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1 Introduction

In the overlapping generations (OLG) model, competitive equilibrium might not achieve an
optimal allocation, even when markets operate perfectly, as in the Arrow-Debreu abstraction. It
is now understood that this sort of inefficiency is caused by the lack of market clearing at infinity
(Geanakoplos, 1987). In order to design active policies (such as social security) which remedy
this type of inefficiency, it is important to identify optimality with easily verifiable conditions. A
cornerstone of the literature about characterizations of optimality in the OLG model is a pair
of works by Cass (1972) and Balasko and Shell (1980), the latter of which sophisticated Cass’s
argument to be more suitable for a deterministic pure-endowment OLG environment. It contributed
to the literature by demonstrating that optimality of an equilibrium allocation is characterized by
conditions on the equilibrium price corresponding to the allocation. One of implications of this
result is that, in a deterministic OLG model (with complete markets), we can examine whether the
equilibrium allocation is optimal by observing the associated equilibrium price and therefore the
policymaker no longer needs to examine the allocation itself (nor to know preferences).

Thanks to previous studies, we now know that the Cass-Balasko-Shell type of criteria of op-
timality in a deterministic environment, more precisely celebrated as the Cass criterion, can be
naturally extended to a stochastic environment. For stationary feasible allocations, Peled (1984),
Aiyagari and Peled (1991), Manuelli (1990), Chattopadhyay (2001), and Ohtaki (2013) found that
optimality can be characterized by the dominant root criterion, which is a special case of the Cass
criterion, i.e.: optimality is characterized by a certain condition on the dominant root of the contin-
gent price matrix related to a stationary equilibrium. For general feasible allocations, on the other
hand, Chattopadhyay and Gottardi (1999), Chattopadhyay (2006), and Bloise and Calciano (2008)
founded in a various level of generality that the Cass criterion is still applicable to equilibrium
contingent price processes.1 Therefore, even in a stochastic OLG environment, we might be able to
examine optimality of equilibrium allocations by observing the associated price (contingent upon
date-events).

Although one of important restrictions to obtain these results is a pair of convexity and smooth-
ness of preferences,2 we aim to reexamine characterizations of optimality in a stochastic OLG
model with convex but not necessarily smooth preferences. This reexamination is motivated by
recent remarkable development in decision theory under uncertainty, such as the maxmin expected
utility (MEU) preference axiomatized by Gilboa and Schmeidler (1989) and Casadesus-Masanell,
Klibanoff, and Ozdenoren (2000). Differently from the standard expected utility hypothesis, a de-
cision maker endowed with an MEU preference assigns a set of probability measures, not a single
probability measure, to uncertainty and behaves as if she maximizes the minimum of expected util-
ities over the set of measures. This multiplicity of priors is often called ambiguity, which is a case of
true uncertainty in the sense of Knight (1921).3 The MEU preference is known as one of reasonable
ways to explain several anomalies such as the Ellsberg paradox (1961). It can be convex when
its von Neumann-Morgenstern utility index function is concave but might not be differentiable at
some points as a result of the minimization of expected utilities. In the last three decades, lots of
classes of such convex but not necessarily smooth preferences have been axiomatized. In order to
import such various development in decision theory to the study on the OLG model, this study
considers a more general class of convex preferences, which can also include the class of preferences
with multiple discount rates à la Wakai (2008), for example.

1The Cass Criterion can be also extended to the production economy. Interested readers might be found, for
example, Demange and Laroque (1999, 2000), Barbie, Hagedorn, and Kaul (2007), and Gottardi and Kübler (2011).

2For importance of smoothness of preferences, see Balasko and Shell (1980, Footnote 5) for example.
3In the tradition of Knight (1921), “uncertainty” is risk if it is reducible to a single probability measure and

otherwise true uncertainty.
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In order to capture the role of convex but not necessarily smooth preferences in an OLG en-
vironment, we consider a simple stationary pure-endowment stochastic OLG model consisting of
infinite horizon with discrete time periods running from the initial period to +∞, finite Markov
states, one perishable commodity by period, and two-period-lived agents by generation. Although
such models are canonical, their stationary equilibria with sequentially complete markets are often
of interest as benchmarks of analysis of a variety of macroeconomic issues such as social security
systems, financial mechanisms, and so on.4 In this study, therefore, we restrict our attention on
optimality of stationary allocations and adopt conditional Pareto optimality (CPO) and conditional
golden rule optimality (CGRO) as optimality criteria.5 While CPO considers welfare of both initial
olds and newly born agents, CGRO takes care of welfare only of newly born agents. According to
these criteria, agents’ welfare is evaluated by conditioning their utility on the state at the date of
their birth.

In such a framework with convex but not necessarily smooth preferences, four observations
are mainly provided. First, CPO and CGRO of stationary feasible allocations are characterized
by conditions on the set of dominant roots of matrices of marginal rates of substitution at the
allocation. While CPO requires that the set of dominant roots contains some number less than or
equal to unity, CGRO requires that the set contains unity. Second, CPO and CGRO of a stationary
equilibrium allocation are characterized by conditions on the set of dominant roots of matrices of
supporting prices, not the realized equilibrium price matrix itself. Third, similar to the existing
results, the introduction of money in constant supply achieves CPO, especially CGRO. Fourth, the
introduction of equity also achieves CPO.

This study contributes to the literature by providing characterizations of optimality criteria
in a stochastic OLG model with convex but not necessarily smooth preferences. Under smooth
preferences, CPO [resp. CGRO] is characterized by the dominant root of the matrix of marginal
rates of substitution, being less than or equal to one [resp. being equal to one] (Ohtaki, 2013).
The first observation is therefore a natural extension of the existing result. The third and the forth
observations also emphasize the robustness of optimality of introducing money in constant supply
and equity founded in the literature by indicating that intergenerational trade through such assets
ensures optimality of equilibrium allocations. On the other hand, the second observation has a
remarkable implication, i.e.: observing the equilibrium price does not necessarily tell us whether
the associated allocation is optimal. This is because, in order to examine optimality, we should now
consider the set of supporting price matrices, not the observed equilibrium price matrix itself. This
study also provides several examples illustrating situations, wherein equilibrium price matrices do
not necessarily reveal precise information on optimality of equilibrium allocations. For example,
this study presents an example, wherein a stationary equilibrium can achieve CPO even when lump-
sum money taxes are introduced. This example makes a sharp contrast to a well-known result, that
is, when preferences are smooth, an introduction of lump-sum money taxes results inefficiency.6

Finally, we should mention that this study also contributes to the literature about the applica-
tion of decision making under ambiguity to dynamic economics and finance. Decision making under
ambiguity is already applied to a wide range of intertemporal macroeconomic models: asset pricing
as in Epstein and Wang (1994, 1995), search theory as in Nishimura and Ozaki (2004), real option
as in Nishimura and Ozaki (2007), learning as in Epstein and Schneider (2007), and growth theory
as in Fukuda (2008) are such examples but these does not necessarily addressed to the issue about
optimality of allocations. Actually, there seems few work characterizing optimality of allocations

4See also the work of Labadie (2004), which studied optimality in a simple stochastic OLG model and examine
several financial mechanisms to achieve optimal allocations.

5The concept of CPO is first introduced by Muench (1977).
6See, for example, McCandless and Wallace (1992, Ch.10).
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in a dynamic general equilibrium setting with ambiguity. One of exception is the work by Dana
and Riedel (2013).7 However, differently from ours, their results are obtained in a finite-horizontal
economy with the incomplete preference à la Bewley (2002) and without overlapping of genera-
tions. To our best knowledge, therefore, this study is the first of characterizing optimality under
ambiguity in an infinite-horizontal general equilibrium setting with overlapping of generations.

The organization of this paper is as follows: Section 2 presents details of the model. Section 3
introduces concepts of CPO and CGRO and characterizes them for stationary feasible allocations.
Section 4 applies results given in the previous section to stationary equilibrium allocations. There
also exist three appendixes. The Appendix A introduces, according to Ohtaki (2014), a graphical
device for analyzing two-state, one-agent, pure-endowment stochastic OLG model. Proofs of main
results are provided in the Appendix B. The Appendix C provides some of mathematical tools
using this study.

2 The Economy

This study considers a stationary, one-good, finite-state, pure-endowment stochastic overlap-
ping generations model with two-period-lived agents, as studied by Aiyagari and Peled (1991) and
Chattopadhyay (2001). The crucial difference from the previous studies is that agents are endowed
with convex but not necessarily smooth preferences. This section provides a formal description of
the model.

2.1 Ingredients

Time is discrete and runs from t = 1 to ∞. The stochastic environment is modeled by a
stationary Markov process with its finite state space S = {1, . . . , S}. For each t ≥ 0, we denote by
st the state realized in period t, where s0 ∈ S is the state in (implicitly defined) period 0 and is
treated as given.8 The set of all probability measures on S is denoted by ∆S.

After the realization of state st ∈ S in each period t ≥ 1, a new generation, the members
of which are called agents, is born, lives for two periods, and dies. The set of agents of each
generation is denoted by H := {1, . . . , H}. We will assume that the economy is stationary, i.e.:
the endowments and preference structures of each agent h ∈ H depend only on the realizations of
states s, s′ ∈ S during his/her lifetime, not on time nor on past realizations. Thus, an agent h ∈ H

born at state s ∈ S is endowed with (i) ωh
s = (ωhy

s , (ωho
ss′)s′∈S) ∈ ℜ++×ℜS

+ as the initial endowment

stream and (ii) ≿hs⊂ (ℜ+ × ℜS
+)

2 as his/her preference relation, where ωhy
s and ωho = (ωho

ss′)s′∈S
are endowments when young and old, respectively.

In addition, a one-period lived generation, the member of which are called initial old agents or
more simply initial olds, is born after the realization of the state s1 in period 1. The set of initial
olds is given by H as defined above. Each initial old h ∈ H born at state s1 ∈ H is assumed to
be endowed with ωho

s0s1
units of the consumption good in his/her lifetime and his/her consumption

7We can find a lot of studies characterizing optimality of allocations in a static, not dynamic, general equilibrium
environment: Billot, Chateauneuf, Gilboa, and Tallon (2000), Chateauneuf, Dana, and Tallon (2000), Dana (2004),
Kajii and Ui (2009), Rigotti and Shannon (2005, 2012), Rigotti, Shannon, and Strzalecki (2008), Dana and Le Van
(2010), Strzalecki and Werner (2011), and Carlier and Dana (2013) are such examples. Interested readers might
be able to find other applications of ambiguity to the static economic environment including Dow and Werlang
(1992), Mukerji and Tallon (1998, 2001, 2004a,b), Kajii and Ui (2005), Karni (2009), Rinaldi (2009), de Castro and
Chateauneuf (2011), Condie and Ganguli (2011), Gollier (2011), Lopomo, Rigotti, and Shannon (2011), Mandler
(2013), and de Castro, Liu, and Yannelis (2017).

8This study implicitly considers a standard date-event tree as seen in, for example, Chattopadhyay (2001). There-
fore, the initial state s0 can be interpreted as the root of the date-event tree.
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stream cho0s1 ∈ ℜ+ is ranked according to a utility function uh0(c
ho
0s1

) := cho0s1 , where ωho
s0s1

is defined
as above.

Let ω̄ss′ :=
∑

h∈H(ω
hy
s′ + ωho

ss′) for each (s, s′) ∈ S × S, which is the total endowment when the
current and preceding states are s′ and s, respectively. The economy faces aggregate uncertainty
given the preceding state s ∈ S if there are some s′, s′′ ∈ S such that ω̄ss′ ̸= ω̄ss′′ and idiosyncratic
uncertainty given the preceding state s ∈ S if ω̄ss′ is constant with respect to s′. One should note
that, even when ωho

ss′ = ωho
ss′′ for every h ∈ H and every s, s′, s′′ ∈ S, the economy might face

aggregate uncertainty.9

2.2 Utility Representations

Throughout this study, it is assumed that the preference relation ≿hs of agent h born at state s
can be represented by a lifetime utility function Uhs : ℜ+ × ℜS

+ → ℜ, i.e.: chs ≿hs bhs ⇔ Uhs(chs ) ≥

Uhs(bhs ) for each chs = (chys , (choss′)s′∈S) and each bhs = (bhys , (bhoss′)s′∈S). Furthermore, we impose the
following assumption on preferences.

Assumption. For each (h, s) ∈ H × S, Uhs is strongly monotone increasing,10 strictly concave,
and continuous.

We do not necessarily assume differentiability of Uhs. This type of utility functions includes many
classes of preferences, in particular:

• the class of expected utility (EU) preferences

Uhs(chs ) =
∑

s′∈S

uhs(chys , choss′)π
h
ss′ ,

where uhs : ℜ+ ×ℜ+ → ℜ and πh
s ∈ ∆S,

• the class of maxmin expected utility (MEU) preferences of Gilboa and Schmeidler (1989)

Uhs(chs ) = min
πh
s∈Π

h
s

∑

s′∈S

uhs(chys , choss′)π
h
ss′ , (1)

where uhs : ℜ+ ×ℜ+ → ℜ and Πh
s ⊂ ∆S is nonempty, compact, and convex,11

• the class of variational preferences of Maccheroni, Marinacci, and Rustihici (2006)

Uhs(chs ) = min
πh
s∈∆S

[

∑

s′∈S

uhs(chys , choss′)π
h
ss′ + θhs (π

h
s )

]

,

where uhs : ℜ+ ×ℜ+ → ℜ and θhs : ∆S → ℜ is convex,

9This is because it might hold that ωhy

s′
̸= ωhy

s′′
for some h ∈ H and some s′, s′′ ∈ S.

