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This paper investigates how and to what extent nonlinearities, including the zero lower bound

on the nominal interest rate, affect the estimate of the natural rate of interest in a dynamic
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1 Introduction

The natural rate of interest—the equilibrium real interest rate that yields price stability (Wicksell,

1898)—has been a key concept for monetary policy analysis. In particular, a modern New Keynesian

framework relates the concept of the natural rate to intertemporally optimizing agents and makes it

relevant for social welfare (Woodford, 2003; Gaĺı, 2008). The level of the natural interest rate in this

framework is a useful indicator for policymakers because it is a benchmark as to whether policy is too

tight or too loose from a welfare perspective.1 However, the natural rate is unobservable and must

be estimated. Whereas the literature has developed various empirical methods to infer the natural

rate of interest, an increasing number of researchers have estimated the natural rate measures

based on New Keynesian dynamic stochastic general equilibrium (DSGE) models.2 Examples for

the U.S. economy include Andrés, López-Salido, and Nelson (2009), Barsky, Justiniano, and Melosi

(2014), Cúrdia (2015), Cúrdia, Ferrero, Ng, and Tambalotti (2015), Del Negro, Giannone, Giannoni,

and Tambalotti (2017), Edge, Kiley, and Laforte (2008), Justiniano and Primiceri (2010), and Neiss

and Nelson (2003).

This paper estimates the natural rate of interest in the U.S. using a nonlinear New Keynesian

DSGE model with a zero lower bound (ZLB) constraint on the nominal interest rate and examines

how and to what extent nonlinearities affect the estimates of the natural rate and its driving forces.

Whereas the previous studies estimate the DSGE-based natural interest rate only in a linear setting

that abstracts from the ZLB, this paper is one of the first to estimate the natural rate in a fully

nonlinear and stochastic setting that incorporates the ZLB.3 Our analysis is motivated by the

following two strands of literature. First, Fernández-Villaverde and Rubio-Ramı́rez (2005) and

Fernández-Villaverde, Rubio-Ramı́rez, and Santos (2006) demonstrate that the level of likelihood

1Closing the gap between the actual real interest rate and the natural rate is not necessarily optimal in the

economy where “divine coincidence” (Blanchard and Gaĺı, 2007) does not hold. However, Barsky, Justiniano, and

Melosi (2014) demonstrate that, even in such a circumstance, a central bank would be able to stabilize both inflation

and the welfare-relevant output gap to a considerable degree by tracking the natural rate using an estimated New

Keynesian model.

2Another stream of the literature estimates the long-run natural interest rate based on semi-structural or reduced-

form models. See, for instance, Holston, Laubach, and Williams (2017), Johannsen and Mertens (2016), Kiley (2015),

Laubach and Williams (2003, 2016), Lubik and Matthes (2015), Pescatori and Turunen (2016), and Williams (2015).

Based on a DSGE model, Del Negro, Giannone, Giannoni, and Tambalotti (2017) present the estimates of the 20-

and 30-year forward natural rates, which are comparable to the long-run natural rate.

3A contemporaneous paper by Iiboshi, Shintani, and Ueda (2018), which evolved independently from our work,

estimates a nonlinear New Keynesian model for Japan and extracts a sequence of the natural rate.
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and parameter estimates based on a linearized model can be significantly different from those based

on the original nonlinear model. The same may be true for the estimation of unobservable state

variables, including the natural rate. Second, the recent experience of the global financial crisis

and the extremely low interest rate period that followed has led researchers to conduct empirical

analyses based on nonlinear DSGE models in order to take the ZLB into consideration. For instance,

Gust, Herbst, López-Salido, and Smith (2017) incorporate the ZLB into a medium-scale DSGE

model similar to those developed by Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2007), and estimate the model in a nonlinear setting using U.S. macroeconomic time series.

Plante, Richter, and Throckmorton (2018) and Richter and Throckmorton (2016a, 2016b) estimate

a nonlinear version of a prototypical New Keynesian model with the ZLB for the U.S. economy, and

Iiboshi, Shintani, and Ueda (2018) estimate a similar model for the Japanese economy. Aruoba,

Cuba-Borda, and Schorfheide (2018) consider Markov switching between the targeted-inflation and

deflation steady states in a New Keynesian framework with the ZLB and estimate the probabilities

of the U.S. and Japan having been in either the targeted-inflation or deflation regime using a

nonlinear filtering technique. The present paper contributes to this strand of the literature by

focusing on the estimation of the natural rate.

In estimating the natural rate of interest, we follow the two-step approach employed by Aruoba,

Cuba-Borda, and Schorfheide (2018). First, to parameterize the model, we estimate a linearized

version of the model using U.S. data prior to the date when the nominal interest rate was bounded

at zero. Hirose and Sunakawa (2015) demonstrate that a linearized DSGE model gives rise to

biased estimates of parameters if the ZLB existing in an economy is omitted in estimation but that

neglecting the other nonlinearities does not lead to biased estimates for a sample period during

which the ZLB is not binding. Thus, this approach enables us not only to avoid a computational

burden that would increase exponentially in the estimation of a fully nonlinear model, but also to

obtain reliable estimates of parameters.

Next, given the estimated parameters, we solve the model in a fully nonlinear and stochastic

setting with the ZLB and apply a nonlinear filter to a full sample to extract the sequence of the

natural interest rate. The literature (e.g., Boneva, Braun, and Waki, 2016; Fernández-Villaverde,

Gordon, Guerrón-Quintana, and Rubio-Ramı́rez, 2015; Gavin, Keen, Richter, and Throckmorton,

2015; Gust, Herbst, López-Salido, and Smith, 2017; Nakata, 2016, 2017; Ngo, 2014; and Richter

and Throckmorton, 2016a) has emphasized the importance of considering nonlinearity in assessing

the quantitative implications of New Keynesian models that include the ZLB. The natural rate

estimated in the present paper takes account of this important feature. Moreover, our analysis
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is based on an empirically richer DSGE model than the prototypical New Keynesian model. The

model features habit persistence in consumption preferences, price and wage stickiness, backward-

looking components in price and wage settings, and monetary policy smoothing. Because of the

high dimensionality of the state variables, it is computationally challenging to solve such a richer

DSGE model in a fully nonlinear setting. To overcome this issue, we employ a projection method

that adopts a very efficient Smolyak algorithm developed by Judd, Maliar, Maliar, and Valero

(2014). Their solution method is very accurate, albeit with the reduced number of grid points.

