 4.1%-11.6% through the surge in polarization in the former period
and it is decreased by 9.1%-35.9% through the surge in polarization in the later
period.

We can attribute the source of the drastic change of the regression results
to the change in the impact of polarization on average patent quality, measured
by the average number of foward citations. Table 4 reports the regression re-
sults where we take the average quality of the patent as the dependent variable
in regression equation (31). All regressions include both subcategory and year
dummies. As seen in regressions (3)-(4) in Table 4, polarization reduces patent
quality only after 1990. Moreover, the estimated coefficients for distributional
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Table 3: Regressions by year groups.

t ≤ 1990 t > 1990

(1) (2) (3) (4) (5) (6) (7) (8)

akt akt γkt γkt akt akt γkt γkt

log P̂0.2
kτ(t) 3.053∗∗ 7.873∗∗∗ -6.885∗∗∗ 4.864

(2.25) (3.05) (-3.29) (1.36)

log P̂0.5
kτ(t) 1.564∗∗ 4.050∗∗∗ -3.479∗∗∗ 1.865

(2.16) (2.94) (-2.84) (0.89)

log Ĥkτ(t) -0.283 -0.472∗ -0.425 -0.918∗ 0.922∗∗∗ 1.332∗∗∗ -0.169 -0.299

(-1.54) (-1.88) (-1.21) (-1.91) (3.22) (3.24) (-0.35) (-0.43)

log Ĝkτ(t) -2.816∗∗ -1.355∗∗ -6.065∗∗∗ -2.310∗∗ 6.349∗∗∗ 3.121∗∗∗ -5.926∗∗ -3.275∗

(-2.44) (-2.32) (-2.76) (-2.07) (3.62) (3.16) (-1.98) (-1.96)

logAkτ(t) 0.334∗∗∗ 0.335∗∗∗ -0.236 -0.232 0.438∗∗∗ 0.437∗∗∗ 0.140 0.134

(3.61) (3.63) (-1.33) (-1.31) (3.16) (3.13) (0.59) (0.57)

logYkτ(t) 1.145∗∗∗ 1.153∗∗∗ 1.001∗∗∗ 1.021∗∗∗ 1.189∗∗∗ 1.179∗∗∗ 1.147∗∗∗ 1.177∗∗∗

(8.07) (8.15) (3.73) (3.81) (4.77) (4.69) (2.74) (2.79)

logLkτ(t) -0.791∗∗∗ -0.797∗∗∗ -1.190∗∗∗ -1.205∗∗∗ -1.052∗∗∗ -1.085∗∗∗ -0.932∗∗ -0.924∗∗

(-4.82) (-4.87) (-3.85) (-3.90) (-4.09) (-4.17) (-2.17) (-2.13)

Const. -2.785∗∗ -2.901∗∗ 2.503 2.202 -6.188∗∗∗ -5.756∗∗∗ -3.842 -4.659

(-2.12) (-2.23) (0.99) (0.88) (-3.57) (-3.30) (-1.28) (-1.56)

Overdispersion -4.027∗∗∗ -4.026∗∗∗ -3.790∗∗∗ -3.778∗∗∗

(-48.09) (-48.08) (-38.72) (-38.58)

N 300 300 300 300 216 216 216 216

adj. R2 0.240 0.238 0.098 0.093

pseudo R2 0.198 0.198 0.207 0.206

t-statistics in parentheses. All regressions consider fixed effects of technological categories and year dummies.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 8: The relationship between polarization and the number of patent appli-
cations after controlled by other variables. α = 0.5.

characteristics are quite similar to those in regressions (5)-(6) in Table 3. In
the later periods, the amount of innovation negatively responds to inter-group
competition through reduction in quality of each patent. In the environment that
patents are used strategically, such as blocking, cross-licensing negotiation, and
infringements, competition may induce not R&D efforts but more rent-seeking
activities to win races. This is consistent with the critique to the current US
patent system developed by Jaffe and Lerner (2004): the major patent reform
has caused degradation of patent quality.