10A function f : ℜn → ℜ is strongly monotone increasing if f(x) > f(y) for each x ∈ ℜn and each y ∈ ℜn such
that xi ≥ yi for each i = 1, . . . , n and xj > yj for some j = 1, . . . , n.

11The class of MEU preferences also includes the class of Choquet EU preferences with convex capacities (Schmei-
dler, 1989), the class of ε-contaminated EU preferences (Nishimura and Ozaki, 2006), the class of Cobb-Douglas
preferences under uncertainty (Faro, 2013), and so on. The axiomatization of MEU preferences over general acts, not
Anscombe-Aumann acts, is given, for example, by Casadesus-Masanell, Klibanoff, and Ozdenoren (2000).
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• the class of multiplier preferences of Hansen and Sargent (2001)

Uhs(chs ) = min
πh
s∈∆S

[

∑

s′∈S

uhs(chys , choss′)π
h
ss′ + θhs (π

h
s ∥ µh

s )

]

where uhs is a real-valued function on ℜ+ ×ℜ+ and

θhs (π
h
s ∥ µh

s ) =











θ
∑

s′∈S

πh
ss′ loge

πh
ss′

µh
ss′

if πh
s ≪ µh

s

∞ otherwise,

for some µh
s ∈ ∆S,

12

• the class of preferences with multiple discount rates à la Wakai (2008)

Uhs(chs ) = min
δ∈D̂h

s

[

(1− δ)uhs(chys ) + δ
∑

s′∈S

uhs(choss′)π
h
ss′

]

,

where uhs : ℜ+ → ℜ, πh
s ∈ ∆S, and D̂h

s ⊂ ]0, 1[ is nonempty, closed, and convex,13

and so on.14 As well known, preferences belonging to the last four classes might be nondifferentiable
at some points on their domain even when the utility index function uhs is differentiable. We will
often invoke the class of MEU preferences to present examples illustrating cases, wherein preferences
are nondifferentiable. In such situations, the utility index function uhs is assumed to be strongly
monotone increasing, strictly concave, and continuously differentiable on the interior of its domain.

3 Optimality Criteria

The goal of this section is to define and characterize optimality criteria. Subsection 3.1 gives
definitions of optimality criteria and Subsection 3.3 provides their characterizations. On the other
hand, Subsection 3.2 introduces a convenient notion on the marginal rate of substitution.

3.1 Definitions of Optimality Criteria

Recall that, at each state s′ in each period t with preceding state s, there are ω̄ss′ :=
∑

h∈H(ω
hy
s′ +

ωho
ss′) units of the consumption good. As usual, a stationary allocation is a profile of amounts of

the consumption good allocated to H young agents and H old agents at that state. A stationary
feasible allocation is then a family c = {cho0 , chy, cho}h∈H, or simply c = {chy, cho}, of functions
cho0 : S → ℜ+, c

hy : S → ℜ+, and cho : S× S → ℜ+ such that
∑

h∈H

chys′ +
∑

h∈H

cho0s′ = ω̄s0s′

∑

h∈H

chys′ +
∑

h∈H

choss′ = ω̄ss′

(2)

12The axiomatization of multiplier preferences can be found in Strzalecki (2011).
13To be more precise, Wakai (2008) axiomatized a preference for infinite horizontal choices, not a preference under

uncertainty. See also Chambers and Echenique (2018) for preferences with multiple discount rates. Drugeon, Ha-Huy,
and Nguyen (2018) applies such preferences to dynamic programming.

14Although our preference includes lots of utility representations under ambiguity, there exist some exceptions. For
example, the α-maxmin expected utility preference (Ghirardate, Mccheroni, and Marinacci, 2004) is not necessarily
convex. See also Ghirardate and Marinacci (2002) and Xue (2018) for the α-maxmin expected utility preference.
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for each s, s′ ∈ S, where cho0s′ ∈ ℜ+ is the consumption of the initial old h born at state s′ in period

1 and chs = (chys , (choss′)s′∈S) is a consumption stream (contingent upon realizations of states in the
second period of the life) of each agent h ∈ H born at state s ∈ S.15 We denote by A the set of
stationary feasible allocations. We also denote by A′ the set of steady state allocations, i.e.: the set
of stationary feasible allocations c satisfying that cho0s′ = chos0s′ for each s′ ∈ S.

A stationary feasible allocation c = {cho0 , chy, cho}h∈H is said to be interior if chys > 0 and
choss′ > 0 for each h ∈ H and each s, s′ ∈ S. It is also fully-insured if chosτ = chosκ for each h ∈ H and
each s, τ, κ ∈ S.

For any two stationary feasible allocation b and c, we say that b CPO-dominates c if

(∀(h, s) ∈ H × S) bho0s ≥ cho0s and Uhs(bhs ) ≥ Uhs(chs )

with strict inequality somewhere. We can then define “conditional Pareto optimality” as follows:

Definition 1 A stationary feasible allocation c is said to be conditionally Pareto optimal (CPO)
if there exists no other stationary feasible allocation b that CPO-dominates c.

CPO considers welfare of both initial olds and newly born agents. On the other hand, we can
also consider another optimality criterion, which takes care of welfare only of newly born agents.
For any two stationary feasible allocation b and c, we say that b CGRO-dominates c if

(∀(h, s) ∈ H × S) Uhs(bhs ) ≥ Uhs(chs )

with strict inequality somewhere. The concept of “conditional golden rule optimality” is then
defined as follows:

Definition 1′ A steady state allocation c is said to be conditionally golden rule optimal (CGRO)
if there exists no other steady state allocation b that CGRO-dominates c.

In the above definitions, “conditionally” means the fact that agents’ welfare is evaluated by
conditioning their lifetime utilities on the state at the date of birth.

We close this subsection with a remark on the relationship between CPO and CGRO.

Remark 1 One might have an intuition that CGRO always implies CPO. However, as presented in
Example 1 of Ohtaki (2013), we can construct several examples in which CGRO does not necessarily
imply CPO.16 As shown in Proposition 1 of Ohtaki (2013), such anomalous situations are avoidable
by imposing, for example, strict quasi-concavity on lifetime utility functions. Because this study
has assumed strict concavity of lifetime utility functions, we can consider that all CGRO allocations
are also CPO.

3.2 The Set of Matrices of Marginal Rates of Substitution

In order to provide characterizations of CPO and CGROallocations, we introduce several no-
tations. In the current setting, each utility function Uhs is not necessarily differentiable. However,
we can define the “superdifferential” of Uhs. The superdifferential of Uhs at chs is defined by

∂Uhs(chs ) := {vhs ∈ ℜ1+S : (∀bhs ∈ dom Uhs) Uhs(bhs ) ≤ Uhs(chs ) + ⟨vhs , b
h
s − chs ⟩}

15The equal sign in the feasibility condition (2) can be relaxed to the (weak) one of ineqality.
16Such an anomalous example is given, for example, when lifetime utility functions are linear. Under such prefer-

ences, Ohtaki (2013, Example 1) illustrates an anomalous situation wherein the set of CPO allocations becomes a
proper subset of the set of CGRO allocations.
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and each of its elements, denoted by vhs = (vhys , (vhoss′)s′∈S) ∈ ℜ1+S for example, is called a super-
gradient of Uhs at chs .

17 Because Uhs is concave, one can immediately show that ∂Uhs(chs ) is closed
and convex. It also follows from Theorem C.1 in the Appendix that ∂Uhs(chs ) is nonempty and
bounded, provided that chs ≫ 0. Therefore, ∂Uhs(chs ) is nonempty, compact, and convex for each
chs ≫ 0. Furthermore, one can easily observe that all of coordinates of each vhs ∈ ∂Uhs(chs ) are
positive because of strong monotonicity of Uhs.18 We can then define the set of S × S positive
matrices

M
h(ch) :=

{

[

vhoss′

vhys

]

s,s′∈S

: (∀s ∈ S) (vhys , (vhoss′)s′∈S) ∈ ∂Uhs(chs )

}

for each h ∈ H and each ch = (chs )s∈S. Because ∂Uhs(chs ) is nonempty and each coordinates
of vhs ∈ ∂Uhs(chs ) is positive, Mh(ch) is well-defined and nonempty, provided that chs ≫ 0. As
shown in following two examples, this can be interpreted as the set of matrices of marginal rates
of substitution.

Example 1 (Differentiable Case) Assume that, for each h ∈ H and each s ∈ S, Uhs is differ-
entiable on the interior on its domain. This example illustrates that, under such an assumption,
Mh(ch) is actually a singleton, the element of which is the matrix of marginal rates of substitution.
In fact, it follows from Theorem C.2 in the Appendix that

∂Uhs(chs ) = {∇Uhs(chs )} = {(Uhs
y (chs ), (U

hs
s′ (c

h
s ))s′∈S)},

where Uhs
y (chs ) = ∂Uhs(chs )/∂c

hy
s and Uhs

s′ (c
h
s ) = ∂Uhs(chs )/∂c

ho
s′ are standard marginal utilities with

respect to the first- and second-period consumptions. Therefore,

M
h(ch) =

{

[

Uhs
s′ (c

h
s )

Uhs
y (chs )

]

s,s′∈S

}

,

which is a singleton and its unique element is the matrix of marginal rates of substitution. ■

Unlike Example 1, the set Mh(ch) might have multiple elements when Uhs is not differentiable.
The following example illustrates this fact.

Example 2 (Nondifferentiable Case with MEU) Here, we consider the class of MEU prefer-
ences as in Eq.(1). As well known, the MEU preference is not differentiable at some points. As
shown in Theorem C.7 in the Appendix, we can verify that, under the current assumption,

∂Uhs(chs ) =

{(

∑

s′∈S

uhsy (chys , choss′)π
h
ss′ , (u

hs
o (chys , choss′)π

h
ss′)s′∈S

)

: πh
s ∈ B

h
s (c

h
s )

}

,

where Bh
s (c

h
s ) is the set of active beliefs given the consumption stream chs , i.e.:

B
h
s (c

h
s ) := argmin

πh
s∈Π

h
s

∑

s′∈S

uhs(chys , choss′)π
h
ss′ ;

and uhsy = ∂uhs/∂chys and uhso = ∂uhs/∂choss′ . The set of matrices of marginal rates of substitution,

Mh(ch), is then given by

M
h(ch) =

{

Mh
πh(c

h) : (∀s ∈ S) πh
s ∈ B

h
s (c

h
s )
}

, (3)

17For each x, y ∈ ℜn, ⟨x, y⟩ := x1y1 + · · · + xnyn represents their inner product, where x = (x1, . . . , xn) and
y = (y1, . . . , yn).

18See Theorem C.3 in the Appendix.
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where

Mh
πh(c

h) =

[

uhso (chys , choss′)π
h
ss′

∑

τ∈S u
hs
y (chys , chosτ )π

h
sτ

]

s,s′∈S

. (4)

We can observe that this set can actually have multiple elements when chs is fully-insured, i.e.:
chosτ = chosκ for each τ, κ ∈ S. This is because Bh

s (c
h
s ) = Πh

s for each chs such that chosτ = chosκ for each
τ, κ ∈ S. ■

One should also note that, even when we consider a deterministic environment, Mh(ch) might
have multiple elements.

Example 3 (Nondifferentiable Case in Deterministic Environment) Suppose that S is a
singleton and we omit the script s at Uhs, chs , and so on. Here, we consider a lifetime utility
function in the from given by

Uh(chy, cho) = min
δ∈Dh

[(1− δ)u(cy) + δu(co)], (5)

where Dh := [δh, δ
h
] for some δh and some δ

h
satisfying that 0 < δh ≤ δ

h
< 1. This is a special

case of Wakai (2008). Then, the set of superdifferential of Uh is calculated as

∂Uh(ch) =
{

((1− δ)u′(chy), δu′(cho)) : δ ∈ ADh(ch)
}

,

where ADh(ch) is the set of active discount factor given ch, i.e.:

ADh(ch) := argmin
δ∈Dh

[(1− δ)u(cy) + δu(co)].

Therefore, the set of 1× 1 matrices of marginal rates of substitution is given by

M
h(ch) =

{[

δ

1− δ

u′(cho)

u′(chy)

]

: δ ∈ ADh(ch)

}

.

One can easily observe that this set has multiple elements when chy = cho. This is because
ADh(ch) = Dh for each ch = (chy, cho) such that chy = cho.

Finally, we also introduce several notations. The current restrictions on preferences implies that
Mh(ch) turns out to be the set of S×S “positive” square matrices. A matrix is positive if all of its
components are strictly positive. By the Perron-Frobenius theorem,19 any positive square matrix
M has a unique dominant root, denoted by λf (M), and it holds that My(M) = λf (M)y(M) for
some positive vector, y(M), unique up to positive scalar multiple. The rest of this paper will
repeatedly invoke this fact. Also let, for each stationary feasible allocation c = (ch)h∈H,

M(c) =
∩

h∈H

M
h(ch),

which is the intersection of sets of marginal rates of substitution over agents h ∈ H.

19See, for example, Debreu and Herstein (1953) and Takayama (1974, Theorems 4.B.1 and 4.B.2) for more details
on the Perron-Frobenius theorem.
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3.3 Characterization

We are now ready to characterize CPO and CGRO allocations. As shown in the next two
theorems, CPO and CGRO allocations are characterized by conditions on the dominant roots of
matrices of marginal rates of substitution.