The main results are summarized as follows. Comparing the estimated natural interest rate

based on the nonlinear model with the rate based on the linear counterpart, we find that the

former is higher than the latter to a substantial degree, particularly in the periods when the

nominal interest rate is close to or bounded at zero. This difference is ascribed to a contractionary

effect arising from the ZLB, which is considered only in the nonlinear model. Although such a

contractionary effect lowers expected output and inflation, actual output and inflation are pegged

to the corresponding observables in the filtering process. Then, larger positive shocks to aggregate

demand must be identified in order to satisfy the optimality conditions of households and firms. As

a consequence, the estimated natural rate increases in the nonlinear setting. Although price and

wage dispersion potentially affect the identification of shocks and the estimate of the natural rate,

their effects turn out to be negligible. These findings allure researchers to use a quasi-linear model,

in which the ZLB constraint is imposed but all of the equilibrium conditions are linearized, because

such a model is easy to solve. However, we demonstrate that the quasi-linear model cannot be a

substitute for the fully nonlinear model in estimating the natural rate.

The remainder of the paper proceeds as follows. Section 2 describes the model used in our

analysis and a strategy for estimating the natural rate of interest. Section 3 presents our results.

Section 4 is the conclusion.

2 The Model and the Estimation Strategy

This section begins by describing the model used in our analysis. In the model economy, there are

households, perfectly competitive final-good firms, monopolistically competitive intermediate-good

firms, and a central bank. To ensure a better fit to the macroeconomic time series, the model

features habit persistence in consumption preferences, price and wage stickiness, backward-looking

components in price and wage settings, and monetary policy smoothing. In the model, the natural

rate of interest is defined as the real interest rate that would prevail if prices and wages were fully
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flexible without any markup shocks.4

To obtain the estimates of the natural interest rate, we follow the two-step approach as in

Aruoba, Cuba-Borda, and Schorfheide (2018). First, we estimate a linearized version of the model

using U.S. data before the period of the global financial crisis and the virtually zero nominal interest

rate. Next, given the estimated parameters, we solve the model in a fully nonlinear and stochastic

setting with the ZLB constraint on the nominal interest rate and apply a nonlinear filter to extract

the sequence of the natural rate.

2.1 The model

2.1.1 Households

Each household h ∈ [0, 1] consumes final goods Ch,t, supplies labor lh,t =
∫ 1

0 lf,h,tdf to intermediate-

good firms f ∈ [0, 1], and purchases one-period riskless bonds Bh,t so as to maximize the following

utility function

E0

∞∑
t=0

βt

(
t∏

k=1

dk

)−1 [
log (Ch,t − γCt−1)−

l1+η
h,t

1 + η

]
,

subject to the budget constraint

PtCh,t +Bh,t = Wn
h,tlh,t +Rnt−1Bh,t−1 + Th,t,

where β ∈ (0, 1) is the subjective discount factor, γ ∈ [0, 1] is the degree of external habit persistence

in consumption preferences (Ct−1 is the aggregate consumption in period t−1), η ≥ 0 is the inverse

of the labor supply elasticity, Pt is the price of final goods, Wn
h,t is the nominal wage for household h,

Rnt is the gross nominal interest rate, and Th,t is the sum of a lump-sum public transfer and profits

received from firms. Following Eggertsson and Woodford (2003) and Christiano, Eichenbaum, and

Rebelo (2011), a shock to the discount factor dt affects the weight of the utility in period t + 1

relative to the one in period t. In the present model, this shock is broadly interpreted as a shock

to aggregate demand. The log of the discount factor shock follows an AR(1) process

log dt = ρd log dt−1 + εd,t, (1)

where ρd ∈ [0, 1) is an autoregressive coefficient and εd,t is a normally distributed innovation

with mean zero and standard deviation σd. The first-order conditions for optimal decisions on

4This definition is the most commonly used in the literature that estimates the natural rate based on DSGE

models (Woodford, 2003; Gaĺı, 2008). Cúrdia, Ferrero, Ng, and Tambalotti (2015) estimate the efficient interest rate,

which is defined as the real interest rate under perfect competition and, therefore, with zero markups.
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consumption and bond-holding are identical among households, and therefore become

Λt =
1

Ct − γCt−1
, (2)

Λt =
β

dt
RtEt

Λt+1

Πt+1
, (3)

where Λt is the marginal utility of consumption and Πt = Pt/Pt−1 denotes gross inflation.

2.1.2 Wage setting

A labor packer collects differentiated labor {lf,h,t} from each household h and resells a labor package

augmented by a CES aggregator lf,t =
[∫ 1

0 l
(θw−1)/θw
f,h,t dh

]θw/(θw−1)
to intermediate-good firms f ,

where θw > 1 represents the elasticity of substitution among labor varieties. Given the nominal

wage for each household Wn
h,t, cost minimization yields a set of labor demand schedules lf,h,t =(

Wn
h,t/W

n
t

)−θw
lf,t and the aggregate wage index Wn

t =
(∫ 1

0 W
n
h,t

1−θwdh
)1/(1−θw)

.

Given the demand for labor by the labor packers, labor unions representing each household h

set nominal wages on a staggered basis, as in Erceg, Henderson, and Levin (2000). In each period,

a fraction 1 − ξw ∈ (0, 1) of labor unions reoptimizes their nominal wages, whereas the remaining

fraction ξw indexes nominal wages to the economy’s trend growth γa and a weighted average of

past inflation Πt−1 and steady-state inflation Π̄. The labor unions that reoptimize their nominal

wages in the current period then maximize expected utility as follows

Et
∞∑
j=0

ξjwβ
j

(
j∏

k=1

dk

)−1 [
γjaWn

h,t

Pt+j

j∏
k=1

(
Πιw
t+k−1Π̄1−ιw)Λh,t+jlh,t+j −

l1+η
h,t+j

1 + η

]
,

subject to the labor demand

lf,h,t+j =

[
γjaWn

h,t

Wn
t+j

j∏
k=1

(
Πιw
t+k−1Π̄1−ιw)]−θw lf,t+j ,

where lh,t =
∫ 1

0 lf,h,tdf is the amount of labor supplied by each household h, and ιw ∈ [0, 1) is

the weight of wage indexation to past inflation relative to steady-state inflation. The first-order

condition for the reoptimized wage Wn,o
t is given by

(
Wn,o
t

Wn
t

)1+ηθw

=
θw

θw − 1

Et
∑∞

j=0 ξ
j
wβj

(∏j
k=1dk

)−1
[(∏j

k=1Πιw
t+k−1Π̄1−ιw γ

j
aW

n
t

Wn
t+j

)−(1+η)θw
l1+η
d,t+j

]
Et
∑∞

j=0 ξ
j
wβj

(∏j
k=1dk

)−1
[(∏j

k=1Πιw
t+k−1Π̄1−ιw γ

j
aW

n
t

Wn
t+j

)1−θw
Λt+j

Wn
t+j

Pt+j
ld,t+j

] ,
(4)
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where ld,t =
∫ 1

0 lf,tdf is the total labor demand. The aggregate nominal wage index Wn
t =(∫ 1

0 W
n
h,t

1−θwdh
)1/(1−θw)

can be written as

Wn
t =

[
(1− ξw) (Wn,o

t )1−θw + ξw
(
Πιw
t−1Π̄1−ιwγaW

n
t−1

)1−θw] 1
1−θw . (5)

2.1.3 Firms

The representative final-good firm produces output Yt under perfect competition by choosing a

combination of intermediate inputs {Yf,t} so as to maximize profit PtYt−
∫ 1

0 Pf,tYf,tdf , subject to a

CES production technology Yt =
[∫ 1

0 Y
(θp−1)/θp
f,t df

]θp/(θp−1)
, where Pf,t is the price of intermediate

good f and θp > 1 denotes the elasticity of substitution among the variety of intermediate goods.