5 Discussions

5.1 Truncation Problem of Forward Citation for Quality-adjusted
Patents

There exist long forward citation lags as reported by Hall et al. (2001), quality-
adjusted numbers of patents is exposed to the truncation problem: recent patents
tend to be undervalued because they do not have sufficient time lags for subse-
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Table 4: Regression on average quality of patents.
t ≤ 1990 t > 1990

(1) (2) (3) (4)

lnqkt lnqkt lnqkt lnqkt

log P̂0.2
kτ(t) 0.632 -6.498∗∗∗

(0.55) (-4.43)

log P̂0.5
kτ(t) 0.414 -3.273∗∗∗

(0.67) (-3.79)

log Ĥkτ(t) -0.154 -0.218 0.768∗∗∗ 1.156∗∗∗

(-0.98) (-1.02) (3.96) (4.07)

log Ĝkτ(t) -0.742 -0.498 5.649∗∗∗ 2.592∗∗∗

(-0.75) (-1.00) (4.58) (3.74)

logAkτ(t) -0.0255 -0.0251 -0.368∗∗∗ -0.360∗∗∗

(-0.32) (-0.32) (-3.41) (-3.29)

logYkτ(t) 0.144 0.142 0.589∗∗∗ 0.570∗∗∗

(1.20) (1.19) (3.34) (3.18)

logLkτ(t) -0.293∗∗ -0.291∗∗ -0.702∗∗∗ -0.721∗∗∗

(-2.12) (-2.11) (-3.86) (-3.88)

Const. 3.717∗∗∗ 3.759∗∗∗ 2.859∗∗ 3.280∗∗∗

(3.28) (3.35) (2.42) (2.75)

N 300 300 215 215

adj. R2 0.050 0.051 0.755 0.748

t statistics in parentheses.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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quent citations. To deal with this problem, we multiply citation-weighted patent
applications by weights derived from the distribution of forward citation lags,
introduced in Hall et al. (2001). We call this HJT weights. For consistency, we
also re-estimate knowledge stock with using the HJT weights.

Table 5 shows the same estimations as before with HJT-adjusted patent ap-
plications. aHJT

kt is HJT-adjusted patent applications in category k and year t.
qHJT

kt are per-patent quality with the HJT weights.
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Table 5: Estimations with HJT weights.
Whole sample t ≤ 1990 t > 1990

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

aHJT
kt aHJT

kt lnqHJT
kt lnqHJT

kt aHJT
kt aHJT

kt lnqHJT
kt lnqHJT

kt aHJT
kt aHJT

kt lnqHJT
kt lnqHJT

kt

log P̂0.2
kτ(t) -1.918 -1.305 3.102∗∗ 0.641 -6.663∗∗∗ -6.385∗∗∗

(-1.37) (-1.30) (2.29) (0.55) (-3.14) (-4.35)

log P̂0.5
kτ(t) -1.025 -0.550 1.590∗∗ 0.417 -3.283∗∗∗ -3.165∗∗∗

(-1.36) (-1.03) (2.20) (0.68) (-2.63) (-3.66)

log Ĥkτ(t) 0.0397 0.171 0.0711 0.121 -0.283 -0.475∗ -0.156 -0.221 0.917∗∗∗ 1.290∗∗∗ 0.761∗∗∗ 1.128∗∗∗

(0.22) (0.68) (0.54) (0.67) (-1.54) (-1.89) (-0.99) (-1.03) (3.18) (3.10) (3.93) (3.97)

log Ĝkτ(t) 0.644 -0.234 0.707 0.0172 -2.833∗∗ -1.349∗∗ -0.743 -0.495 6.261∗∗∗ 3.083∗∗∗ 5.662∗∗∗ 2.626∗∗∗

(0.55) (-0.40) (0.85) (0.04) (-2.46) (-2.31) (-0.75) (-0.99) (3.51) (3.07) (4.59) (3.78)

logAHJT
kτ(t) 0.692∗∗∗ 0.694∗∗∗ -0.0429 -0.0411 0.342∗∗∗ 0.344∗∗∗ -0.0287 -0.0281 0.489∗∗∗ 0.494∗∗∗ -0.332∗∗∗ -0.324∗∗∗