Theorem 1 An interior stationary feasible allocation c is conditionally Pareto optimal if and only
if the set (λf ◦M)(c) contains some number less than or equal to one.20

Theorem 1′ An interior steady state allocation c is conditionally golden rule optimal if and only
if the set (λf ◦M)(c) contains unity.

In other words, an interior stationary feasible allocation c is CPO if and only if there exists at
least one element M of M(c) such that λf (M) ≤ 1 and an interior steady state allocation c is
CGRO if and only if there exists at least one element M of M(c) such that λf (M) = 1. Although
we might not be able to determine uniquely the matrix of marginal rates of substitution under
nonsmoothness of preferences, we can say that an interior c is CPO [resp. CGRO] if there is at
least one matrix of marginal rates of substitution, which is common to all newly born agents and
of which dominant root is less than or equal to one [resp. is exactly equal to one]. As shown
in Corollaries 1 and 1′ presented below, these characterizations of optimality criteria are natural
extensions of those under smoothness of preferences.21

Note that the set of marginal rates of substitution is derived from ∂Uhs(chs ). Therefore, even
when Uhs has some nondifferentiable points, the condition in Theorem 1 degenerate into the stan-
dard one if ∂Uhs(chs ) is singleton, i.e.: an interior stationary feasible allocation c is CPO if and
only if the dominant root of a unique elements of M(c) is less than or equal to one.22 Of course, a
similar statement can be given to Theorem 1′ and CGRO.

When preferences are differentiable as in some previous literature or in Example 1, the set
of matrices of the marginal rates of substitution degenerates into a singleton. Therefore, we can
obtain the following corollaries.

Corollary 1 Suppose that, for each h ∈ H and s ∈ S, Uhs is differentiable on the interior of its
domain. Then, an interior stationary feasible allocation c is conditionally Pareto optimal if and
only if there exists some S × S positive matrix M = [mss′ ]s,s′∈S such that

(∀h ∈ H)(∀s, s′ ∈ S) mss′ =
Uhs
s′ (c

h
s )

Uhs
y (chs )

(6)

and λf (M) ≤ 1.

Corollary 1′ Suppose that, for each h ∈ H and s ∈ S, Uhs is differentiable on the interior of its
domain. Then, an interior steady state allocation c is conditionally golden rule optimal if and only
if there exists some S × S positive matrix M = [mss′ ]s,s′∈S and λf (M) = 1, where mss′ satisfies
Eq.(6).

These corollaries are consistent with Theorems 1 and 2 of Ohtaki (2013), which characterize CPO
and CGRO when lifetime utility functions are differentiable. By simple comparison, we can know
that Theorems 1 and 1′ are natural extensions of these corollaries.

20For each stationary feasible allocation c, (λf ◦M)(c) = λf (M(c)) = {λf (M) : M ∈ M(c)}.
21See, for example, Ohtaki (2013, Theorems 1 and 2)
22See also Corollary 1 below.
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When preferences belong to the MEU class, the characterization becomes a bit complex. Sup-
pose that preferences are represented as in Eq.(1). In such a case, M(c) is rewritten as in Eq.(3),
so that we can obtain the next corollaries.

Corollary 2 Suppose that preferences belong to the class of MEU preferences as in Eq.(1). An
interior stationary feasible allocation c is then conditionally Pareto optimal if and only if there
exists some S × S positive matrix M and some πh

s ∈ Bh
s (c

h
s ) for each h ∈ H and each s ∈ S such

that M = Mh
πh(c

h) for each h ∈ H and λf (M) ≤ 1, where Mh
πh(c

h) is defined as in Eq.(4).

Corollary 2′ Suppose that preferences belong to the class of MEU preferences as in Eq.(1). An
interior steady state allocation c is then conditionally golden rule optimal if and only if there exists
some S × S positive matrix M and some πh

s ∈ Bh
s (c

h
s ) for each h ∈ H and each s ∈ S such that

M = Mh
πh(c

h) for each h ∈ H and λf (M) = 1, where Mh
πh(c

h) is defined as in Eq.(4).

Note that the set of matrices of marginal rates of substitution, Mh(ch), is calculated for Bh
s (c

h
s ), not

necessarily for Πh
s . Therefore, even when Πh

s has multiple elements for each h ∈ H and each s ∈ S,
if Bh

s (c
h
s ) is a singleton for each h and each s, the condition in Corollary 2 degenerates into the

standard one, i.e.: c is CPO if and only if the dominant root of a unique matrix of marginal rates
of substitution is less than or equal to one. However, when we consider a fully-insured stationary
feasible allocation, the set of matrices of marginal rates of substitution is calculated for Πh

s and
M(c) might have multiple elements. A similar statement can be given to CGRO.

We give an example for Corollaries 2 and 2′.

Example 4 Suppose that H is a singleton (and therefore we omit sub/superscript h, which rep-
resents agents’ types) and S = {α, β}. Furthermore, specify the economy by setting as (ω̄α, ω̄β) =
(6.5, 5), Πs = {πs ∈ ∆S : 0.25 ≤ πsα ≤ 0.75}, and

U s(cys , c
o
sα, c

o
sβ) = min

πs∈Πs

∑

s′∈S

(ln cys + ln coss′)πss′ = ln cys + min
πs∈Πs

∑

s′∈S

ln coss′πss′ ,

which belongs to the class of MEU preferences.23 Also let µs = (µsα, µsβ) = (0.25, 0.75) and
νs = (νsα, νsβ) = (0.75, 0.25) for each s ∈ S. Now, as an example, we examine optimality of an
interior stationary feasible allocation (co0, c) = (co0, (c

y
s , coss′)s,s′∈S) such that cyα = 3.65, cyβ = 2.15,

and co0 = coss′ = 2.85 for each s, s′ ∈ S. At this allocation, we have Bs(cs) = Πs for each s ∈ S and
M(c) = {Mπ(c) : (∀s ∈ S) πs ∈ ∆S and 0.25 ≤ πsα ≤ 0.75} because cos is fully-insured. Then, we
can obtain that λf (Mµ(c)) ≈ 0.89 and λf (Mν(c)) ≈ 1.15. Because µ ∈ Bs(cs) for each s and the
dominant root of Mµ(c) is less than one, we can conclude that the allocation (co0, c) here is CPO.
Furthermore, one can easily verify that the steady state allocation c is also CGRO, i.e.: there exists
some π = (πα, πβ) ∈ Πα ×Πβ such that λf (Mπ(c)) = 1. ■

Remark 2 Ohtaki (2014) found that, for a two-state and one-agent stochastic OLG model, a
stationary feasible allocation can be identified with a point in an appropriate box diagram and each
agent’s preference defined over such points can be represented by indifference curves restricted on
the box. Moreover, the dominant root characterization of CGRO gives us a graphical intuition,
i.e.: at a CGRO allocation, indifference curves of agent born at state α and agent born at state β
are tangent to each other (and the slope of them must be positive), where S = {α, β}. According to

23Interested readers can find in the work by Faro (2013) an axiomatization of the maxmin expected utility preference
with logarithmic index functions.
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Figure 3.1: Conditional Pareto Optimality in the Edgeworth-Ohtaki Box

Ohtaki (2014), we can give Example 3 the box diagram as in Figure 3.1.24 In the figure, indifference
curves of agents born at state α and β through the stationary feasible allocation considered in
Example 3, which is identified with the point (xoα, x

o
β) = (2.85, 2.85) in the box, are depicted as the

black solid line and the gray solid line, respectively. One can find that those indifference curves are
tangent to each other.

Finally, we present results in a deterministic environment. In order to tailor the presented
results to meet the deterministic situation, assume throughout the rest of this section that S is a
singleton and we omit the script s at Uhs, chs , and so on. Then, for each consumption stream for
agent h, ch = (chy, cho), the supperdifferential of Uh at ch is defined by

∂Uh(ch) := {vh ∈ ℜ2 : (∀bh ∈ dom Uh) Uh(bh) ≤ Uh(ch) + ⟨vh, bh − ch⟩}

and the set of 1× 1 matrices of marginal rates of substitution for agent h is given by

M
h(ch) :=

{

λf

([

vho

vhy

])

: (∀h ∈ H) vh = (vhy, vho) ∈ ∂Uh(ch)

}

.

Because the dominant root of 1× 1 matrix [m] is equal to m for each m > 0, each dominant root
λf ([m]) of M(ch) is also the marginal rate of substitution m. Also, we often identify the number
m with the 1× 1 matrix [m]. We can now obtain the following results.

Corollary 3 An interior stationary feasible allocation c is (conditionally) Pareto optimal if and
only if there exists some positive number m ≤ 1 such that

(∀h ∈ H)(∃v̄h ∈ ∂Uh(ch)) m =
v̄ho

v̄hy
.

Corollary 3′ An interior steady state allocation c is (conditionally) golden rule optimal if and
only if

(∀h ∈ H)(∃v̄h ∈ ∂Uh(ch))
v̄ho

v̄hy
= 1.

24For more detail, see the Appendix A, Ohtaki (2014), or Ohtaki and Ozaki (2015). Figures in this study are drawn
by using a well-known free software environment for statistical computing and graphics, R.
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Of course, when Uh is differentiable, v̄ho/v̄hy is equal to Uh
o (c

h)/Uh
y (c

h) and therefore is actually the
marginal rate of substitution for agent h. In such a case, the necessary and sufficient condition for
CPO in Corollary 3 degenerates into a well-known one that claims the marginal rates of substitution
for every agent is less than or equal to one. Of course, a similar argument is given to CGRO and
Corollary 3′.

4 Optimality of Stationary Equilibrium Allocations

The previous section characterized optimality criteria of stationary “feasible” allocations. The
results also correspond to the welfare analyses of stationary “equilibrium” allocations. This section
examines the relationship between optimality criteria and stationary equilibrium allocations.

4.1 Supporting Price Matrix

We first define the concept of supporting price matrices, which can be interpreted as candidates
of the equilibrium prices given an allocation:

Definition 2 Let c be a stationary feasible allocation. A positive matrix P = [pss′ ]s,s′∈S is a
supporting price matrix of c if, for each b = {bhy, bho}, each s ∈ S, and each h ∈ H,

Uhs(bhs ) > Uhs(chs ) implies that bhys +
∑

s′∈S

bhoss′pss′ > chys +
∑

s′∈S

choss′pss′ .

Also, we denote by P(c) the set of all supporting price matrices of c.

The set of supporting price matrices has a closed representation:

Proposition 1 For each interior stationary feasible allocation c, P(c) = M(c).

Furthermore, combining Theorems 1 and 1′ with Proposition 1, we can obtain the following
characterizations for CPO and CGRO of stationary equilibrium allocations, respectively:

Theorem 2 An interior stationary feasible allocation c is conditionally Pareto optimal if and only
if there exists at least one supporting price matrix P ∈ P(c), of which the dominant root is less than
or equal to unity.

Theorem 2′ An interior steady state allocation c is conditionally golden rule optimal if and only
if there exists at least one supporting price matrix P ∈ P(c), of which the dominant root is equal to
unity.

According to these theorems, we can find that optimality of stationary feasible allocations are
characterized by conditions on the set of supporting price matrices: CPO requires that the set
of dominant roots of supporting price matrices contains number less than or equal to unity and
CGRO requires the set contains unity.

Remark 3 When preferences are smooth, a supporting price matrix of a stationary feasible al-
location is uniquely determined and it completely retains information about marginal rates of
substitutions and, so, about welfare improving redistributions. In such a situation, by following
Chattopadhyay and Gottardi (1999) or Ohtaki (2013) for example, one can conclude an allocation
is suboptimal in the sense of CPO [resp. CGRO] if the dominant root of a unique supproting price
matrix is greater than [rep. not equal to] unity. However, in our model with not necessarily smooth
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preferences, a stationary feasible allocations might have multiple supporting price matrices because
of nondifferentiability of lifetime utility functions. As a result, some of supporting price matrices
might not completely retain sufficient information about welfare improving redistributions. So, one
can find that an interior stationary feasible allocation might be CPO [resp. CGRO] even when
the dominant root of its given supporting price matrix is strictly greater than [resp. not equal to]
unity. This implies that, in an OLG structure with not necessarily smooth preferences, prices do
not necessarily tell us precise information on optimality of the equilibrium allocation. This is a
remarkable difference from the standard argument with smooth preferences and we present several
examples later.

4.2 Complete Market

We now define a stationary equilibrium with a complete market, i.e.: a stationary equilibrium
at which agents can buy and sell all contingent commodities in a centralized market.

Definition 3 A pair (P ∗, c∗) of a positive price matrix P ∗ =
[

p∗ss′
]

s,s′∈S
of contingent commodities

and a stationary feasible allocation c∗ is called a stationary equilibrium (with respect to the initial
endowments ω) if

• for each h ∈ H and each s ∈ S, c∗s belongs to the set

argmax
(chys ,chos )∈ℜ+×ℜS

+

{

Uhs(chs ) : c
hy
s +

∑

s′∈S

choss′p
∗
ss′ ≤ ωhy

s +
∑

s′∈S

ωho
ss′p

∗
ss′

}

given p∗s = (p∗ss′)s′∈S; and

• for each s′ ∈ S,
∑

h∈H c∗hys′ +
∑

h∈H c∗hoss′ = ω̄ss′ .

In this definition, the former condition is the optimization condition of each agent s ∈ S subject
to a lifetime budget constraint, and the latter is the market clearing conditions. Moreover, for
each stationary feasible allocation c, we denote by P∗(c) the set of all positive price matrices
P = [pss′ ]s,s′∈S such that (P, c) is a stationary equilibrium. Note that P∗(c) might be empty.
Because it can be easily verified that P∗(c) ⊂ P(c), we can obtain the following propositions.