The first-order condition for profit maximization yields the final-good firm’s demand for each in-

termediate good Yf,t = (Pf,t/Pt)
−θp Yt and the aggregate price index Pt =

(∫ 1
0 P

1−θp
f,t df

)1/(1−θp)
.

Each intermediate-good firm f produces a differentiated good Yf,t under monopolistic competi-

tion by choosing a labor input lf,t, given the real wage Wt = Wn
t /Pt, and subject to the production

function

Yf,t = Atlf,t,

where At represents total factor productivity. The log of the productivity level follows a nonsta-

tionary stochastic process

logAt = log γa + logAt−1 + at, (6)

where log γa represents the steady-state growth rate of productivity and at is a shock to the pro-

ductivity growth. The productivity shock follows an AR(1) process

at = ρaat−1 + εa,t, (7)

where ρa ∈ [0, 1) is an autoregressive coefficient and εa,t is a normally distributed innovation with

mean zero and standard deviation σa. Assuming the existence of a shock to real marginal cost zt,

which is interpreted as an inefficient cost-push shock, the first-order condition for cost minimization

is given by5

MCt =
Wt

At
zt. (8)

The log of the cost-push shock follows an AR(1) process

log zt = ρz log zt−1 + εz,t, (9)

5The first-order condition also indicates that the real marginal cost MCt is identical across the intermediate-good

firms.
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where ρz ∈ [0, 1) is an autoregressive coefficient and εz,t is a normally distributed innovation with

mean zero and standard deviation σz.

In the face of the final-good firm’s demand and marginal cost, the intermediate-good firms set

the prices of their products on a staggered basis, as in Calvo (1983). In each period, a fraction

1 − ξp ∈ (0, 1) of intermediate-good firms reoptimizes their prices, whereas the remaining fraction

ξp indexes prices to a weighted average of past inflation Πt−1 and steady-state inflation Π̄. The

firms that reoptimize their prices in the current period then maximize expected profit as follows

Et
∞∑
j=0

ξjpβ
j

(
j∏

k=1

dk

)−1

Λt+j
Λt

[
Pf,t
Pt+j

j∏
k=1

(
Π
ιp
t+k−1Π̄1−ιp)−MCt+j

]
Yf,t+j ,

subject to the final-good firm’s demand

Yf,t+j =

[
Pf,t
Pt+j

j∏
k=1

(
Π
ιp
t+k−1Π̄1−ιp)]−θp Yt+j ,

where ιp ∈ [0, 1) denotes the weight of price indexation to past inflation relative to steady-state

inflation. The first-order condition for the reoptimized price P ot is given by

P ot
Pt

=
θ

θ − 1

Et
∑∞

j=0 ξ
j
pβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ιp
Π̄

Πt+k

])−θp
MCt+jYt+j

]
Et
∑∞

j=0 ξ
j
pβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ιp
Π̄

Πt+k

])1−θp
Yt+j

] . (10)

The final-good’s price Pt =
(∫ 1

0 P
1−θp
f,t df

)1/(1−θp)
can be written as

Pt =
[
(1− ξp) (P ot )1−θp + ξp

(
Π
ιp
t−1Π̄1−ιpPt−1

)1−θp] 1
1−θp . (11)

2.1.4 Market clearing conditions

The final-good market clearing condition is

Yt = Ct, (12)

whereas the labor market clearing condition leads to

lt =
∆p,t∆w,tYt

At
, (13)

where lt =
∫ 1

0

∫ 1
0 lf,h,tdfdh is the aggregate labor input, ∆p,t =

∫ 1
0 (Pf,t/Pt)

−θp df is price dispersion

across the intermediate-good firms, and ∆w,t =
∫ 1

0

(
Wn
h,t/W

n
t

)−θw
dh is wage dispersion across the

labor unions. Equation (13) can be rewritten in terms of ld,t =
∫ 1

0 lf,tdf as

ld,t =
∆p,tYt
At

. (14)
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In the present model, the price and wage dispersion evolve according to

∆p,t = (1− ξp)
(
P ot
Pt

)−θp
+ ξp

(
Πt

Π̄

)θp (Πt−1

Π̄

)−ιpθp
∆p,t−1, (15)

∆w,t = (1− ξw)

(
Wn,o
t

Wn
t

)−θw
+ ξw

(
ΠtWt

Π̄γaWt−1

)θw (Πt−1

Π̄

)−ιwθw
∆w,t−1. (16)

2.1.5 Flexible wage and price equilibrium

Natural output Y ∗t and the natural rate of interest R∗t are defined as the levels that would prevail

if both wages and prices were perfectly flexible with no cost-push shocks. Such a flexible wage and

price equilibrium is obtained with ξw = ξp = 0, Wn
h,t = Wn

t , Pf,t = Pt, and zt = 1 for all h, f , and

t in the model above and is characterized by the following equations:

(
Y ∗t − γY ∗t−1

)(Y ∗t
At

)η
= µAt, (17)

R∗t =
dt
β

(
Et
Y ∗t − γY ∗t−1

Y ∗t+1 − γY ∗t

)−1

, (18)

where µ = θw−1
θw

θp−1
θp

is the product of price and wage markups. Thus, the law of motion for natural

output Y ∗t is determined by (17), given the sequence of total factor productivity At. The natural

rate of interest R∗t is determined by (18), with the sequences of natural output Y ∗t and the discount

factor shock dt.