(9.31) (9.34) (-0.80) (-0.77) (3.73) (3.74) (-0.36) (-0.36) (3.26) (3.26) (-3.23) (-3.11)

logYkτ(t) 0.657∗∗∗ 0.655∗∗∗ 0.252∗∗∗ 0.246∗∗∗ 1.139∗∗∗ 1.147∗∗∗ 0.143 0.141 1.130∗∗∗ 1.112∗∗∗ 0.616∗∗∗ 0.594∗∗∗

(6.50) (6.50) (3.47) (3.40) (8.04) (8.12) (1.19) (1.18) (4.27) (4.16) (3.47) (3.29)

logLkτ(t) -0.398∗∗∗ -0.399∗∗∗ -0.423∗∗∗ -0.422∗∗∗ -0.785∗∗∗ -0.791∗∗∗ -0.285∗∗ -0.284∗∗ -1.009∗∗∗ -1.034∗∗∗ -0.744∗∗∗ -0.760∗∗∗

(-3.18) (-3.18) (-4.75) (-4.73) (-4.80) (-4.84) (-2.06) (-2.05) (-3.68) (-3.72) (-4.07) (-4.07)

Const. -3.852∗∗∗ -3.830∗∗∗ 3.586∗∗∗ 3.718∗∗∗ -2.629∗∗ -2.748∗∗ 3.906∗∗∗ 3.947∗∗∗ -5.562∗∗∗ -5.091∗∗∗ 2.668∗∗ 3.123∗∗∗

(-3.90) (-3.91) (5.54) (5.81) (-2.02) (-2.13) (3.46) (3.54) (-3.19) (-2.90) (2.27) (2.64)

Overdispersion -3.223∗∗∗ -3.223∗∗∗ -4.028∗∗∗ -4.027∗∗∗ -3.770∗∗∗ -3.757∗∗∗

(-51.62) (-51.62) (-48.21) (-48.20) (-38.77) (-38.62)

N 515 515 515 515 300 300 300 300 215 215 215 215

adj. R2 0.472 0.472 0.369 0.369 0.101 0.075

pseudo R2 0.175 0.175 0.197 0.197 0.199 0.198

t-statistics in parentheses. All regressions consider fixed effects of technological categories and year dummies.

Regressions (1)-(2), (5)-(6), and (9)-(10) are negative binomial regressions. The others are linear regressions.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.2 Does polarization just respond to more detailed techno-
logical categories?

One possible explanation of increasing polarization is that technology has be-
come more segmented. A new pole that emerged in a 2-digit technological cat-
egory could be a new field or a new product. If so, observed increasing polar-
ization does not imply inter-group competition. To evaluate this possibility, we
check finer primary classifications (3-digit class defined by USPTO) of patents
of each firm and observe the distribution of the classifications on each technol-
ogy space. More concretely, given technology maps created in Section 2, we
put 3-digit class lists for firms in each 2-digit subcategory and five-year window.
Then take the average distances only among firms associated with each 3-digit
class.

If 3-digit classes are randomly distributed, the average distances in a coarser
classification is almost the same as that in finer classifications. The difference
between them imply a bias from segmentation. If the average distance among 3-
digit classes has a decreasing trend, it implies that finer classes have concentrated
on poles and thus the segmentation effect mainly explains polarization.

Figure 9 illustrates the time-series of those average distances. We draw two
types of class distance. One is described above (shown as “Class” in the figure).
The other is that we focus on the most important 3-digit class for each firm (“Top
class only”), where the top class of a firm is defined as the class in which the firm
applied patents most frequently in each five-year window (we include both in a
tie). Naturally, the average distance within 3-digit classes tends to be lower than
that within subcategories. The important fact here is that the average distance
among 3-digit classes also have an upward trend. Since the trend is relatively
weak so that relative distance among classes to among subcategories have been
decreasing, some part of polarization should be attributed to the segmentation
effect. However, it does not seem the main source of polarization.
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Figure 9: The average distances within 3-digit classes.