Proposition 2 An interior stationary feasible allocation c is conditionally Pareto optimal if there
exists at least one element P of P∗(c) such that λf (P ) ≤ 1.

Proposition 2′ An interior steady state allocation c is conditionally golden rule optimal if there
exists at least one element P of P∗(c) such that λf (P ) = 1.

In the existing literature with smooth preferences, one of advantages of the dominant root criterion
for optimality of equilibrium allocations is that we can examine optimality of the allocation by
examining the dominant roots of the observed equilibrium price and the policy maker does not
need information about the allocation nor preferences. On the other hand, when preferences are
nonsmooth, we should remark the fact that we may not say anything about optimality of an
observed stationary equilibrium (P, c) because optimality of its allocation is examined by the set
of supporting prices, P(c), not an observed equilibrium contingent price matrix, P . Exceptionally,
however, when the observed price matrix has the dominant root being less than or equal to one,
we can say that the corresponding equilibrium allocation is optimal.
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Corollary 4 For each stationary equilibrium (P, c) with chs ≫ 0 for each h ∈ H and each s ∈ S, c
is conditionally Pareto optimal if λf (P ) ≤ 1.

Corollary 4′ For each stationary equilibrium (P, c) with chs ≫ 0 for each h ∈ H and each s ∈ S, c
is conditionally golden rule optimal if λf (P ) = 1.

These follow immediately from the previous propositions.
We can also provide results in the case of smooth preferences. When Uhs is differentiable

for each h ∈ H and s ∈ S, the model degenerates into the standard one and we can obtain the
well-known characterizations of CPO and CGRO for stationary equilibrium allocations.

Corollary 5 Suppose that Uhs is differentiable for each h ∈ H and each s ∈ S. Then, for each
stationary equilibrium (P, c) with c ≫ 0, c is conditionally Pareto optimal if and only if λf (P ) ≤ 1.

Corollary 5′ Suppose that Uhs is differentiable for each h ∈ H and each s ∈ S. Then, for each
stationary equilibrium (P, c) with c ≫ 0, c is conditionally golden rule optimal if and only if
λf (P ) = 1.

These are consistent with Propositions 2 and 3 of Ohtaki (2013), which characterize CPO and
CGRO of stationary equilibrium allocations when lifetime utility functions are differentiable.

We close this subsection with an important result on existence of optimal equilibrium.

Proposition 3 There exists a stationary equilibrium, of which allocation is conditionally Pareto
optimal.

The proof of this proposition follows immediately from that of Theorem 2 of Aiyagari and Peled
(1991). More precisely, Aiyagari and Peled provided the above result in a model with the class
of differentiable expected utility preferences. However, their proof strategy does not depend on
differentiability of lifetime utility functions and therefore it is applicable to our model. Following
Proposition 3, we can say that a stationary equilibrium with money and social securities, defined in
Subsection 4.4, always exists when every nonmonetary equilibrium, an equilibrium wherein money
has no value, is not CPO.

4.3 Efficient No-trade Equilibria and Price Indeterminacy

In the current setting, agents are conditioned on the state at the date of their birth. Therefore,
one might have an interpretation that agents have some prior, which might be common to all
agents, but also have some posterior conditioned on the state realized in their first period. The
current setting allows us to have such an interpretation. For example, if agents’ preferences are
given in the standard expected utility form such as

Uhs(chs ) =
∑

s′∈S

uh(chys , choss′)π
h
ss′

for some πh
s ∈ ∆S, then πh

s can be interpreted as agent h’s posterior conditioned on the first-
period state s. Of course, agents’ posteriors might be different from each other. We might be
able to interpret such a situation as a result of some private information. According to these
interpretations, it is natural to investigate whether new information provided by the state realized
in agents’ first period leads to trade.

Here, we argue about “no-trade equilibrium.” A stationary no-trade equilibrium is a stationary
equilibrium (P ∗, c∗) such that c∗ = ω, i.e. : in that equilibrium, each agent does not buy nor sell at
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all and, as a result, what each agent consumes is exactly his/her initial endowment. Under strict
concavity of utility functions, we can show that all of stationary equilibria are stationary no-trade
equilibria if and only if the allocation corresponding to initial endowments is conditionally Pareto
optimal.

Proposition 4 The set of all stationary equilibria is given by {(P, ω) : P ∈ P(ω)} if and only if ω
is conditionally Pareto optimal.

Therefore, whenever the allocation corresponding to initial endowments is CPO, agents never
buy nor sell contingent commodities at all. With the rearrangement of the setting so as to be able
to buy and sell financial asset such as contingent claims, not contingent commodities, we can also
say that there is no trade of financial assets whenever the profile of initial endowments is CPO.

Remark 4 One might find a relation between the previous proposition and the work of Milgrom
and Stokey (1982), which observed in the literature of financial economics that if (1) agents are
rational and strictly risk averse, (2) initial endowments are Pareto optimal, (3) agents’ prior beliefs
are concordant, and (4) the structure for agents to acquire information is itself common knowledge,
then “no-trade equilibrium” can occur. The observation in Milgrom and Stokey (1982) says that,
even when agents receive new inside information, no trade occurs under (1)–(4). Kajii and Ui
(2009) and Martins-da-Rocha (2010) reexamined their results in models with preferences under
ambiguity. Although our statement is similar to them, our setting does not explicitly belong to
Bayesian models.

Proposition 4 also has a relation to Epstein and Wang (1994), which showed possibilities of
indeterminacy of security prices in an infinitely-lived-agent model with the MEU preference. In their
model, if there is no aggregate risk, price indeterminacy arises but the equilibrium allocation is equal
to that correspond to the initial endowment, i.e. : they have observed nominal indeterminacy, not
real indeterminacy. Even in our setting, a similar result can be obtained, i.e.: if ω is CPO and the set
M(ω), which is equal to the set of supporting price matrices P(ω), has multiple elements, there are
multiple price matrices P such that (P, ω) becomes stationary equilibrium. The following example
illustrates nominal indeterminacy, not real indeterminacy, under the class of MEU preferences.

Example 5 Consider the same economy and specifications as in Example 4 and assume that
(ωo

α, ω
o
β) = (2.85, 2.85). In such an environment, as argued in the paragraph following Example 3,

the stationary feasible allocation corresponding to (ωo
α, ω

o
β), denoted by ω, is conditionally Pareto

optimal. Then, it follows from the previous proposition that P(ω) = P∗(ω), which implies that
a pair (P, ω) can be a stationary equilibrium for each P ∈ P(ω). Furthermore, it follows from
Proposition 1 that P(ω) = {Mπ(ω) : π ∈ Π} because ω is fully insured. Therefore, equilibrium
price matrix is indeterminate because Mπ(ω) for each π ∈ Π is in fact a stationary equilibrium
price matrix. ■

Note that this example also illustrates a situation wherein prices of a stationary equilibrium do
not necessarily reveal optimality of the corresponding allocation. In fact, both (Mµ(ω), ω) and
(Mν(ω), ω) are, for example, stationary equilibria, wherein the observable price matrices are Mµ(ω)
and Mν(ω), respectively. However, both λf (Mµ(ω)) and λf (Mν(ω)) are not equal to one. Actually,
it is calculated that λf (Mµ(ω)) ≈ 0.89 and λf (Mν(ω)) ≈ 1.15, which are not equal to one. There-
fore, if the realized price matrix is Mν(ω) and one follows the classical dominant root criterion,
which requires that the dominant root of the price matrix is less than or equal to one, the alloca-
tion ω is judged as a suboptimal one, whereas ω is CPO, especially CGRO, as argued in Example
3. This implies that observed equilibrium price matrices do not necessarily reveal optimality of
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corresponding allocations. We should note that, even when λf (P ) > 1 [resp. λf (P ) ̸= 1] for some
equilibrium price matrix P , the corresponding equilibrium allocation might be CPO [resp. CGRO].

4.4 Welfare Theorems in Sequentially Complete Markets with Constant Money Supply

As mentioned in Subsections 4.2 and 4.3, a stationary equilibrium itself might not be CPO even
when markets operate perfectly. However, it is well-known in the literature that we can construct
a market mechanism which generates a CPO allocation by introducing an infinitely-lived outside
asset, which yields no dividend, money. In this section, we reexamine this well-known observation
and show not only the first but also the second theorems of welfare economics in financial economy
under constant money supply. In order to introduce the possibility of transfers, needed for the
second welfare theorem, we introduce in addition to fiat money a mandatory unfunded social
security system.

Mandatory Unfunded Social Security. We consider lump-sum transfers as a social security
system. Each agent h ∈ H born at state s ∈ H pays τhys when she is young and receives τhoss′

at state s′ ∈ S when she is old. It is assumed that the transfer, τ = {τhy, τho}h∈H, satisfies that

τhys < ωhy
s and τhoss′ > −ωho

ss′ for each h ∈ H and each s, s′ ∈ S. It is also assumed that the authority’s

policy is balanced, i.e. :
∑

h∈H τhoss′ =
∑

h∈H τhys′ for each s, s′ ∈ S.

Financial Assets. Suppose in this subsection that there exists one unit of money. Also suppose
that spot markets of one-period contingent claims exist and are complete.

Definition 4 A triplet (q∗, P ∗, c∗) of a positive money price vector q∗ ∈ ℜS
++, a positive price

matrix P ∗ =
[

p∗ss′
]

s,s′∈S
of contingent claims, and a stationary feasible allocation c∗ is called

a stationary equilibrium with money and social securities if there exists some money holdings
m∗ = (m∗h) ∈ (ℜS)H and some contingent claim portfolio matrices θ∗ ∈ (ℜS×S)H such that

• for all s ∈ S, (c∗hs ,m∗h
s , θ∗hs ) belongs to the set

argmax
(chys ,chos ,mh

s ,θ
h
s )

{

Uhs(chs ) :
chys = ωhy

s − τhys − q∗sm
h
s −

∑

s′∈S θ
h
ss′pss′

(∀s′ ∈ S) choss′ = ωho
ss′ + τhoss′ + q∗s′m

h
s + θhss′

}

given q∗ = (q∗s)s∈S and p∗s = (p∗ss′)s′∈S; and

• for all s, s′ ∈ S,
∑

h∈H m∗h
s = 1 and

∑

h∈H θ∗hss′ = 0.

In this definition, the former is the optimization condition of each agent h ∈ H born at state s ∈ S

subject to sequential budget constraints, and the latter is the pair of market clearing conditions for
money and contingent claims. One can easily verify that the good market equilibrium condition
also holds at a stationary equilibrium with money and social securities.

We can then find that an introduction of money can generate a CGRO allocation:

Theorem 3 An interior stationary feasible allocation of a stationary equilibrium with money and
social securities, if any, is always conditionally golden rule optimal.

In other words, when a stationary equilibrium with money exists, it always generates a CGRO
allocation. This theorem is an analog of the first fundamental theorem of welfare economics. The
financial intermediate role of money for remedying inefficiency in the OLG model is a well-known
result in the literature and the last theorem showed that the result still holds even when preferences
are nonsmooth.

16



Remark 5 Gottardi (1996) considered a stochastic OLG model, wherein each generation consists
of heterogeneous agents with differentiable lifetime utility functions and several securities exist, and
showed that a stationary monetary equilibrium generically exists and is locally isolated.25 Applying
his result to our model, we can show generic existence of stationary equilibrium with money. This
is because his proof of generic existence itself is independent of differentiability of lifetime utility
functions. We should remark, however, that stationary equilibrium with money might not be
locally isolated because lifetime utility functions in our model are not necessarily differentiable.
Indeterminacy and its robustness in a stochastic OLG model under ambiguity has been studied by
Ohtaki and Ozaki (2015).

Because a stationary equilibrium with money and social securities always achieves CGRO, we
should note that there might exists a CPO allocation that cannot be implemented as a stationary
equilibrium with money and social securities. Therefore, the second welfare theorem might not
hold in stochastic OLG models if we adopt CPO as an optimality criterion. However, by adopting
CGRO, not CPO, as an optimality criterion, we can also obtain the second welfare theorem.

Theorem 4 Each interior conditionally golden rule optimal allocation, if any, can be achieved by
some stationary equilibrium with money and appropriate social securities.

This theorem is an analog of the second welfare theorem. As noted above, we might not be
able to obtain this theorem when we adopt CPO instead of CGRO as an optimality criterion.
Theorem 4 has an important implication, i.e.: any interior CGRO allocation can be implemented
as a stationary equilibrium with money in constant supply under an appropriate social security
system.

4.5 Sequentially Complete Markets with Lump-sum Money Transfers

As shown in the previous subsection, an introduction of money in constant supply can achieve
CPO, especially CGRO. However, it is also well-known in the deterministic OLG model with smooth
preferences that an introduction of lump-sum money tax causes inefficiency (McCandless and Wal-
lace, 1992, Ch.10). In this subsection, we reexamine this well-known result under nonsmooth
preferences.