2.1.6 Central bank

A monetary policy rule is specified as

Rnt = max[R̂nt , 1], (19)

where

R̂nt = (R̂nt−1)φr

[
R̄Π̄

(
Πt

Π̄

)φπ ( Yt
γaYt−1

)φy]1−φr

exp(εr,t). (20)

R̂nt denotes the hypothetical nominal interest rate that the central bank would set according to

a Taylor (1993) type monetary policy rule, where R̄ is the steady-state gross real interest rate,

φr ∈ [0, 1) is the policy-smoothing parameter, and φπ ≥ 0 and φy ≥ 0 are the degrees of the

interest rate policy response to inflation and output growth. εr,t is a monetary policy shock, which

is normally distributed with mean zero and standard deviation σr. The max function in (19)

constrains the nominal interest rate to be greater than or equal to zero. If R̂nt > 1, the ZLB

constraint is not imposed, i.e., Rnt = R̂nt . If R̂nt ≤ 1, the ZLB is binding, i.e., Rnt = 1.
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2.1.7 Equilibrium

An equilibrium is given by the sequences {Yt, Ct,Λt,Wt,W
n
t ,W

n,o
t , lt, ld,t,MCt,Πt, Pt, P

o
t ,∆p,t,∆w,t,

Y ∗t , R
∗
t , R

n
t , R̂

n
t , dt, At, at, zt}∞t=0 satisfying the equilibrium conditions (1)–(20) and two definitional

equations, Wt = Wn
t /Pt and Πt = Pt/Pt−1.

Because total factor productivity At is nonstationary, as specified by (6), we rewrite the equilib-

rium conditions in terms of stationary variables detrended by At, as follows: yt = Yt/At, ct = Ct/At,

λt = ΛtAt, wt = Wt/At, w
n
t = Wn

t /At, w
n,o
t = Wn,o

t /At, mct = MCt/At, and y∗t = Y ∗t /At, so that

we can derive a nonstochastic steady state for the detrended variables.

2.2 Estimation of parameters

To parameterize the model, we estimate a linearized version of the model using four U.S. quarterly

time series: the per capita real GDP growth rate (100∆ logGDPt), the inflation rate of the GDP

implicit price deflator (100∆ logPGDPt), the federal funds rate (FFt), and the log of hours worked

(100 logHt).
6 Following Wolters (2018), the data on hours worked is adjusted for low-frequency

movements due to sectoral and demographic changes so that the data is consistent with the model.

The sample period is from 1987:III to 2008:IV. The beginning of the sample period is set at the

time when Alan Greenspan became the Chairman of the Fed, because thereafter, the style of the

Fed’s policy conduct seems consistent and stable. The end of the sample is selected so that the

observations exclude the periods of virtually zero nominal interest rates. The linearized equilibrium

conditions and observation equations are presented in Appendix A.

The parameters are estimated using Bayesian methods. The prior distributions of the param-

eters are presented in the second to fourth columns of Table 1. For most of the parameters, each

prior mean is set at the corresponding prior mean used in Smets and Wouters (2007). The prior

mean of the policy-smoothing parameter φr is set at 0.5, which is lower than that in Smets and

Wouters (2007) because a higher value of the estimated φr would lead to a nonconvergence problem

in solving our nonlinear model.7 As for the steady-state values of output growth, inflation, and

real interest rates and hours worked (ā, π̄, r̄, l̄), the priors are centered at the sample mean. The

prior mean of the AR(1) coefficient for the discount factor shock ρd is 0.75, whereas that for the

productivity and cost-push shocks (ρa, ρz) is 0.5. For the standard deviations of the shocks (100σd,

6The series of hours worked is demeaned.

7For the same reason, relatively tight priors are used for the parameters that determine the persistency of endoge-

nous variables in the model.
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100σa, 100σz, 100σr), we assign inverse-gamma distributions with a mean of 0.5 and a standard

deviation of 2.0.

In the estimation, 200, 000 posterior draws are generated using the Random-Walk Metropolis-

Hastings algorithm, and the first 50, 000 draws are discarded. The posterior mean and 90 percent

credible interval for each parameter are reported in the last two columns of Table 1. In the

subsequent analysis, the parameters are fixed at the posterior mean estimates except for the steady-

state values of the output growth, inflation, and real interest rates and hours worked (ā, π̄, r̄, l̄),

which are set at their respective averages of the extended sample from 1987:III to 2016:III.

2.3 Nonlinear solution and filtering

The model is solved in a fully nonlinear and stochastic setting with the ZLB constraint on the

nominal interest rate using a projection method. The model has seven endogenous state variables

(output yt−1, inflation Πt−1, the real wage wt−1, the hypothetical nominal interest rate R̂nt−1, price

dispersion ∆p,t−1, wage dispersion ∆w,t−1, and natural output y∗t−1) and four exogenous shocks (the

discount factor shock dt, the productivity shock at, the cost-push shock zt, and the monetary policy

shock εr,t). The policy functions satisfying the detrended equilibrium conditions can be written as

St = g(St−1, τt),

where St−1 = [yt−1,Πt−1, wt−1, R̂
n
t−1,∆p,t−1,∆w,t−1, y

∗
t−1]′ and τt = [dt, at, zt, εr,t]

′.

Because of the high dimensionality of the state variables, it is computationally very expensive

to apply a conventional projection method that uses the tensor product of one-dimensional polyno-

mials. In this regard, we employ a projection method equipped with a Smolyak algorithm, in which

a relatively small number of grid points are selected on the basis of their potential importance for

the quality of approximation. Moreover, we adopt a more efficient Smolyak algorithm developed by

Judd, Maliar, Maliar, and Valero (2014). In this algorithm, a union of the unidimensional disjoint

sets of grid points of the endogenous state variables are constructed instead of the conventional

nested sets in order to avoid repetitions of grid points. Then, projection functions onto the grid

points are computed with interpolation coefficients and a Chebyshev family of orthogonal basis

functions.8 The grid points obtained by this algorithm are sparse; therefore, the algorithm is more

8To obtain the interpolation coefficients, we follow Judd, Maliar, Maliar, and Valero (2014) and use a Lagrange

interpolation method, whereas Malin, Krueger, and Kubler (2011) use the closed-form formula to obtain approximated

functions.
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likely to be free from the curse of dimensionality. The details of the solution method are described

in Appendix B.

According to an artificial sample of 40,000 periods simulated from the nonlinear solution of the

model, the economy is at the ZLB for 12.1 percent of quarters, and the average duration of ZLB

spells is 4.3 quarters. These statistics indicate that our model economy is much more frequently

constrained by the ZLB and that the average duration of ZLB spells is longer than the simulation

results in the previous studies that employ nonlinear New Keynesian models, such as Fernández-

Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) and Gust, Herbst, López-Salido,

and Smith (2017).9

We apply a particle filter as developed by Fernández-Villaverde and Rubio-Ramı́rez (2007) to

extract the sequence of the state variables and then compute the estimates of the natural interest

rate.10 The data used for filtering is the same as those used for the parameter estimation in

Section 2.2, but the period over which the filter is run is extended to 2016:III. To facilitate the use

of the particle filter, measurement errors are added in the observation equations. The measurement

errors of output growth, inflation, the nominal interest rate, and hours worked are respectively set

to be 20, 20, 10, and 5 percent of their standard deviations in the data over the sample from

1987:III to 2016:III so that the smoothed (two-sided) estimates of the observables can track the

data reasonably well, as shown in Figure 1. We use 100,000 particles and confirmed that any further

increase in the number of particles delivered almost the same results as those presented below.