5.3 Relation between the Increasing Dissimilarity and Polar-
ization

5.3.1 Decomposition of Polarization

As shown in DER, the measure of polarization can be decomposed into three
components. such as

Pα = Gῑα(1+ρ), (32)

where

g(i)≡ 1
n

n

∑
j=1

δ (xi,x j), G =
1
n

n

∑
i=1

g(i),

ια(i)≡ f (xi)
α , ῑα =

1
n

n

∑
i=1

ια(i),

ρ ≡ Cov(ια ,g)
ῑαG

,

In other words, polarization equals the product of average distance, concen-
tration with polarization parameter which DER call identification, and their nor-
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Figure 10: The average identification (left panel) and the average normalized co-
variance between alienation and identification (right panel) across technological
categories .

malized covariance. Figure 10 depicts the time-series behaviors of unweighted-
average identification and normalized covariance for α ∈ {0.2,0.5} across tech-
nological categories.

When we apply the growth accounting on (32) with these averaged variables,
the degree of contribution of the average distance, Ĝ, is about 246% whereas
−158% from the change in identification and 12% from the change in normal-
ized covariance if we set the initial year window as 1977-1981.21 22 Therefore,
the increasing polarization is mainly driven by increasing average technological
distance, which is from increasing average dissimilarity. In the next subsection,
we consider whether there exists a mechanism to derive an increasing dissimi-
larity in our methodology.

5.3.2 Citation overlaps with random citations

As the number of patents have been drastically increasing in the recent decades,
the expansion of the pool of citable patents may decrease citation overlaps. This
is one possible explanation of the observed upward trend in technological dis-
similarity. In this subsection, we examine how plausible this explanation is by
experimentation.

Suppose that two firms independently apply p patents, each of them cites m

21If we use 1976-1980 as the first five-year window, the numbers are 131%, −34%, and 3%,
respectively. It is because identification in 1976-1980 year window is extremely low.

22Equation (32) do not exactly hold with sample statistics. Thus, we rescaled the numbers.
The non-rescaled percentages sum up to 106%.
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Figure 11: Experimented average distances with random citation (the left panel)
and the average distance in data relative to the distances with random citations
(the right panel).

patents out of N patents at random. Let p be the average patent application per
firm in each year, m be the average number of patent citations of those patent
applications, and N be the number of patents previously granted. We consider
10 years and 25 years lag for backward citations.23 We obtain the average first-
order citation overlap from 5000 random draws of the lists of citations for each
category and year from 1976 to 2000. Then we take the average of technological
distances for each five-year window.

The left panel of Figure 11 shows the average technological distances of ran-
dom citation firms for 10 and 25 years backward citation lags, and the actual
technological distance obtained in Section 2. The right panel is the actual dis-
tance relative to the average distances with random citations. Since the average
distance with random citation is considered as the baseline distance, the relative
distances shown in the right panel tell us the real similarity or dissimilarity be-
tween firms. As seen in the figure, the distances with random citations are not
increasing from the early 1980s. Thus, the relative distances also have increas-
ing trends in those periods. While the citation pool have been expanded since the
late 1980s, firms apply more patents and citations of each patent have been also
increasing. Hence, we conclude that the observed upward trend in technological
distances is not from the expansion of citation pool.

23Hall et al. (2001) report that about 50% of citations occur within 10 years after patent grant,
about 75% within 25 years, and about 95% within 50 years. The result for 50 years lag for back-
ward citations is almost the same as the result with 25 years lag in the current experimentation.
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Table 6: Distance vs. Citation
(1) (2) (3) (4)

Logit Neg.Bin Neg.Bin Neg.Bin

Cite Num. Cite Num. Cite (< 5 years) Num. Cite (< 10 years

δi j -0.0170∗∗∗ -0.453∗∗∗ -0.472∗∗∗ -0.455∗∗∗

(-15.87) (-270.16) (-257.14) (-224.72)

δ 2
i j -0.00755∗∗∗ 0.0200∗∗∗ 0.0200∗∗∗ 0.0199∗∗∗

(-87.68) (155.15) (140.47) (126.92)

Const. -3.798∗∗∗ -1.288∗∗∗ -2.241∗∗∗ -2.391∗∗∗

(-510.88) (-126.09) (-187.27) (-184.13)

Overdispersion 4.117∗∗∗ 4.228∗∗∗ 4.426∗∗∗

(3990.36) (3206.80) (3000.77)

N 33321080 33321080 33321080 33321080

pseudo R2 0.054 0.038 0.051 0.044

t statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All regressions include fixed effects of technological categories and year dummies.