In order to consider an economy with lump-sum money taxes/subsidies, we first introduce a
policymaker who issues an outside asset yielding no dividend, money. The stock of money in each
period t ≥ 1 is denoted by Mt and satisfies that Mt = µMt−1 for each t ≥ 1, where µ > 0 is the
“gross” rate of growth of money and independent of realizations of states and M0 is the initial stock
distributed to the initial olds. The newly issued money in period t ≥ 1, Mt −Mt−1 = (µ− 1)Mt−1,
is equally distributed as lump-sum money transfer among old agents in that period.26

Now, denote the real price of money by q(σt) for each σt = (s0, s1, ..., st), which is the history of
states realized from (implicitly defined) period 0 until period t. Although the real money balance
q(σt)Mt might also depend on histories of states σt, we wish to explore a stationary situation
wherein the real money balance at the history σt depends only on the current state st, not on time
nor on past realizations of states, and can be denoted by ρ∗st . In such a situation, then, we can
obtain that

q(σt) =
ρ∗st
Mt

25By imposing not only smoothness but also additive separability and some elasticity condition on the lifetime
utility function, one can observe uniqueness of stationary equilibrium with money. See for example Ohtaki (2015).

26One can assume that the newly issued money in each period is distributed among all agents, not only old agents,
in that period.
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and define a stationary equilibrium with lump-sum money transfers by ρ∗ instead of q.

Definition 5 A triplet (ρ∗, P ∗, c∗) of a positive real money balance vector ρ∗ ∈ ℜS
++, a positive

price matrix P ∗ =
[

p∗ss′
]

s,s′∈S
of contingent claims, and a stationary feasible allocation c∗ is called

a stationary equilibrium with lump-sum money transfers if there exists some money holdings m∗
t =

(m∗h
t )h∈H ∈ (ℜS)H and some contingent claim portfolio matrices θ∗ ∈ (ℜS×S)H such that

• for all s ∈ S, (c∗hs ,m∗h
s , θ∗hs ) belongs to the set

argmax
(chys ,chos ,mh

t,s,θ
h
s )



















Uhs(chs ) :

chys = ωhy
s −

ρ∗s
Mt

mh
t,s −

∑

s′∈S

θhss′pss′

(∀s′ ∈ S) choss′ = ωho
ss′ +

ρ∗s′

Mt+1

(

mh
t,s + (µ− 1)

Mt

H

)

+ θhss′



















given ρ∗ = (ρ∗s)s∈S and p∗s = (p∗ss′)s′∈S; and

• for each period t and arbitrary states s, s′ ∈ S,
∑

h∈H m∗h
t,s = Mt and

∑

h∈H θ∗hss′ = 0.

In this definition, the former is the optimization condition of each agent h ∈ H born at state s ∈ S

subject to sequential budget constraints, and the latter is the asset market clearing conditions. One
can easily verify that the good market equilibrium condition also holds at a stationary equilibrium
with lump-sum money transfers.

Proposition 5 For each interior stationary feasible allocation of a stationary equilibrium with
lump-sum money transfers, denoted by (ρ∗, P ∗, c∗) if any, it holds that λf (P ∗) ≤ 1 if µ ≤ 1 and
otherwise λf (P ∗) > 1.

As an immediate corollary of this proposition, we can say that a stationary monetary equilibrium
with lump-sum money transfers can achieve CPO if µ ≤ 1. Furthermore, when preferences are
smooth, we can obtain the following corollary.

Corollary 6 When Uhs is differentiable for each h ∈ H and each s ∈ S, the allocation of a
stationary equilibrium with lump-sum money transfers is conditionally Pareto optimal if µ ≤ 1 and
otherwise conditionally Pareto suboptimal.

As mentioned above, in the deterministic OLG model with smooth preferences that an introduction
of lump-sum money tax causes inefficiency. Corollary 6 is an immediate extension of this well-known
observation to a stochastic environment with smooth preferences.

Contrary to a case with smooth preferences, we can find in a case with nonsmooth preferences
that the condition that µ > 1 does not necessarily mean suboptimality of an equilibrium allocation.
This is because its CPO depends on the set of supporting prices, not on the realized equilibrium
prices of contingent claims. In fact, we can construct examples, which illustrate that the equilibrium
allocation is still optimal even when lump-sum money tax is introduced.

Example 6 Consider the same economy as Example 4. Moreover, specify the initial endowments
as ωy

α = 5.5, ωy
β = 3.05, ωo

sα = 1, and ωo
sβ = 1.95 for each s ∈ S. In this economy, one can

immediately verify that the vector of real money balances, ρ = (ρs)s∈S, can be characterized as a
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solution of the following inclusion:

µ

[

ρα
ρβ

]

∈



































v′o(ω
o
αα + ρα)παα

v′y(ω
y
α − ρα)

v′o(ω
o
αβ + ρβ)παβ

v′y(ω
y
α − ρα)

v′o(ω
o
βα + ρα)πβα

v′y(ω
y
β − ρβ)

v′o(ω
o
ββ + ρβ)πββ

v′y(ω
y
β − ρβ)













[

ρα
ρβ

]

: (∀s ∈ S) πs ∈ Bs(c)























=





























(5.5− ρα)παα
1 + ρα

(5.5− ρα)παβ
1.95 + ρβ

(3.05− ρβ)πβα
1 + ρα

(3.05− ρβ)πββ
1.95 + ρβ











[

ρα
ρβ

]

: (∀s ∈ S) πs ∈ Bs(c)



















,

where vy(x) = vo(x) = lnx and c is an associated equilibrium allocation. Here, let 1 < µ < 1.14 and
consider (ρA, ρB) = (1.85, 0.9) as a candidate of an equilibrium vector of real money balances. Then,
Bs(cs) in the previous equation is replaced by Πs because coss′ = 2.85 for each s, s′ ∈ S. Moreover,
because λf (Mµ(c)) ≈ 0.89 < µ < 1.149 ≈ λf (Mν(c)),

27 the vector of real money balances, ρ, is
satisfied the last inclusion and therefore it is in fact the equilibrium vector of real money balances.
Now consider the equilibrium allocation (co0, c) = (co0, (c

y
s , coss′)s,s′∈S) such that cyα = 3.65, cyβ = 2.15,

and co0 = coss′ = 2.85 for each s, s′ ∈ S. As investigated in Example 3, this equilibrium allocation is
CPO, especially CGRO, even though the associated equilibrium price matrix of contingent claims
has the dominant root being greater than one. Therefore, this example illustrates a situation
wherein equilibrium prices do not necessarily reveal optimality of the corresponding allocation. ■

Even in a deterministic environment, we can also construct an example similar to Example 6.

Example 7 Suppose that S and H are singletons. Also assume that ωy > ωo and that the lifetime
utility function is given as in Eq.(5), i.e.:

U(cy, co) = min
δ∈D

[(1− δ)u(cy) + δu(co)],

where D := [δ, δ] for some δ and some δ satisfying that 0 < δ ≤ δ < 1. Then, a real money balance
of a stationary equilibrium with lump-sum money transfers, ρ, is characterized by a solution of the
inequality

min
δ∈AD(cy ,co)

[−(1− δ)ρu′(cy) + δ
ρ

µ
u(co)] ≤ 0 ≤ max

δ∈AD(cy ,co)
[−(1− δ)ρu′(cy) + δ

ρ

µ
u(co)]

where (cy, co) = (ωy − ρ, ωo + ρ) and

AD(cy, co) := argmin
δ∈D

[(1− δ)u(cy) + δu(co)],

which is the set of active discount rates. Here, as a candidate of an equilibrium real money balance,
let ρ∗ = 0.5(ωy − ωo). We can immediately find that ρ∗ satisfies the above inequality if and only if

δ

1− δ
≤ µ ≤

δ

1− δ
.

So, ρ∗ is actually an equilibrium real money balance, provided that the last inequality holds.
Furthermore, one can find that the associated allocation (co0, c

y, co) = (0.5ω̄, 0.5ω̄, 0.5ω̄) is Pareto
optimal, especially golden rule optimal, if

δ

1− δ
≤ 1 ≤

δ

1− δ
.

27To be more precise, one can find some π = (πα, πβ) ∈ Πα ×Πβ such that λf (Mπ(c)) = µ.
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which is equivalent to the condition that δ ≤ 0.5 ≤ δ. Therefore, we can conclude that, even when
µ > 1, an equilibrium allocation can be Pareto optimal if δ < 0.5 and µ/(1 + µ) ≤ δ. ■

4.6 Sequentially Complete Markets with Equity

We finally consider an economy with “equity” instead of “money.” In an OLG environment with
equity, there are seemingly different views on efficiency of equilibrium allocations. Dow and Gorton
(1993) claimed that, in a deterministic environment, equilibrium allocations are never optimal. On
the other hand, Sakai (1988) claimed that, in a stochastic environment, equilibrium allocations are
conditionally Pareto optimal. As shown in Corollary 7 below, the gap between these two claims
comes from the gap between definitions of optimality criteria, i.e.: Dow and Gorton considered
golden rule optimality, whereas Sakai did (conditional) Pareto optimality. In this subsection, we
reexamine optimality of allocations of equilibrium with equity, especially paying attention to the
difference between optimality criteria.

Suppose in this subsection that there exists one unit of an infinitely-lived asset yielding a
dividend of ds ≥ 0 units of the consumption good at state s ∈ S, where d ∈ ℜS

+ \ {0}.28 Also
suppose that spot markets of one-period contingent claims exist and are complete.

Definition 6 A triplet (q∗, P ∗, c∗) of a positive equity price vector q∗ ∈ ℜS
++, a positive price

matrix P ∗ =
[

p∗ss′
]

s,s′∈S
of contingent claims, and a stationary feasible allocation c∗ is called a

stationary equilibrium with equity if there exists some profile of equity holding vectors z∗ ∈ (ℜS)H

and some profile of contingent claim portfolio matricies θ∗ ∈ (ℜS×S)H such that

• for all s ∈ S, (c∗hs , z∗hs , θ∗hs ) belongs to the set

argmax
(chys ,chos ,zhs ,θ

h
s )

{

Uhs(chs ) :
chys = ωhy

s − q∗sz
h
s −

∑

s′∈S θ
h
ss′pss′

(∀s′ ∈ S) choss′ = ωho
ss′ + (q∗s′ + ds′)z

h
s + θss′

}

given q∗ and p∗s; and

• for all s, s′ ∈ S,
∑

h∈H z∗hs = 1 and
∑

h∈H θ∗hss′ = 0.

In this definition, the former is the optimization condition of each agent h ∈ H born at state s ∈ S

subject to sequential budget constraints, and the latter is the asset market clearing conditions. One
can easily verify that the good market equilibrium condition also holds at a stationary equilibrium
with equity.

We should note that, even in the economy with equity, CPO [resp. CGRO] of an interior
stationary feasible allocation can be characterized as Theorem 1 [resp. Theorem 1′] by redefining

the total endowment as ω̄ss′ =
∑

h∈H ωhy
s′ +

∑

h∈H ωho
ss′ + ds′ for each s, s′ ∈ S. Therefore, our task

is to examine optimality of stationary equilibrium allocations with equity. The following statement
is the last theorem of this paper:

Proposition 6 For any stationary equilibrium with equity, denoted by (q, P, c) if any, it holds that
λf (P ) < 1.

In other words, even when preferences are nonsmooth, a stationary equilibrium with equity gener-
ates a CPO allocation. This is a natural extension of the result of Sakai (1988) to the case with
nonsmooth preferences.

Under smooth preferences, we can obtain a bit stronger result.

28Therefore, the asset can be the equity of any productive asset like “land” or a “Lucas tree.” It can be also
identified with money if ds = 0 for each s ∈ S.
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Corollary 7 When Uhs is differentiable for each h ∈ H and each s ∈ S, the allocation of a
stationary equilibrium with equity is conditionally Pareto optimal but is never conditionally golden
rule optimal.

This result bridges the gap between those of Sakai (1988) and Dow and Gorton (1993). An in-
troduction of equity causes too much second-period consumption and newly born agents wish to
transfer some of it to the first-period consumption for consumption smoothing, whereas the initial
olds welcome such second-period consumption. This is the reason why the equilibrium allocation
is CPO but not CGRO.

In order to explore the role of nonsmoothness of preferences, we should investigate whether a
result similar to Corollary 7 still holds when lifetime utility functions might not be differentiable.
However, as shown in the next example, the answer is negative.29

Example 8 Consider the same economy as Example 4, except for specifications on initial endow-
ments. Instead, specify dividends and initial endowments by dα = 0.01, dβ = 0.02, ωy

α = 5.49,
ωy
β = 3.03, ωo

sα = 1, ωo
sβ = 1.95 for each s ∈ S.30 Then, one can easily verify that the price vector

for equity, q = (qα, qβ), is characterized as a solution of the system of inclusions: for each s ∈ S,

0 ∈

{

−qsv
′
y(ω

y
s − qs) +

∑

s′∈S

(qs′ + ds′)v
′
o(ω

o
ss′ + ds′ + qs′)πss′ : (∀s ∈ S) πs ∈ Bs(cs)

}

(7)

where vy(x) = vo(x) = lnx and c is an associated equilibrium allocation. Here, we consider
(qα, qβ) = (1.84, 0.88) as a candidate of an equilibrium price vector for equity. Because coss′ =
ωo
ss′+qs′ = 2.85 for each s, s′ ∈ S, Bs(cs) in the previous equation can be replaced by Πs. Moreover,

by numerical calculations, we can confirm that

−qαv
′
y(ω

y
α − qα) +

∑

s′∈S

(qs′ + ds′)v
′
o(ω

o
ss′ + ds′ + qs′)µαs′ ≈ −0.10,

−qαv
′
y(ω

y
α − qα) +

∑

s′∈S

(qs′ + ds′)v
′
o(ω

o
ss′ + ds′ + qs′)ναs′ ≈ 0.06,

−qβv
′
y(ω

y
β − qβ) +

∑

s′∈S

(qs′ + ds′)v
′
o(ω

o
ss′ + ds′ + qs′)µβs′ ≈ −0.01,

−qβv
′
y(ω

y
β − qβ) +

∑

s′∈S

(qs′ + ds′)v
′
o(ω

o
ss′ + ds′ + qs′)νβs′ ≈ 0.16,

so that the price vector for equity, q, is satisfied the equilibrium inclusions (7) and therefore
it is in fact the equilibrium price vector. Now consider the equilibrium allocation (co0, c) =
(co0, (c

y
s , coss′)s,s′∈S) such that cyα = 3.65, cyβ = 2.15, and co0 = coss′ = 2.85 for each s, s′ ∈ S. As

investigated in Example 3, this equilibrium allocation is not only CPO but also CGRO, even
though the associated equilibrium price matrix of contingent claims has the dominant root being
less than one. Therefore, this example illustrates a situation wherein equilibrium prices do not
necessarily reveal precise information on optimality of the corresponding allocation. ■

Even in a deterministic environment, we can also construct an example similar to Example 8.