3 Results

This section presents the estimate of the natural interest rate based on the nonlinear model and

compares it with the estimate based on its linear counterpart. To understand the cause of the

difference between the two estimates, we investigate how the natural rate of interest is identified in

each case. Moreover, we consider a quasi-linear model, in which the ZLB constraint is imposed but

9Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) simulate a small-scale model cal-

ibrated for the U.S. economy and show that the economy spends 5.5 percent of quarters at the ZLB and that the

average duration at the ZLB is 2.1 quarters. Gust, Herbst, López-Salido, and Smith (2017) estimate a medium-scale

model in a nonlinear setting using U.S. data from 1983:Q1 to 2014:Q1, and the simulation of their estimated model

demonstrates that the economy is at the ZLB for about 4 percent of quarters on average and that the average duration

of the ZLB spells is just over 3.5 quarters.

10For a textbook treatment of a particle filter, see Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016)

or Herbst and Schorfheide (2015).
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all the equilibrium conditions are linearized, and examine whether it can be a useful substitute for

estimating the natural rate accurately.

3.1 Estimated natural rate of interest

The solid line in Figure 2 shows the smoothed mean estimate of the natural rate of interest on

an annualized basis. The estimated natural rate measure peaked around 8 percent at the end of

1980s and the beginning of 2000, then fell to about −6 percent in the aftermath of the global

financial crisis, and thereafter increased to a slightly positive value toward the end of the sample

period. The overall cyclical movements in the natural rate are very similar to those estimated by

Barsky, Justiniano, and Melosi (2014), who employ a medium-scale New Keynesian DSGE model

with capital accumulation, although their estimate of the natural rate exhibits more variability

than ours; that is, their estimate peaked at more than 10 percent in 2000 and dropped to around

−5 percent in 2003.

The primary objective of this paper is to examine how and to what extent nonlinearity, including

the ZLB, affects the estimates of the natural rate of interest. To this end, we estimate the natural

rate using a linear counterpart of the model, as in the previous studies, and compare it with the

one obtained above. The dotted line in Figure 2 is the smoothed mean estimate of the natural

interest rate based on the linearized version of the model with the same parameters and data set

as used in the nonlinear case.11 The figure indicates that the natural rate based on the linearized

model is mostly lower than that based on the nonlinear model, except for the period before 1990.

In particular, the difference is pronounced in the periods when the actual nominal interest rate

(shown in Figure 1) is close to or bounded at zero.

To understand what causes the difference between the two estimates, we consider how the

natural rate of interest is identified in each case. As addressed in Section 2.1, equation (17), i.e.,(
Y ∗t − γY ∗t−1

)
(Y ∗t /At)

η = µAt, determines natural output Y ∗t , given the sequence of total factor

productivity At (or, equivalently, the productivity shock at). The natural rate of interest R∗t

can be traced out from equation (18), i.e., R∗t = dt/β
[
Et(Y ∗t − γY ∗t−1)/(Y ∗t+1 − γY ∗t )

]−1
, with the

sequences of natural output Y ∗t and the discount factor shock dt. Thus, the natural interest rate is

pinned down by identifying the two shocks, at and dt.

11In the case of the linear model, the smoothed estimates of model variables could be computed with a widely used

linear solution method and Kalman filter. However, we apply the same projection method and particle filter as in the

nonlinear case to avoid the possibility that differences in the solution and filtering methods could affect the estimate

of the natural rate.
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In the linear model, the productivity shock at is explicitly identified by the data on output

and hours worked because detrending and log-linearizing the labor market clearing condition (13)

yields ỹt = l̃t and because the associated observation equations (abstracting from the observation

errors) are 100∆ logGDPt = ā+ ỹt− ỹt−1 +at and 100 logHt = l̄+ l̃t, where ā and l̄ are the steady-

state growth rate and hours worked, respectively, and the variables with ˜ represent percentage

deviations from their steady-state values. In the nonlinear model, however, equation (13) contains

the price and wage dispersion, ∆p,t and ∆w,t, and can be written as yt = lt/(∆p,t∆w,t) in detrended

terms. These dispersion terms fluctuate so that ∆p,t ≥ 1 and ∆w,t ≥ 1, as the price and wage,

respectively, deviate from the steady state. Thus, yt becomes lower than in the linear case where

the dispersion terms are suppressed. Consequently, to satisfy the observation equation for output

growth, at can be identified as being larger in the nonlinear case. Higher productivity results in

the higher natural rate.

Identification of the discount factor shock dt is more complicated and influenced by the whole

structure of the model. However, taking account of the finding that the two estimates of the natural

interest rate differ from each other during the periods when the nominal interest rate is close to or

bounded at zero, the existence of the ZLB, from which the linear model abstracts, possibly affects

the identification of dt in the nonlinear model. The literature has established that the ZLB has a

contractionary effect on the economy not only when the nominal interest is already binding at zero,

but also when uncertainty exists about whether the ZLB will bind in the future.12 Although such a

contractionary effect lowers expected output and inflation, the particle filter pegs actual output and

inflation to the corresponding observables, which are the same in the linear and nonlinear cases.

Then, in the nonlinear case, the discount factor shock dt must increase to satisfy the optimality

conditions of households and firms. As a result, the natural rate increases.

To quantify the differences in the sequences of identified shocks, Figure 3 shows the smoothed

mean estimates of the discount factor shocks dt and the productivity shocks at, in percentage terms,

based on the nonlinear model (solid lines) and its linear counterpart (dotted lines). The sequence of

dt identified in the nonlinear model is remarkably different from that identified in the linear model.

In particular, the difference remains substantial after the global financial crisis. On the other hand,

the movements of at are very similar between the two estimates although temporary deviations are

occasionally found. Therefore, the difference in dt is the main source of the different estimates of

the natural rate between the two cases.

12Hills, Nakata, and Schmidt (2016) quantify such an uncertainty effect on inflation in the face of the interest rate

lower bound.
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Figure 4 confirms the mechanism behind the difference in the estimates of dt, which is described

above. In the figure, the smoothed estimates of expected inflation Et log Πt+1 and expected output

Etyt+1 in detrended terms are compared for the nonlinear case (solid lines) and the linear case

(dotted lines), in terms of percentage deviation from the steady state. In the case of the nonlinear

setting, Et log Πt+1 shifts downward to a large extent during the periods of the low nominal interest

rate, whereas the downward shift in Etyt+1 is limited. The limited shift in Etyt+1 is ascribed to

the consequence of the increased dt, which has a direct positive effect on actual output through the

Euler equation and accordingly raises the expected output.