5.4 Technology Group?

The polarization measure is a continuous statistic and we do not identify exact
poles and boundaries of technology groups. It is not clear if close firms tend
to be in the same technology group in our distributions. To see the relationship
among firms, we examine how distances in post-MDS distributions affect patent
citation activity. Table 6 shows the results. Column (1) shows the logistic re-
gression in which the dependent variable is whether citation occurs. Column (2)
is the negative binomial regression with the number of citations as the dependent
variable. Columns (3) and (4) are modifications of Column (2), where the num-
ber of citations are counted only within 5 years after granted, between 5 and 10
years after granted, respectively. The post-MDS distances negatively and non-
linearly affect citation activities, which is consistent with the idea of technology
groups. All estimations include category and year dummies.
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A The Valid Range of α

The coefficient of polarization, α , has the upper and lower bound to satisfy the
axioms introduced in Duclos et al. (2004).

A.1 The Upper Bound of α

For any density f (x) on n-dimensional space, the measure of polarization is
defined as

Pα( f )≡ k
∫ ∫

f (x)1+α f (y)‖x− y‖dxdy, (33)

where k is a positive constant. Following DER, define the λ -squeezed density of
f as

f λ (x)≡ 1
λ n f

(
x− (1−λ )µ f

λ

)
for λ ∈ (0,1], (34)

where µ f is the maen of f .

Lemma 1 For any α > 0 and n ∈ N,

Pα( f λ ) = λ
1−nαPα( f ).

Proof. By definition,

Pα( f λ ) = k
∫ ∫

f λ (x)1+α f λ (y)‖x− y‖dxdy

= kλ
−n(2+α)

∫ ∫
f
(

x− (1−λ )m
λ

)1+α

f
(

y− (1−λ )m
λ

)
‖x− y‖dxdy

= kλ
1−nα

∫ ∫
f (x′)1+α f (y′)‖x′− y′‖dx′dy′

= λ
1−nαPα( f ),

where we use

x′ ≡
x− (1−λ )µ f

λ
, y′ ≡

y− (1−λ )µ f

λ
,

and thus ‖x− y‖= λ‖x′− y′‖.

Lemma 1 suggests that Pα( f λ ) is nondecreasing in λ if and only if α ≤ 1/n,
which is the upper bound of α to satisfy Axiom 1 in DER.
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A.2 The Lower Bound of α

First, we quote Axiom 2 in DER:

Axiom 2 (DER) If a symmetric distribution is composed of three basic densi-

ties with the same root and mutually disjoint supports, then a symmetric squeeze

of the side densities cannot reduce polarization.

In this axiom, a “basic density” is a symmetric and unimodal density with
a compact support. A “root” is a normalized basic density. We modify Axiom
2 (DER) to the following Axiom 2’ so that we apply it to multi-dimensional
distributions.

Axiom 2’ If a line-symmetric distribution is composed of two basic densities

with the same root and mutually disjoint supports, then a symmetric squeeze of

the densities cannot reduce polarization.

We search the lowest α to satisfy Axiom 2’. First, notice that a double
squeeze, i.e., a symmetric squeeze of both densities, is decomposed into an out-
ward slide (so as to multiple the distance between the means by 1/λ ) and a
global squeeze (so as to restore the distance),

0.5 f λ +0.5gλ =

distance restored, while each squeezed by λ︷ ︸︸ ︷
(0.5 f(1/λ−1)(µ f−(µ f+µg)/2)+0.5g(1/λ−1)(µg−(µ f+µg)/2)︸ ︷︷ ︸

outward slide with distance multiplied by 1/λ

)λ ,

(35)
where µh denotes the mean of density h, and hd denotes the density that satisfies
hd(x+d) = h(x). The growth rate of polarization by double squeeze can be also
decomposed into the two components. From Lemma 1, the response of polariza-
tion to a global squeeze is independent of densities. Therefore, the growth rate
of polarization of density (35) by a double squeeze is

d lnPα(0.5 f λ +0.5gλ )

d ln(1/λ )
= nα−1

+
d lnPα(0.5 f(1/λ−1)(µ f−(µ f+µg)/2)+0.5g(1/λ−1)(µg−(µ f+µg)/2))

d ln(1/λ )
.