29Even in a deterministic environment, one can also construct an example similar to Example 6 by using preferences
with multiple discount rates as in Eq.(2).

30Note that, under these specifications, ω̄α = 6.5 and ω̄β = 5.
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Example 9 Suppose that S and H are singletons. Also assume that ωy > ωo + d and that
the lifetime utility function is given as in Example 7. Then, a equilibrium price of equity, q, is
characterized by a solution of the inequality

min
δ∈AD(cy ,co)

[−(1− δ)qu′(cy) + δ(q + d)u(co)] ≤ 0 ≤ max
δ∈AD(cy ,co)

[−(1− δ)qu′(cy) + δ(q + d)u(co)]

where (cy, co) = (ωy − q, ωo + d+ q) and

AD(cy, co) := argmin
δ∈D

[(1− δ)u(cy) + δu(co)],

which is the set of active discount rates. Here, as a candidate of an equilibrium price of equity,
define q∗ by q∗ = 0.5(ωy − ωo − d). Also let R = (q∗ + d)/q∗ > 1, which is the rate of return of
equity. One can immediately find that q∗ satisfies the above inequality if and only if

δ

1− δ
≤

1

R
≤

δ

1− δ
.

Furthermore, one can find that the associated allocation (co0, c
y, co) = (0.5ω̄, 0.5ω̄, 0.5ω̄) is Pareto

optimal, especially golden rule optimal, if δ ≤ 0.5 ≤ δ, where ω̄ = ωy + ωo + d. Therefore, we can
conclude that, an equilibrium allocation is not only Pareto optimal but also golden rule optimal if
δ ≤ 1/(1 +R) and 0.5 < δ. ■

5 Concluding Remarks

This study has reexamined optimality of stationary feasible allocations in an OLG model with
convex but not necessarily smooth. It has been shown that optimality criteria of stationary feasible
allocations are characterized by the condition on the set of dominant roots of matrices of marginal
rates of substitution: conditional Pareto optimality requires that the set contains some number
being less than or equal to unity but conditional golden rule optimality requires that the set
contains unity. It has been also shown that optimality criteria of stationary equilibrium allocations
are characterized by the condition on the set of supporting price matrices, not necessarily on the
equilibrium price matrix itself. In contrast to the existing results under smooth preferences, the
latter result indicates that the realized equilibrium prices do not necessarily tell us whether the
associated equilibrium allocations are optimal. We have also provided several trivial and nontrivial
examples illustrating this fact.

The above contrast between the existing and presented results appears at allocations, at which
lifetime utility functions are not differentiable. When we consider the class of the MEU pref-
erences, for example, such allocations should be fully insured with respect to the second-period
consumptions and the set of such allocations might have Lebesgue measure zero with respect to
an appropriate universal set of allocations.31 So, one might seem that our results fall under the
scope of results of Rigotti and Shannon (2012) and are less important. However, as shown in
Ohtaki and Ozaki (2015), an OLG model with not necessarily smooth preferences can often gener-
ate fully-insured equilibria for a nonnegligible set of initial endowments (and associated economies
exhibit aggregate uncertainty). Examples 6 and 8 in this study partially illustrate such equilibria.
Therefore, our results will give beneficial suggestions to future studies which examine optimality of
various economic mechanisms in OLG models with not necessarily smooth preferences.

31Even when we consider a more general class of convex preferences, the set of nondifferentiable points will have
Lebesgue measure zero because we assume strict concavity of lifetime utility functions.
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Appendix A: Box Diagram for 2-state and 1-agent Economy

In this appendix, we introduce a graphical device, which is developed by Ohtaki (2014), to
analyze a 2-state and 1-agent pure-endowment stochastic OLG model. Assume that H is a sin-
gleton (and therefore we omit sub/superscript h, which represents agents’ types) and S = {α, β}.
Furthermore, we assume that the second-period endowment vector (ωo

ss′)s′∈S of agent born at state
s is independent of the state at which the agent is born, i.e.: ωo

ss′ = ωo
ts′ for each s, t, s′ ∈ S. By

the latter assumption, it follows that the total endowment depends only on the current state, i.e. :
for each s, t, s′ ∈ S, ω̄ss′ = ω̄ts′ , so that we denote by ω̄s′ the total endowment when the current
state is s′.

Under assumptions that H is a singleton and that the total endowment depends only on the
current state, the set of stationary feasible allocation is identifiable with the set of pairs (xy, xo)
of functions from S to ℜ+ such that xys + xos = ω̄s for each s ∈ S or, more simply, with X :=
[0, ω̄α] × [0, ω̄β ] = {xo ∈ ℜS : (∀s′ ∈ S) 0 ≤ xos′ ≤ ω̄s′}.

32 Similarly, an interior stationary feasible
allocation is related to an element of int.X, the interior of X.

Because the set X, elements of which are second-period consumptions, can be identified with
the set of stationary feasible allocations, we can derive another utility function on X, denoted by
Û s, from U s. To be more precise, for each s ∈ S, define the function Û s : X → ℜ by

(∀xo ∈ X) Û s(xo) := U s(ω̄s − xos, (x
o
s′)s′∈S).

One should note that, by this derived utility function Û s, we can draw indifference curves in X.

Example A.1 Consider the same economy with that appeared in Example 3. Then, the Panel (b)
of Figure A.1 depicts, in the box X, indifference curves derived from Û s through (coα, c

o
β) = (1, 1)

and (coα, c
o
β) = (2, 2) for each s. The U-shaped and ⊂-shaped curves are related to indifference curves

for agents born at α and β, respectively. Note that Û s(1, 1) < Û s(2, 2). Also note that indifference
curves have kinks on the line satisfying that coα = coβ . This comes from nondifferentiability of MEU
functions. In fact, when Πs = {(0.75, 0.25)}, the model degenerates to one with smooth preferences
and we can obtain smooth indifference curves as in the Panel (a) of Figure A.1. ■

In order to consider kinks of indifference curves appeared in Example A.1, we examine the slope
of indifference curves. When U s is differentiable for each s, the slope of the agent s’s indifference
curve at xo ∈ X, denoted by M̂RSs(x

o) if any, can be calculated by M̂RSs(x
o) = dxoβ/dx

o
α =

−Û s
1 (x

o)/Û s
2 (x

o) because 0 = Û s
1 (x

o)dxoα + Û s
2 (x

o)dxoβ on {x′ ∈ X : Û s(x′) = Û s(xo)}.33

On the other hand, suppose that U s belongs to the class of MEU preferences and is assumed
to be given by

U s(cs) = min
πs∈Πs

∑

s′∈S

[vy(c
y
s) + vo(c

o
ss′)]πss′ , (A.1)

where Πs = {πs ∈ ∆S : µsα ≤ πsα ≤ νsα} for some µs, νs ∈ ∆S such that 0 < µsα ≤ νsα < 1
and vy and vo are real-valued functions on ℜ+, which are strictly monotone, strictly concave, and
continuously differentiable on their domain, respectively. Then, it holds that, for each s ∈ S and
each xo ∈ X,

32Note that, for each s, t, s′ ∈ S, cy
s′

+ coss′ = ω̄s′ = cy
s′

+ cots′ , which implies that coss′ = cots′ . Therefore, we can
identify a stationary feasible allocation c with an element xo of X by setting as coss′ = xo

s′ and cy
s′

= ω̄s′ − xo
s′ for

each s, s′ ∈ S.
33Do not confuse M̂RSs(x

o) with Mπ(c) defined as in Eq.(5).
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(a) (µsα, νsα) = (0.75, 0.75) for each s ∈ S (b) (µsα, νsα) = (0.25, 0.75) for each s ∈ S

Figure A.1: Indifference Curves

Û s(xo) = min
πs∈Πs

∑

τ∈S

[vy(ω̄s − xos) + vo(x
o
τ )]πsτ

= vy(ω̄s − xos) + vo(x
o
β) + min

πs∈Πs

[(

vo(x
o
α)− vo(x

o
β)
)

πsα
]

=







vy(ω̄s − xos) + µsαvo(x
o
α) + (1− µsα)vo(x

o
β) if xoα > xoβ ,

vy(ω̄s − xos) + vo(x
o
s) if xoα = xoβ , and

vy(ω̄s − xos) + νsαvo(x
o
α) + (1− νsα)vo(x

o
β) if xoα < xoβ .

Therefore, the slope of the agent s’s indifference curve at xo ∈ X, if any, can be calculated as:

M̂RSα(x
o) = −

Ûα
1 (x

o)

Ûα
2 (x

o)
=























v′y(ω̄α − xoα)− µααv
′
o(x

o
α)

(1− µαα)v′o(x
o
β)

if xoα > xoβ

v′y(ω̄α − xoα)− νααv
′
o(x

o
α)

(1− ναα)v′o(x
o
β)

if xoα > xoβ

and

M̂RSβ(x
o) = −

Ûβ
1 (x

o)

Ûβ
2 (x

o)
=



























µβαv
′
o(x

o
α)

v′y(ω̄β − xoβ)− µββv′o(x
o
β)

if xoα > xoβ ,

νβαv
′
o(x

o
α)

v′y(ω̄β − xoβ)− νββv′o(x
o
β)

if xoα > xoβ ,

if xoα ̸= xoβ , but it might not be calculated if xoα = xoβ (This is true when µsα < νsα).
Using the box diagram, we can obtain graphical intuitions on optimality criteria, especially on

conditional golden rule optimality (CGRO). Consider an interior allocation x = (xα, xβ) in the box,
where xs = (xys , xoα, x

o
β) for each s ∈ S. First, assume that U s is differentiable. Then, M(x) is given

by

M(x) =













Uα
α (xα)

Uα
y (xα)

Uα
β (xα)

Uα
y (xα)

Uβ
α (xβ)

Uβ
y (xβ)

Uβ
β (xβ)

Uβ
y (xβ)













.
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The dominant root criterion for CGRO,34 λf (M(x)) = 1, is equivalent to the following condition:35

M(x)y(M(x)) = λf (M(x))y(M(x)) = y(M(x)) (A.2)

or equivalently

Uα
α (xα)yα(M(x)) + Uα

β (xα)yβ(M(x)) = Uα
y (xα)yα(M(x))

and

Uβ
α (xβ)yα(M(x)) + Uβ

β (xβ)yβ(M(x)) = Uβ
y (xα)yβ(Mc(π)).

These equations can be rewritten as

Uα
y (xα)− Uα

α (xα)

Uα
β (xα)

=
yβ(M(x))

yα(M(x))
=

Uβ
α (xβ)

Uβ
y (xα)− Uβ

β (xβ)
, (A.3)

which is equivalent to

M̂RSα(x
o
α, x

o
β) = M̂RSβ(x

o
α, x

o
β) > 0, (A.4)

where M̂RSs has defined above and that (A.3) implies (A.4) follows from the definition of M̂RSs

and the fact that y(M(x)) is a positive vector. In order to show that (A.4) implies (A.3), let a > 0
be such that

a = M̂RSα(x
o
α, x

o
β) = M̂RSβ(x

o
α, x

o
β) .

Then an easy calculation shows that

M(x)

[

1
a

]

=

[

1
a

]

.

This implies that the dominant root ofMc(π) is equal to one,
36 which is the dominant root criterion.

Therefore, we can say that, at a CPO allocation, indifference curves of agents α and β are tangent
to each other (and the slope of them must be positive).

By a similar calculation, we can say that, when preferences are represented as in Eq.(A.1), the
condition that λf (M(x)) ∋ 1 is equivalent to the pair of inequalities:

v′y(c
hy
α )− v′o(c

ho
α )µαα

v′o(c
ho
β )µαβ

≤ a ≤
v′o(c

ho
α )µβα

v′y(c
hy
β )− v′o(c

ho
β )µββ

and

v′o(c
ho
α )νβα

v′y(c
hy
β )− v′o(c

ho
β )νββ

≤ a ≤
v′y(c

hy
α )− v′o(c

ho
α )ναα

v′o(c
ho
β )ναβ

.

Although preferences belong to the class of MEU preferences, one can find that these inequalities
still imply the tangency condition on indifference curves.

34See Corollary 1′ in Section 3.
35This equivalence holds because of the fact that for any positive matrix A, if there exist a nonnegative real number

λ and a nonnegative nonzero vector x such that Ax = λx, then λ is the dominant root of A. See Takayama (1974,
p.372, Theorem 4.B.1(iv)).