The finding of the small difference in the estimated productivity shocks at implies that the price

and wage dispersion terms, ∆p,t and ∆w,t, play a minor role in the nonlinear model. Indeed, as

shown in Figure 5, the smoothed estimates of ∆p,t and ∆w,t based on the nonlinear model fluctuate

little, i.e., less than 0.15 percent at most, even though they exhibit cyclical movements over the

sample period.

3.2 The natural rate of interest based on the quasi-linear model

The analysis thus far suggests that the existence of the ZLB constraint plays a crucial role in

identifying the natural rate of interest in a nonlinear setting, but that the inclusion of price and wage

dispersion is relatively minor. These findings tempt researchers to exploit a quasi-linear model, in

which the ZLB constraint is imposed but all the equilibrium conditions are linearized, for estimating

the natural rate measures, because such a model is easier to solve than a fully nonlinear model.

However, Boneva, Braun, and Waki (2016), Fernández-Villaverde, Gordon, Guerrón-Quintana, and

Rubio-Ramı́rez (2015), Gavin, Keen, Richter, and Throckmorton (2015), Gust, López-Salido, and

Smith (2017), Nakata (2016, 2017), Ngo (2014), and Richter and Throckmorton (2016a) argue

that the solution of this sort of quasi-linear model can give rise to an inaccurate assessment of

the ZLB. Thus, the estimated natural interest rate in a quasi-linear setting may be subject to the

same problem. To investigate this point, this subsection estimates the natural rate based on a

quasi-linear version of the model and compare it with those obtained in the preceding subsection.

Figure 6 depicts the smoothed mean estimate of the natural interest rate in the quasi-linear

setting (dashed line) along with the estimates in the fully nonlinear setting (solid line) and the

linear setting (dotted line). While the estimate based on the quasi-linear model almost coincide

with that based on the fully nonlinear model during the periods before 1990 and after 2010, these two

estimates are still substantially different from each other during the other periods. In particular,

the estimated natural rate in the quasi-linear setting remains almost unchanged from its linear
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counterpart in the early 1990s, the early 2000s, and the aftermath of the global financial crisis,

when the nominal interest rate was lowered rapidly. The same is confirmed by the upper panel

in Figure 7. It shows that the smoothed mean estimate of the discount factor shock dt in the

quasi-linear model (dashed line) is lower than that in the fully nonlinear model (solid line) during

the same periods.

As addressed in the previous subsection, the ZLB has a contractionary effect when there exists

uncertainty about whether the ZLB will bind in the future. This effect increases as the nominal

interest rate is lowered. Such an uncertainty effect is enhanced in the fully nonlinear setting but

not in the quasi-linear setting, which causes the differences in the estimates above. Therefore,

the quasi-linear model incorporating the ZLB cannot be a possible substitute for a fully nonlinear

model in estimating the natural rate measures.

4 Concluding Remarks

This paper has estimated the natural rate of interest in a nonlinear New Keynesian model using

U.S. macroeconomic data and compared it with the rate estimated with the model’s linear coun-

terpart. We have found that the natural rate based on the nonlinear model is substantially higher

than that based on the linear model, particularly in the periods when the nominal interest rate is

close to or bounded at zero. This difference is explained by a contractionary effect of the ZLB,

which is considered only in the nonlinear model. Although the existence of the price and wage

dispersion terms potentially affects the estimate of the natural rate in the nonlinear setting, we

have demonstrated that their effects are relatively minor.

Whereas the present paper employs an empirically richer DSGE model than the prototypical

New Keynesian model, existing studies, including Barsky, Justiniano, and Melosi (2014), Cúrdia,

Ferrero, Ng, and Tambalotti (2015), Edge, Kiley, and Laforte (2008), Del Negro, Giannone, Gi-

annoni, and Tambalotti (2017), and Justiniano and Primiceri (2010) have estimated the natural

interest rate using medium-scale DSGE models with capital accumulation. Our analysis could

be extended to exploit such a medium-scale model so that the estimated natural rate would be

comparable to the rates obtained in these studies. We conjecture that our results regarding the

higher estimate of the natural rate in a nonlinear setting would still hold, even if we extended our

model to a larger scale, because the main mechanism through which nonlinearities can affect the

identification of the natural rate remains unchanged.
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Appendix

A Linearized Equilibrium Conditions and Observation Equations

Log-linearizing the detrended equilibrium conditions around the nonstochastic steady state, and

rearranging the resulting equations, yields

ỹt =
γa

γa + γ
(Etỹt+1 + Etat+1) +

γ

γa + γ
(ỹt−1 − at)−

γa − γ
γa + γ

(R̃nt − EtΠ̃t+1 − d̃t),

w̃t = w̃t−1 − Π̃t + ιwΠ̃t−1 − at + β(Etw̃t+1 − w̃t + EtΠ̃t+1 − ιwΠ̃t + Etat+1)

+
(1− ξw) (1− ξwβ)

ξw(1 + ηθw)

[
ηl̃t +

1

γa + γ
(γaỹt − γỹt−1 + γat)− w̃t

]
,

ỹt = l̃t,

Π̃t =
β

1 + βιp
EtΠ̃t+1 +

ιp
1 + βιp

Π̃t−1 +
(1− ξp) (1− ξpβ)

ξp (1 + βιp)
(w̃t + z̃t),

ỹ∗t =
γ

γa(1 + η)− γη
(ỹ∗t−1 − at),

R̃nt = φrR̃
n
t−1 + (1− φr)

[
φπΠ̃t + φy(ỹt − ỹt−1 + at)

]
+ εr,t,

d̃t = ρdd̃t−1 + εd,t,

at = ρaat−1 + εa,t,

z̃t = ρz z̃t−1 + εz,t,

where the variables with ˜ represent percentage deviations from their steady-state values.

The observation equations are
100∆ logGDPt

100∆ logPGDPt

FFt

100 logHt

 =


ā

π̄

r̄ + π̄

l̄

+


ỹt − ỹt−1 + at

Π̃t

R̃nt

l̃t

 ,

where ā = 100 log γa, π̄ = 100 log Π̄, r̄ = 100 log R̄(= 100 log(γa/β)), and l̄ are, respectively, the

steady-state growth rate, the inflation rate, the real interest rate, and hours worked.
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B Nonlinear Solution Method

B.1 Recursive forms of the price and wage setting equations

After detrending, the equilibrium conditions (10) and (4) can be written in the following recursive

forms:

P ot
Pt

=
Sp,t
Fp,t

Sp,t = θpwtzt + ξpβd
−1
t Et

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ιp]θp yt+1

yt

λt+1

λt
Sp,t+1,

Fp,t = (θp − 1) + ξpβd
−1
t Et

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ιp]θp−1
yt+1

yt

λt+1

λt
Fp,t+1,(

Wn,o
t

Wn
t

)1+ηθw

=
Sw,t
Fw,t

Sw,t = θwl
η
d,tλ
−1
t + ξwβd

−1
t Et

[(
Πw,t+1

Π̄
exp(at+1)

)(
Πt

Π̄

)−ιw](1+η)θw
ld,t+1

ld,t

λt+1

λt
Sw,t+1,

Fw,t = (θw − 1)wt + ξwβd
−1
t Et

[(
Πw,t+1

Π̄
exp(at+1)

)(
Πt

Π̄

)−ιw]θw−1
ld,t+1

ld,t

λt+1

λt
Fw,t+1,

where Πw,t = Πtwt/wt−1 and ld,t = ∆p,tyt.