(36)
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The last term in the right-hand side is the growth rate by the outward slide, which
we focus below.

Next, define u as a uniform basic density such as

um,r(x) =

1/(πrn) if ‖x−m‖ ≤ r,

0 otherwise.
(37)

A basic density f is decomposed into uniform basic densities with the same
mean,

f =
∫

uµ f ,rdWf (r) (38)

for some distribution function Wf . Below, we assume f is differentiable.
Now consider a distribution that consists of two disjoint symmetric basic

densities, f−a/2 and fa/2. According to (38), polarization of this distribution is
decomposed into average distances between decomposed uniform basic densi-
ties with different levels of double squeezes,

Pα

(
f−a + fa

2

)
=K f ,α

∫ ∫ ∫ u−a,r(x)+ua,r(x)
2

u−a,s(y)+ua,s(y)
2

‖x−y‖dxdydVf ,α(r,s)

(39)
for some constant K f ,α > 0 and distribution Vf ,α . To avoid complexity, we leave
explanation for this decomposition to A.2.1.

Given (39), we can focus on the lower bound of the growth rate of such
distances,

d lnPα(( f−a + fa)/2)
d ln‖a‖

≥ inf
r,s≤r f

d ln
∫ ∫

(u−a,r(x)+ua,r(x))(u−a,s(y)+ua,s(y))‖x− y‖dxdy
d ln‖a‖

.

(40)
where r f denotes the radius of the support of f .

Now we focus on the two-dimensional case. We show that the minimand
in the right hand side of (40) is decreasing in r. To see this, we look into the
properties of the minimand. Consider a distribution that consists of u(−a,0),r,
where a > 0 (for notational convenience, here we write a as a scalar), and a
stretched uniform basic density of u(a,0),1 by s1 > 0 along the horizontal axis
and by s2 > 0 along the vertical axis. Let

Ar,(s1,s2)(a) =
∫ ∫

u(−a,0),r(x)u(a,0),1(y)‖x− (s1(y1−a)+a,s2y2)‖dxdy. (41)
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Then, the average distance of pairs of any two points on the support of this
distribution is

(
Ar,(s1,s2)(a)+Ar,(s1,s2)(0)

)
/2.

Lemma 2 For r,s1,s2 > 0 and a > (r + s1)/2, Ar,(s1,s2)(a) and Ar,(s1,s2)(0) are

increasing in both s1 and s2, and A′r,(s1,s2)
(a) is decreasing in both s1 and s2.

Proof. First, consider Ar,(s1,s2)(0). Note that for y1 > 0,
∫ r
−r ‖(x1,0)−(y1,y2)‖dx1

is increasing in y1 since ‖(r,0)− (y1,y2)‖ < ‖(−r,0)− (y1,y2)‖ when y1 > 0.
Thus, for s > 0,

∫ s
−s
∫ r
−r ‖(x1,0)− (y1,y2)‖dx1dy1/s is increasing in s. There-

fore, Ar,(s1,s2)(0) is increasing in s1. Similarly, Ar,(s1,s2)(0) and Ar,(s1,s2)(a) are
increasing in s2. Next, suppose y1 > x1 and y2 > 0. Since ∂‖(x1− a,x2)−
(y1,y2)‖/∂a = 1/

√
1+(x2− y2)2/(x1−a− y1)2 is larger at x2 = r than at x2 =

−r, A′r,(s1,s2)
(a) is decreasing in s2.