36See the previous footnote.
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(a) (µsα, νsα) = (0.75, 0.75) for each s ∈ S (b) (µsα, νsα) = (0.25, 0.75) for each s ∈ S

Figure A.2: Contract Curve (The Set of CGRO Allocations)

Example A.2 Consider the same economy with that appeared in Example 3, except for the spec-
ification on Πs. When Πs = {(0.75, 0.25)}, preferences are smooth and the set of CGRO alloca-
tions can be depicted by the solid line as in Panel (a) of Figure A.2. On the other hand, when
Πs = {πs ∈ ∆S : 0.25 ≤ πsα ≤ 0.75}, preferences are smooth and the set of CGRO allocations can
be depicted by the solid line as in Panel (b) of Figure A.2. In the panel, one might find that, at
xo = (2.85, 2.85), indifference curves of agents born at state α and β are tangent to each other. ■

One can also find that the set of conditional Pareto optimality allocations is depicted by the
area right-upper of the CGRO curve. See Ohtaki (2014) for more details.

Appendix B: Proofs

B.1 Proofs of Theorems 1 and 1′

Proof of Theorem 1. Let c = {chy, cho}h∈H be an interior stationary feasible allocation. It is easy
to verify that c is a CPO allocation if and only if there exists some Pareto weights, γ0 : H×S → ℜ+

and γ : H × S → ℜ++, such that

c ∈ argmax
b∈A





∑

(h,s′)∈H×S

γhs
′

0 bho0s′ +
∑

(h,s)∈H×S

γhsUhs(bhs )





where A is the set of stationary feasible allocations. Then, by applying Theorems C.4, C.6, and C.9
in the Appendix C, the interior stationary feasible allocation c is CPO if and only if there exists
some Pareto weights, γ0 : H × S → ℜ+ and γ : H × S → ℜ++, and some Lagrange multipliers,
λ0 : S → ℜ+ and λ : S× S → ℜ+, such that

γhs0 − λ0s ≤ 0 with equality if cho0s > 0 (B.5)

and, for each h ∈ H and each s ∈ S, there exists some v̄hs ∈ ∂Uhs(chs ) satisfying that

γhsv̄hys = λ0s +
∑

τ∈S

λτs, (B.6)

γhsv̄hoss′ = λss′ (B.7)
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for each s′ ∈ S. Note that it follows from strong monotonicity of Uhs and Theorem C.3 that λ ≫ 0.
We should now claim the equivalence between the existence of γ0, γ, λ0, λ satisfying Eqs.(B.5),

(B.6), and (B.7) and the condition that (λf ◦M)(c) contains the number less than or equal to unity.
Assume first the existence of γ0, γ, λ0, λ satisfying Eqs.(B.5), (B.6), and (B.7) in order to show
that (λf ◦M)(c) contains the number less than or equal to unity. By Eqs.(B.6) and (B.7), we can
obtain that

v̄hoss′

v̄hys
=

λss′

λ0s +
∑

τ∈S λτs
=: mss′

for each h ∈ H and each s, s′ ∈ S. By its definition, the positive S × S matrix M := [mss′ ]s,s′∈S
belongs to Mh(chs ) for each h ∈ H and each s ∈ S and therefore M ∈ M(c). It also follows that

λss′ =

(

λ0s +
∑

τ∈S

λτs

)

mss′

for each s, s′ ∈ S. Summing up this equation over s ∈ S, we have

α = (λ0 + α)M,

where αs :=
∑

τ∈S λτs for each s ∈ S. Then, it is straightforward to show that λf (M) ≤ 1.37 With
the fact that M ∈ M, this implies that (λf ◦M)(c) contains the number less than or equal to unity.

Assume now that there exists at least one S × S matrix M = [mss′ ]s,s′∈S of M(c) such that
λf (M) ≤ 1. By the definition of M(c), for each h ∈ H and each s ∈ S, there exists some
v̄hs ∈ ∂Uhs(chs ) such that

mss′ =
v̄hoss′

v̄hys
> 0.

Then, it follows from the Perron-Frobenius theorem that (I − M)−1 ≫ 0, where I is the S × S
identity matrix. Let λ0 be an arbitrary element of ℜS

++ if λf (M) < 1 and otherwise let λ0 = 0 ∈ ℜS
+.

Also define α ∈ ℜS
++ by

α := λoM(I −M)−1 ≫ 0

if λf (M) < 1 and otherwise by the positive eigenvector α of M , which satisfies that Mα =
λf (M)α = α.38 Now, for each h ∈ H and each s, s′ ∈ S, let

γhs :=
λ0s + αs

v̄hys
,

λss′ := γhsv̄hoss′ = (λ0s + αs)mss′ ,

γhs0 := λ0s.

It is now easy to verify that γ, λ, γ0, and λ0 satisfy Eqs.(B.5), (B.6), and (B.7). This completes
the proof of this theorem. Q.E.D.

37See, for example, Aiyagari and Peled (1991, p.76).
38Existence of such a positive eigenvector follows from the Perron-Frobenius theorem.
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Proof of Theorem 1′. The proof strategy is almost same with the previous theorem. Let c =
{chy, cho}h∈H be an interior steady state allocation. It is easy to verify that c is a CGRO allocation
if and only if there exists some Pareto weight γ : H × S → ℜ++ such that

c ∈ argmax
b∈A′

∑

(h,s)∈H×S

γhsUhs(bhs )

where A′ is the set of steady state allocations. Then, by applying Theorems C.4, C.6, and C.9 in
the Appendix C, the interior stationary feasible allocation c is CGRO if and only if there exists
some Pareto weight, γ : H× S → ℜ++, and some Lagrange multipliers, λ : S× S → ℜ+, such that,
for each h ∈ H and each s ∈ S, there exists some v̄hs ∈ ∂Uhs(chs ) satisfying that

γhsv̄hys =
∑

τ∈S

λτs, (B.8)

γhsv̄hoss′ = λss′ (B.9)

for each s′ ∈ S. Note that it follows from strong monotonicity of Uhs and Theorem C.3 that λ ≫ 0.
We should now claim the equivalence between the existence of γ and λ satisfying Eqs.(B.8) and

(B.9) and the condition that (λf ◦M)(c) contains unity. Assume first the existence of γ0, γ, λ0, λ
satisfying Eqs.(B.8) and (B.9) in order to show that (λf ◦M)(c) contains unity. By Eqs.(B.8) and
(B.9), we can obtain that

v̄hoss′

v̄hys
=

λss′
∑

τ∈S λτs
=: mss′

for each h ∈ H and each s, s′ ∈ S. By its definition, the positive S × S matrix M := [mss′ ]s,s′∈S
belongs to Mh(chs ) for each h ∈ H and each s ∈ S and therefore M ∈ M(c). It also follows that

λss′ =
∑

τ∈S

λτsmss′

for each s, s′ ∈ S. Summing up this equation over s ∈ S, we have

α = αM,

where αs :=
∑

τ∈S λτs for each s ∈ S. Then, it follows from the Perron-Frobenius theorem that
λf (M) = 1. With the fact that M ∈ M, this implies that (λf ◦M)(c) contains unity.

Assume now that there exists at least one S × S matrix M = [mss′ ]s,s′∈S of M(c) such that
λf (M) = 1. By the definition of M(c), for each h ∈ H and each s ∈ S, there exists some
v̄hs ∈ ∂Uhs(chs ) such that

mss′ =
v̄hoss′

v̄hys
.

By the Perron-Frobenius theorem, there also exists some eigenvector α ≫ 0, which satisfies that
α · (I −M) = 0, where I is the S × S identity matrix. For each h ∈ H and each s, s′ ∈ S, define
γ : H × S → ℜ++ and λ : S× S → ℜ by

γhs :=
αs

v̄hys
and λss′ := γhsv̄hoss′ .

By their definitions, we can obtain that, for each s, s′ ∈ S,

λss′ = αs

v̄hoss′

v̄hys
= αsmss′ ,

so that αs′ =
∑

τ∈S λτs′ . It is now easy to verify that the pair of γ and λ satisfies Eqs.(B.8) and
(B.9). This completes the proof of this theorem. Q.E.D.
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B.2 Proofs of Proposition 1 and Theorems 2 and 2′

Proof of Proposition 1. Let c be an interior stationary feasible allocation. We first show P(c) ⊂
M(c). Let P = [pss′ ]s,s′∈S ∈ P(c) be a supporting price matrix. By their definitions, (P, c) satisfies
that Uhs(chs ) ≥ Uhs(bhs ) for each h ∈ H, each s ∈ S, and each stationary feasible allocation b

satisfying that bhys +
∑

s′∈S bhoss′pss′ ≤ chys +
∑

s′∈S choss′pss′ . So, c
h
s belongs to the set

argmax
bhs

{

Uhs(bhs ) : b
hy
s +

∑

s′∈S

bhoss′pss′ ≤ chys +
∑

s′∈S

choss′pss′

}

.

Then, it follows from Theorem C.9 that, for each h ∈ H and each s ∈ S, chs must be characterized
by the existence of λh

s ∈ ℜ+ such that

0 ∈
{(

vhys − λh
s , (v

ho
ss′ − λh

spss′)s′∈S

)

: vhs ∈ ∂Uhs(chs )
}

, (B.10)

which implies the existence of v̄hs ∈ ∂Uhs(chs ) such that

v̄hoss′

vhys
= pss′

for each s′ ∈ S. Therefore, it follows that P ∈ M(c), which implies that P(c) ⊂ M(c).
Conversely, let M = [mss′ ]s,s′∈S ∈ M(c). For each h ∈ H and each s ∈ S, it follows from its

definition that there exists some v̄hs ∈ ∂Uhs(c) such that, for each s, s′ ∈ S,

mss′ =
v̄hoss′

v̄hys
,

or equivalently,

v̄hys − λh
s = 0 and v̄hoss′ − λh

smss′ = 0,

where λh
s := v̄hys . Then, it follows from Eq.(B.10) that M must be a supporting price matrix of c,

which implies M ∈ P(c). This completes the proof. Q.E.D.

Proof of Theorem 2. It follows from Theorem 1 and Proposition 1. Q.E.D.

Proof of Theorem 2′. It follows from Theorem 1′ and Proposition 1′. Q.E.D.

B.3 Proofs of Proposition 2 and 2′

Lemma 1 For each interior stationary feasible allocation c, P∗(c) ⊂ P(c).

Proof of Lemma 1. Let c be an interior stationary feasible allocation (such that P∗(c) ≠ ∅).
Let P = [pss′ ]s,s′∈S ∈ P∗(c) and b be an arbitrary stationary feasible allocation satisfying that

Uhs(bhs ) > Uhs(chs ) for each h ∈ H and each s ∈ S. Then, it follows that bhys +
∑

s′∈S b
ho
ss′pss′ >

ωhy
s +

∑

s′∈S ω
ho
ss′pss′ ≥ chys +

∑

s′∈S c
ho
ss′pss′ for each h ∈ H and each s ∈ S because (P, c) is a

stationary equilibrium. Therefore, P ∈ P(c), which implies that P∗(c) ⊂ P(c). Q.E.D.

Proof of Proposition 2. It follows from Theorem 2 and Lemma 1. Q.E.D.
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Proof of Proposition 2′. It follows from Theorem 2′ and Lemma 1. Q.E.D.

B.4 Proof of Proposition 3

We omit the proof of Proposition 3 because it is almost same with that of Aiyagari and Peled
(1991, Theorem 2).

B.5 Proof of Proposition 4

We prepare three lemmas to obtain Proposition 3.

Lemma 2 If ω is conditionally Pareto optimal, then P∗(ω) = P(ω).

Proof of Lemma 2. Suppose that ω is conditionally Pareto optimal in order to observe that P∗(ω) =
P(ω). Because P∗(ω) ⊂ P(ω), we should show that P(ω) ⊂ P∗(ω). Let P = [pss′ ]s,s′∈S be an

arbitrary element of P(ω). Then, for each h ∈ H, each s ∈ S, and each element chs = (chys , chos ) ∈
ℜ+ ×ℜS

+ satisfying that

chys +
∑

s′∈S

choss′pss′ ≤ ωhy
s +

∑

s′∈S

ωho
s′ pss′ ,

we can obtain that Uhs(ωh
s ) ≥ Uhs(chs ). Furthermore, it holds that

∑

h∈H(ω
hy
s +ωho

τs ) = ω̄τs for each
τ, s ∈ S. Therefore, (P, ω) is a stationary equilibrium. This argument implies that P(ω) ⊂ P∗(ω)
and completes the proof of this lemma. Q.E.D.

Note that the proof of Lemma 2 does not require strict concavity of lifetime utility functions.

Lemma 3 If ω is conditionally Pareto optimal, there is no stationary equilibrium (P, c) with c ̸= ω.

Proof of Lemma 3. Suppose that ω is conditionally Pareto optimal but there is a stationary
equilibrium (P, c) = ([pss′ ]s,s′∈S, c) such that c ̸= ω, which implies that ckτ ̸= ωk

τ for some k ∈ H and

some τ ∈ S. Because (P, c) is a stationary equilibrium, it follows that
∑

h∈H(c
hy
s′ + choss′) = ω̄ss′ for

each s, s′ ∈ S and Uhs(chs ) ≥ Uhs(ωh
s ) for each h ∈ H and each s ∈ S. Now define d = αc+(1−α)ω,

where 0 < α < 1. Then, we can observe that

•
∑

h∈H(d
hy
s′ + dhoss′) =

∑

h∈H[α(c
hy
s′ + choss′) + (1− α)(ωhy

s′ + ωho
ss′)] = ω̄ss′ for each s, s′ ∈ S

• Uhs(dhs ) ≥ αUhs(chs ) + (1− α)Uhs(ωhs) ≥ Uhs(ωh
s ) for each h ∈ H and each s ∈ S, and

• Ukτ (dkτ ) > αUkτ (ckτ ) + (1− α)Ukτ (ωk
τ ) ≥ Ukτ (ωk

τ ) for the pair (k, τ) defined above.