B.2 Solution algorithm

In what follows, we drop the time subscript and use −1 and ′ for previous- and next-period variables,

respectively. To solve for the policy functions on each grid point of the state space (S−1, τ), where

S−1 = [y−1,Π−1, w−1, R̂
n
−1,∆p,−1,∆w,−1, y

∗
−1]′ and τ = [d, a, z, εr]

′, we follow an index-function

approach as in Aruoba, Cuba-Borda, and Schorfheide (2018), Gust, Herbst, López-Salido, and

Smith (2017) and Nakata (2017).13 First, regime-specific expectation functions are defined as

13See also Hirose and Sunakawa (2019) for details about the solution algorithm with an example of a prototypical

New Keynesian model with the ZLB.
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follows:

eλ,s(S−1, τ) ≡ βd−1Rn
∫
τ ′

{
1

γa exp(a′)

λ′

Π′

}
Φ(τ ′|τ)dτ ′,

esp,s(S−1, τ) ≡ θpwz + ξpβd
−1

∫
τ ′


[(

Π′

Π̄

)(
Π

Π̄

)−ιp]θpy′λ′S′p
yλ

Φ(τ ′|τ)dτ ′,

efp,s(S−1, τ) ≡ θp − 1 + ξpβd
−1

∫
τ ′


[(

Π′

Π̄

)(
Π

Π̄

)−ιp]θp−1
y′λ′F ′p
yλ

Φ(τ ′|τ)dτ ′,

esw,s(S−1, τ) ≡ θwlηdλ
−1 + ξwβd

−1

∫
τ ′


[(

Π′w exp(a′)

Π̄

)(
Π

Π̄

)−ιw](1+η)θw
l′dλ
′S′w
ldλ

Φ(τ ′|τ)dτ ′,

efw,s(S−1, τ) ≡ (θw − 1)w + ξwβd
−1

∫
τ ′


[(

Π′w exp(a′)

Π̄

)(
Π

Π̄

)−ιw]θw−1
l′dλ
′F ′w
ldλ

Φ(τ ′|τ)dτ ′,

where the index s ∈ {NZLB,ZLB} is associated with the interest-rate regime in which the hypo-

thetical nominal interest rate R̂n implied by its unconstrained policy function g
R̂n,NZLB

(S−1, τ) is

either above or below the lower bound. Then, the expectation functions are constructed as weighted

averages of the regime-specific functions

ex(S−1, τ) = ex,NZLB(S−1, τ)1{R̂n>1} + ex,ZLB(S−1, τ)1{R̂n≤1},

where 1{D} is the indicator function that equals one if the condition D is true and zero otherwise.

We obtain the policy functions by a time iteration method, which takes the following steps.

1. Make an initial guess for the expectation functions e
(0)
s =

(
e

(0)
λ,s, e

(0)
sp,s, e

(0)
fp,s, e

(0)
sw,s, e

(0)
fw,s

)
for

s ∈ {NZLB,ZLB}.

2. For i = 1, 2, ... (i is an index for the number of iterations), taking as given the expectation

functions previously obtained e
(i−1)
s , solve the relevant equations to obtain the policy functions

g
(i)
s =

(
g

(i)
Π,s, g

(i)
∆p,s

, g
(i)
Πw,s

, g
(i)
∆w,s

, g
(i)
y,s, g

(i)
w,s, g

(i)
ld,s
, g

(i)

R̂n,s

)
.

3. Update the expectation functions e
(i)
s by interpolating the policy functions g

(i)
s .

4. Repeat Steps 2-3 until
∥∥∥e(i)

s − e(i−1)
s

∥∥∥ is small enough.

In Step 2, taking as given the values of e
(i−1)
x,s (S−1,j , τm) for x ∈ {λ, sp, fp, sw, fw} at each grid
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point indexed by (j,m) and each regime s ∈ {NZLB,ZLB}, we have

Πjms

Π̄
=

ξ−1
p + (1− ξ−1

p )

e(i−1)
sp,s (S−1,j , τm)

e
(i−1)
fp,s (S−1,j , τm)

1−θp


1
θp−1 (

Π−1,j

Π̄

)ιp
,

∆p,jms = (1− ξp)

e(i−1)
sp,s (S−1,j , τm)

e
(i−1)
fp,s (S−1,j , τm)

−θp + ξp

(
Πjms

Π̄

)θp (Π−1,j

Π̄

)−ιp
∆p,−1,j ,

Πw,jms exp(a)

Π̄
=

ξ−1
w + (1− ξ−1

w )

e(i−1)
sw,s (S−1,j , τm)

e
(i−1)
fw,s (S−1,j , τm)


1−θw
1+ηθw


1

θw−1 (
Π−1,j

Π̄

)ιw
,

∆w,jms = (1− ξw)

e(i−1)
sw,s (S−1,j , τm)

e
(i−1)
fw,s (S−1,j , τm)


−θw

1+ηθw

+ ξw

(
Πw,jms exp(am)

Π̄

)θw (Π−1,j

Π̄

)−ιw
∆w,−1,j ,

yjms = e
(i−1)
λ,s (S−1,j , τm)−1 +

γyj,−1

γa exp(am)

wjms = w−1Πw,jms/Πjms,

ld,jms = ∆p,jmsyjms,

R̂njms = (R̂n−1,j)
φr

[
R̄Π̄

(
Πjms

Π̄

)φπ (yjms exp(am)

y−1

)φy]1−φr

exp(εr,m).

Then, we can evaluate
(

Πjms,∆p,jms,Πw,jms,∆w,jms, yjms, wjms, ld,jms, R̂
n
jms

)
at each grid point

(j,m) and each regime s and the policy functions g
(i)
x,s(S−1, τ ;θ) for x = {Π,∆p,Πw,∆w, y, w, ld, R̂

n}

parameterized by a vector of polynomial coefficients θ for computing the values off the grid points.