Since for y1 > x1, ∂‖(x1,x2)−(y1,y2)‖/∂y1 = 1/
√

1+(x2− y2)2/(x1− y1)2

is increasing in y1, (‖(x1,x2)− (a+∆,y2)‖+ ‖(x1,x2)− (a−∆,y2)‖)/2 is in-
creasing in ∆ ∈ (0,a− x1). Thus, Ar,(s1,s2)(a) is increasing in s1. Similarly,
since ∂ (∂‖(x1−a,x2)− (y1,y2)‖/∂a)/∂y1 = (x2−y2)

2/((x1−a−y1)
2+(x2−

y2)
2)3/2 is decreasing in y1, A′r,(s1,s2)

(a) is decreasing in s1.

Lemma 2 implies that the growth rate decreases as each radius increases, i.e.,
for r′ ≥ r,

d ln
∫ ∫

(u−a,r(x)+ua,r(x))(u−a,s(y)+ua,s(y))‖x− y‖dxdy
d ln‖a‖

≥
d ln

∫ ∫
(u−a,r′(x)+ua,r′(x))(u−a,s(y)+ua,s(y))‖x− y‖dxdy

d ln‖a‖
. (42)

Thus, it suffices to consider the growth rate of the average distance within
uniform identical balls touching each other,

d lnPα(( f−a + fa)/2)
d ln‖a‖

≥ lim
r↑‖a‖

d ln
∫ ∫

(u−a,r(x)+ua,r(x))(u−a,r(y)+ua,r(y))‖x− y‖dxdy
d ln‖a‖

= lim
r↑1

d lnPα((u(−1−e,0),r +u(1+e,0),r)/2)
d ln(1+ e)

∣∣∣∣
e=0

, (43)

which is also equal to the growth rate of polarization by the outward slide. There-
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fore, the lower bound of α is attained by solving the equation at such density,

lim
λ↑1

d lnPα((uλ

(−1,0),1 +uλ

(1,0),1)/2)

d ln(1/λ )

= lim
r↑1

d lnPα((u(−1−e,0),r +u(1+e,0),r)/2)
d ln(1+ e)

∣∣∣∣
e=0

+nα−1 = 0. (44)

We can search numerically, which α makes (44) satisfy equality. We obtain
α ≈ 0.202.24

A.2.1 Representation in (39)

First, remark the following fact.

Lemma 3 If
∂g(r)

∂ r
=− 1

πrn v(r), (45)

limr→∞ g(r) = 0, and limr→∞

∫
u(0,0),s(r,0)v(s)ds = 0, then

g(r) =
∫

u(0,0),s(r,0)v(s)ds. (46)

Proof. For r′ < r, u(0,0),s(r′,0)−u(0,0),s(r,0) = 1/πsn if r′ < s < r, and 0 other-
wise. Thus, (45) implies∫

u(0,0),s(r
′,0)v(s)ds−

∫
u(0,0),s(r,0)v(s)ds =

∫ r

r′

1
πsn v(s)ds = g(r′)−g(r).

By limr→∞ g(r) = 0 and limr→∞

∫
u(0,0),s(r,0)v(s)ds = 0, then (46) follows.

Using Lemma 3, we can show the following lemma.

Lemma 4 If f is symmetric and differentiable, then, for any α ,

f 1+α =
∫

uµ f ,rπrn
(
−

∂ f ((r,0)+µ f )

∂ r

)
(1+α) f ((r,0)+µ f )

αdr. (47)

Proof. Let g(r) = f ((r,0)+µ f )
1+α , and

∂g(r)
∂ r

= (1+α)
∂ f ((r,0)+µ f )

∂ r
f ((r,0)+µ f )

α =− 1
πrn v(r).

24For the one-dimensional case, this procedure exactly yields 0.25, the same lower bound in
DER.
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Then, equation (46) implies

f ((r,0)+µ f )
1+α =

∫
u(0,0),s(r,0)v(s)ds. (48)

Moreover, for any x, let r = ‖x−µ f ‖. Then, by the symmetry, f (x) = f ((r,0)+
µ f ) and u(0,0),s(r,0) = uµ f ,s(x). Thus, (48) implies (47).