Note that we do not rely on any numerical optimization routines to solve the nonlinear equations.
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In Step 3, the expectation functions are updated by

e
(i)
λ,s(Sj,−1, τm) = βd−1

m Rnjms

∫
τ ′

{
1

γa exp(a′)

e
(i−1)
λ (S, τ ′;θ)

g
(i)
Π (S, τ ′;θ)

}
Φ(τ ′|τ)dτ ′,

e(i)
sp,s(Sj,−1, τm) = θpwjmszm + ξpβd

−1
m

∫
τ ′


[(

g
(i)
Π (S, τ ′;θ)

Π̄

)(
Πjms

Π̄

)−ιp]θp

×
g

(i)
y (S, τ ′;θ)e

(i−1)
λ (S, τ ′;θ)e

(i−1)
sp (S, τ ′;θ)

yjmse
(i−1)
λ (Sj,−1, τm;θ)

}
Φ(τ ′|τ)dτ ′,

e
(i)
fp,s(Sj,−1, τm) = θp − 1 + ξpβd

−1
m

∫
τ ′


[(

g
(i)
Π (S, τ ′;θ)

Π̄

)(
Πjms

Π̄

)−ιp]θp−1

×
g

(i)
y (S, τ ′;θ)e

(i−1)
λ (S, τ ′;θ)e

(i−1)
fp (S, τ ′;θ)

yjmse
(i−1)
λ (Sj,−1, τm;θ)

Φ(τ ′|τ)dτ ′,

e(i)
sw,s(Sj,−1, τm) = θwl

η
d,jmsλ

−1
jms + ξwβd

−1
m

∫
τ ′


[(

g
(i)
Πw

(S, τ ′;θ) exp(a′)

Π̄

)(
Πjms

Π̄

)−ιp]θp

×
g

(i)
ld

(S, τ ′;θ)e
(i−1)
λ (S, τ ′;θ)e

(i−1)
sw (S, τ ′;θ)

ld,jmse
(i−1)
λ (Sj,−1, τm;θ)

Φ(τ ′|τ)dτ ′,

e
(i)
fw,s(Sj,−1, τm) = (θw − 1)wjms + ξwβd

−1
m

∫
τ ′


[(

g
(i)
Πw

(S, τ ′;θ) exp(a′)

Π̄

)(
Πjms

Π̄

)−ιp]θp

×
g

(i)
ld

(S, τ ′;θ)e
(i−1)
λ (S, τ ′;θ)e

(i−1)
fw (S, τ ′;θ)

ld,jmse
(i−1)
λ (Sj,−1, τm;θ)

Φ(τ ′|τ)dτ ′,

where the values (Πjms,Π
w
jms, yjms, wjms, R

n
jms) and the policy functions g

(i)
x (S, τ ′;θ) evaluated

at the next period’s state (S, τ ′) are obtained in the previous step. Note that we interpolate

g
(i)
x (S, τ ′;θ) for x ∈ {Π,Πw, y, ld, R̂

n} off the grid points (or equivalently e
(i−1)
x (S, τ ′;θ) for x ∈

{λ, sp, fp, sw, fw}) by piecewise Chebyshev polynomials. Numerical integrals are computed with

regard to τ ′.

For the interpolation, we adopt a very efficient Smolyak algorithm developed by Judd, Maliar,

Maliar, and Valero (2014). Specifically, the unidimensional disjoint sets of grid points of the state

variables are constructed instead of the conventional nested sets in order to avoid repetitions of grid

points. Then, projection functions onto the grid points are computed with interpolation coefficients

and a Chebyshev family of orthogonal basis functions. In the algorithm, the level of approximation

is set at 2, following Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015).

The integrals over τ ′ are approximated by the Gauss–Hermite quadrature formula with four nodes.
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Table 1: Prior and posterior distributions of parameters

Prior Posterior

Parameter Distribution Mean S.D. Mean 90% interval

γ Beta 0.500 0.100 0.649 [0.564, 0.731]

η Gamma 2.000 0.250 1.923 [1.506, 2.319]

ξw Beta 0.500 0.100 0.615 [0.431, 0.800]

ιw Beta 0.500 0.100 0.515 [0.347, 0.676]

ξp Beta 0.500 0.100 0.846 [0.789, 0.904]

ιp Beta 0.500 0.100 0.377 [0.216, 0.532]

φπ Gamma 1.500 0.250 1.781 [1.465, 2.078]

φy Gamma 0.125 0.050 0.307 [0.174, 0.447]

φr Beta 0.500 0.050 0.753 [0.721, 0.790]

ā Normal 0.390 0.100 0.406 [0.299, 0.515]

π̄ Normal 0.599 0.100 0.608 [0.501, 0.717]

r̄ Gamma 0.544 0.100 0.513 [0.407, 0.610]

l̄ Normal 0.000 0.100 -0.006 [-0.163, 0.164]

ρd Beta 0.750 0.100 0.851 [0.794, 0.911]

ρa Beta 0.500 0.100 0.338 [0.228, 0.448]

ρz Beta 0.500 0.100 0.723 [0.574, 0.887]

100σd Inv. Gamma 0.500 2.000 0.318 [0.192, 0.442]

100σa Inv. Gamma 0.500 2.000 0.560 [0.486, 0.630]

100σz Inv. Gamma 0.500 2.000 4.361 [1.529, 7.370]

100σr Inv. Gamma 0.500 2.000 0.152 [0.128, 0.174]

Note: Each posterior mean and 90% credible interval are calculated from 150, 000 draws generated using the

Metropolis-Hastings algorithm.
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Figure 1: Data and smoothed estimates
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Note: The figure compares the data (dotted lines) on output growth, inflation, hours worked, and the nominal interest

rate with the smoothed mean estimates (solid lines) of the corresponding variables.
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Figure 2: Natural rate of interest
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Note: The figure compares the smoothed mean estimate of the natural interest rate, in annualized terms, based on

the nonlinear model (solid line) with that based on the linear model (dotted line).
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Figure 3: Estimated shocks
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Note: The figure compares the smoothed mean estimates of the discount factor shocks dt and the productivity shocks

at, in percentage terms, based on the nonlinear model (solid lines) with those based on the linear model (dotted

lines).
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Figure 4: Expected inflation and output
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Note: The figure compares the smoothed mean estimates of expected inflation Et log Πt+1 and expected output

Etyt+1, in terms of percentage deviation from the steady state, based on the nonlinear model (solid lines) with those

based on the linear model (dotted lines).
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Figure 5: Price and wage dispersion
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Note: The figure shows the smoothed mean estimates of the price and wage dispersion in terms of percentage deviation

from the steady state.
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Figure 6: Natural rate of interest (Nonlinear vs. Quasi-linear)
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Note: The figure compares the smoothed mean estimates of the natural interest rate, in annualized terms, based on

the nonlinear model (solid line), the linear model (dotted line), and the quasi-linear model (dashed line).

33



Figure 7: Estimated shocks (Nonlinear vs. Quasi-linear)
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Note: The figure compares the smoothed mean estimates of the discount factor shocks dt and the productivity shocks

at, in percentage terms, based on the nonlinear model (solid lines), the linear model (dotted line), and the quasi-linear

model (dashed line).
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