Using Lemma 4 and its special case with α = 0, we can write the degree of
polarization of ( fa + f−a)/2 with a > ‖µ f ‖ as

Pα

(
f−a + fa

2

)
=
∫ ∫ (∫ ∫ u−a,r(x)+ua,r(x)

2
u−a,s(y)+ua,s(y)

2
‖x− y‖dxdy

)
w(r,s)drds,

where the weight function is

w(r,s) =
(

1
2α

πrn
(
−

∂ f ((r,0)+µ f )

∂ r

)
(1+α) f ((r,0)+µ f )

α

)(
πsn
(
−

∂ f ((s,0)+µ f )

∂ s

))
.

K f ,α and Vf ,α in equation (39) are defined from w(r,s) so that Vf ,α is a dis-
tribution:

K f ,α = k
∫ ∫

w(r,s)drds,

dVf ,α = w(r,s)drds.

B Technological Categories and Estimation of Knowl-
edge Capital Stock

Table 7 is the list of the 2-digit technological categories defined by USPTO.
Knowledge stock, Ak,τ(t), is estimated by the cumulative number of citation-

weighted patents applied till the beginning of τ(t), namely period t−5. In other
words,

Ak,τ(t) =
t−5

∑
s=0

(1−ζ )t−5−sak,s, (49)

where ζk is the depreciation rate of R&D in technological category k. Since
the dataset contains patents from 1951 and the initial state is not significant,
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Table 7: Technological categories.

1-digit categories 2-digit categories

1. Chemical Agriculture, Food, Textiles (11); Coating (12); Gas (13);

Organic Compound (14); Resins (15)

2. Computers Communications (21); Computer Hardware & Software (22);

& Communications Computer Peripherals (23); Information Storage (24)

3. Drugs & Medical Drugs (31); Surgery & Medical Instruments (32);

Biotechnology (33)

4. Electrical & Electric Electrical Devices(41); Electrical Lighting(42);

Measuring & Testing (43); Nuclear & X-rays (44);

Power Systems (45); Semiconductor Devices(46)

5. Mechanical Mat. Proc & Handling (51); Metal Working (52);

Motors & Engines + Parts (53); Optics (54);

Transportation (55)

6. Others Agriculture, Husbandry, Food (61); Amusement Devices (62);

Apparel & Textile (63); Earth Working & Wells (64);

Furniture,House Fixtures (65); Heating (66);

Pipes & Joints (67); Receptacles (68)

we simply assume the initial knowledge stock is zero. To calculate Ak,τ(t), we
apply the R&D depreciation rates estimated in Li (2012). Table 8 summarizes
the result reported in Li (2012) with zero gestation lag of R&D.

By matching technological categories defined in USPTO with the list of in-
dustries in Table 8, we use depreciation rates in Table B. We assign a deprecia-
tion rate of 15% to technological categories not listed in in Table B, which is the
traditional number assumed in Griliches (1958) (cf. Hall (2007) for details).
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Table 8: Summary of Depreciation Rates of Business R&D Assets Based on
BEA-NSF Dataset

Industry Depreciation rate

a. Computers & peripheral equipment 40%

b. Software 22%

c. Pharmaceutical 10%

d. Semiconductor 25%

e. Aerospace 22%

f. Communication equipment 27%

g. Computer system design 36%

h. Motor vehicles, bodies & trailers, & parts 31%

i. Navigational, measuring, electromedical, & control instruments 29%

j. Scientific research & development 16%

Table 9: Summary of Depreciation Rates in the Current Study

Technological category Depreciation rate

Communication (21) 27% (f)

Computer Peripherals (23) 40% (a)

Other computers & communications (22,24) 33% (mean of a, b, g)

Drugs & Medical (31-33) 10% (c)

Measuring & Testing (43) 29% (i)

Semiconductor Devices (46) 25% (d)

Motors & Engines + Parts (53) 31% (mean of e and h)

Transportation (55) 27%

The numbers in the parentheses in the left column indicate 2-digit technological categories.
The alphabets in the parentheses in the right column indicate industries described in Table 8.
Depreciation rates for other categories are 15%.
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