These imply that d CPO-dominates ω, which contradicts the fact that ω is conditionally Pareto
optimal. Therefore, there is no stationary equilibrium (P, c) such that c ̸= ω if ω is conditionally
Pareto optimal. Q.E.D.

Lemma 4 Then, ω is conditionally Pareto optimal if the set of stationary equilibrium is given by
{(P, ω) : P ∈ P(ω)}.

Proof of Lemma 4. Suppose that the set of stationary equilibrium is given by {(P, ω) : P ∈ P(ω)}.
Because it follows from Proposition 3 that there must at least one optimal equilibrium, the unique
equilibrium allocation ω must be conditionally Pareto optimal. Q.E.D.
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Proof of Proposition 4. This follows from Lemmas 2, 3, and 4. Q.E.D.

B.6 Proofs of Theorem 3 and 4

Proof of Theorem 3. By the sequential budget constraints of an agent, we can obtain the agent’s
lifetime budget constraint such that: for each h ∈ H and each s ∈ S,

chys +
∑

s′∈S

choss′pss′ = (ωhy
s − τhys ) +

∑

s′∈S

(ωho
ss′ + τhoss′)pss′ +

(

∑

s′∈S

qs′pss′ − qs

)

mh.

By this equation, we can obtain the no arbitrage condition when the money price is positive, i.e.:
q = P · q for any stationary equilibrium with circulating money, (q, P, c), with chs ≫ 0 for each
s ∈ S. In order to verify this, we should show that

(∀s ∈ S) qs =
∑

s′∈S

pss′qs′ .

Suppose the contrary that qs ̸=
∑

s′∈S pss′qs′ for some s ∈ S. If qs <
∑

s′∈S pss′qs′ , then agent
h born at state s will choose ∞ as mm and his/her optimization problem has no solution. On
the other hand, if qs >

∑

s′∈S pss′qs′ , then agent born h at state s will choose −∞ as mh and
his/her optimization problem has no solution.39 In any cases, we obtain a contradiction, so that
qs =

∑

s′∈S pss′qs′ for all s ∈ S.
Suppose now that there exists at least one stationary equilibrium with money and social securi-

ties, (q, P, c), satisfying that chs ≫ 0 for each h ∈ H and each s ∈ S. We have obtained that Pq = q,
at which the lifetime budget constraint coincides with that in the complete market. Because qs is
now positive for all s ∈ S, it follows from the Perron-Frobenius theorem that the S × S matrix P
with positive coefficients has the dominant root equal to unity. Now it follows from Corollary 4′

that the equilibrium allocation c is CGRO. This completes the proof of Theorem 3.40 Q.E.D.

Before proving Theorem 4, we should investigate first order conditions of each agent’s opti-
mization problem. By substituting sequential budget constraints with consumptions in the lifetime
utility and applying Theorem C.8 with respect to choices of money holdings, we can verify that a
solution of each agent’s optimization problem, denoted here by (chs ,m

h
s , θ

h
s ), is characterized by

chys = ωhy
s − τhys − qsm

h
s −

∑

s′∈S

θhss′pss′ ,

choss′ = ωho
ss′ + τhoss′ + qs′ms′ + θhss′ ,

0 ∈

{

−qsv
hy
s +

∑

s′∈S

qs′v
ho
ss′ : vhs ∈ ∂Uhs(chs )

}

.

We will use these characterizations in the following proof.

39When one wished to impose the lower bound for possible mh, mh ≥ 0 for example, the agent h born at state s
chooses 0 as the amount of money holding. However, this contradicts the fact that

∑
h
mh should be equal to 1 at a

stationary equilibrium with circulating money.
40To prove Theorem 3, we have adopted an indirect way of applying the dominant root criterion. Applying the

technique provided by Sakai (1988), one can provide a more direct proof of Theorem 3.
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Proof of Theorem 4. Let c = {chy, cho} be an interior CGRO allocation. Because it is CGRO, there
exists some positive matrix P = [pss′ ]s,s′∈S such that P ∈ Mh(ch) for all h ∈ H, which implies the

existence of v̄hs ∈ ∂Uhs(chs ) satisfying that pss′ = v̄hoss′/v̄
hy
s for each s, s′ ∈ S, and its dominant root

is equal to one, i.e. : λf (P ) = 1. By the Perron-Frobenius theorem, there exists a unique q ∈ ℜS
++

(up to normalization) such that P · q = λf (P )q = q, which implies that −qsv̄
hy
s +

∑

s′∈S qs′ v̄
ho
ss′ = 0

for each h ∈ H and each s ∈ S. Choose the Euclidean norm of q to be small enough and take any
m = {mh

s}(h,s)∈H×S ∈ ℜH×S

++ , any τ = {τhy, τho}h∈H, and any θ = [θhss′ ]s,s′∈S,h∈H to satisfy (a) the
budget constraint in the first period of each agent (h, s) ∈ H × S:

chys = ωhy
s − τhys − qsm

h
s −

∑

s′∈S

θhss′pss′ ; (B.11)

(b) ωhy
s > τhys and τhoss′ > −ωho

ss′ for each h ∈ H and each s, s′ ∈ S; (c)
∑

h∈H mh
s = 1 and

∑

h∈H θhs = 0 for each s ∈ S; and (d)
∑

h∈H τhys =
∑

h∈H τhos′s for each s′, s ∈ S.41 By their
constructions, the first order conditions of all agents’ optimization problems at the stationary
equilibrium with money and social securities are satisfied. Because other market clearing conditions
immediately also hold, (q, P, c) is a stationary equilibrium with money and social securities. Q.E.D.

B.7 Proof of Proposition 5

Proof of Proposition 5. By the sequential budget constraints of an agent, we can obtain the agent’s
lifetime budget constraint such that: for each h ∈ H and each s ∈ S,

chys +
∑

s′∈S

choss′pss′ = ωhy
s +

∑

s′∈S

ωho
ss′pss′ +

(

∑

s′∈S

ρ∗s′pss′ − µρ∗s

)

mh
t,s

Mt+1
+

1

H

µ− 1

µ

∑

s′∈S

ρ∗s′pss′ .

By this equation, we can obtain the no arbitrage condition such that µρ∗ = Pρ∗ for any stationary
equilibrium with lump-sum money transfers, (ρ, P, c), with cs ≫ 0 for each s ∈ S. In order to verify
this, we should show that

(∀s ∈ S) µρ∗s =
∑

s′∈S

pss′ρ
∗
s′ .

Suppose the contrary that µρ∗s ̸=
∑

s′∈S pss′ρ
∗
s′ for some s ∈ S. If µρ∗s <

∑

s′∈S pss′ρ
∗
s′ , then the

agent h born at state s will choose ∞ as mh
t,s and his/her optimization problem has no solution.

On the other hand, if µρ∗s >
∑

s′∈S pss′ρ
∗
s′ >, then agent h born at state s will choose −∞ as mh

t,s

and his/her optimization problem has also no solution. In any cases, we obtain a contradiction, so
that µρ∗s =

∑

s′∈S pss′ρ
∗
s′ for all s ∈ S.

Suppose now that there exists at least one stationary equilibrium with lump-sum money trans-
fers, (ρ, P, c), satisfying that cs ≫ 0 for all s ∈ S. Because µ > 0, P ≫ 0, and Pρ∗ = µρ∗, it
follows from the Perron-Frobenius theorem that λf (P ) = µ. Then, the statement in Proposition 5
immediately follows. Q.E.D.

B.8 Proof of Proposition 6

41Actually, let mh
s := 1/H, τhy

s := ωhy
s − chys − qs/H, and θhss′ := 0 for each h ∈ H and each s, s′ ∈ S. By choosing

the Euclidean norm of q to be sufficiently small, m, τhy, and θ can satisfy Eq.(B.11) and conditions (a)–(d) with
some {τho}h∈H such that τho

ss′ > −ωho
ss′ and

∑
h∈H

τhy
s =

∑
h∈H

τho
s′s for s, s′ ∈ S.
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Proof of Proposition 6. By the sequential budget constraints of an agent, we can obtain the agent’s
lifetime budget constraint such that: for each h ∈ H and each s ∈ S,

chys +
∑

s′∈S

choss′pss′ = ωhy
s +

∑

s′∈S

ωho
ss′pss′ +

(

∑

s′∈S

(qs′ + ds′)pss′ − qs

)

zhs .

By this equation, we can obtain the no arbitrage condition such that q = P · (q + d) for any
stationary equilibrium with equity, (q, P, c), with cs ≫ 0 for each s ∈ S, where q+ d = (qs+ ds)s∈S.
In order to verify this, we should show that

(∀s ∈ S) qs =
∑

s′∈S

pss′(qs′ + ds′).

Suppose the contrary that qs ̸=
∑

s′∈S pss′(qs′+ds′) for some s ∈ S. If qs <
∑

s′∈S pss′(qs′+ds′), then
the agent h born at state s will choose ∞ as zhs and his/her optimization problem has no solution.
On the other hand, if qs >

∑

s′∈S pss′(qs′ + ds′), then agent h born at state s will choose −∞ as zhs
and his/her optimization problem has also no solution. In any cases, we obtain a contradiction, so
that qs =

∑

s′∈S pss′(qs′ + ds′) for all s ∈ S.
Suppose now that there exists at least one stationary equilibrium with equity, (q, P, c), satisfying

that cs ≫ 0 for all s ∈ S. We have obtained that P (q + d) = q, at which the lifetime budget
constraint coincides with that in the complete market. By the fact that d ∈ ℜS

+ \ {0}, it holds that
Pq < P (q+ d) = q. Therefore, it follows from the Perron-Frobenius theorem that the S× S matrix
P with positive coefficients has the dominant root less than unity. Now it follows from Corollary 4
that the equilibrium allocation c is CPO. This completes the proof of Proposition 6. Q.E.D.

Appendix C: Superdifferential and its Calculus

This appendix aims to introduce the definition and calculus rules of superdifferential. We first
define the concept of superdifferential following Rockafellar (1970, pp.214–215) and Hiriart-Urruty
and Lemaréchal (2004, Definition D.1.2.1, p.167).42

Definition C.1 For each real-valued function f on domf ⊂ ℜn and each x ∈ domf , the set

∂f(x) := {s ∈ ℜn : (∀y ∈ ℜn) f(y) ≤ f(x) + ⟨s, y − x⟩ }

and each of its elements are called the superdifferantial and a supergradient of f at x, respectively.

Obviously, ∂f(x) is closed and convex for each concave real-valued function f on a nonempty
and convex set domf ⊂ ℜn and each x ∈ domf . Furthermore, we can obtain a necessary and
sufficient condition for nonemptiness and boundedness of the superdifferential.

Theorem C.1 For each concave real-valued function f on a nonempty convex set domf ⊂ ℜn and
each x ∈ domf , ∂f(x) is nonempty and bounded if and only if x ∈ int.domf , where int.X is the
interior of the set X.

Proof of Theorem C.1. See Rockafellar (1970, Theorem 23.4, p.217). Q.E.D.

Furthermore, if f is differentiable, its unique supergradient coincides the (standard) gradient.

42To be more precise, they define the subdifferential, which is defined by

∂f(x) := {s ∈ ℜn : (∀y ∈ ℜn) f(y) ≥ f(x) + ⟨s, y − x⟩ }

for each real-valued function f on ℜn and each x ∈ ℜn

33



Theorem C.2 Let f be a concave real-valued function on ℜn and x ∈ ℜn. Then, if f is differen-
tiable at x, ∂f(x) = {∇f(x)}. Conversely, if ∂f(x) is a singleton, a unique element of which is
denoted by s, then f is differentiable at x and s = ∇f(x).

Proof of Theorem C.2. See Rockafellar (1970, Theorem 25.1, p.242) and Hiriart-Urruty and
Lemaréchal (2004, Corollary D.2.1.4, p.175). Q.E.D.

As shown in the following theorem, monotonicity determines the signs of supergradients.

Theorem C.3 For each strongly monotone and concave real-valued function f on ℜn, and each
x ∈ ℜn, if s ∈ ∂f(x), then s ≫ 0.

Proof of Theorem C.3. To observe this fact, for each i = 1, . . . , n, let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ ℜn,
where the 1 is in i-th position. Then, for each s ∈ ∂f(x) and each i = 1, . . . , n,

f(x) < f(x+ ei) ≤ f(x) + ⟨s, ei⟩ = f(x) + si,

where the first strict inequality comes from the strong monotonicity of f and the second in-
equality comes from the definition of the superdifferential. Therefore, for each s ∈ ∂f(x), s =
(s1, · · · , si, . . . , sn) ≫ 0. Q.E.D.

The superdifferential is linear in the sense of the following theorem.

Theorem C.4 For any concave real-valued functions f1 and f2 on ℜn, any positive numbers a1
and a2, and each x ∈ ℜn, ∂(a1f1 + a2f2)(x) = a1∂f1(x) + a2∂f2(x).

Proof of Theorem C.4. See Hiriart-Urruty and Lemaréchal (2004, Theorem C.4.4.1.1, p.183).

We should note that this observation does not necessarily hold for more general concave functions
(Rockafellar, 1970, Theorem 23.8, p.223).

The following theorem provides the result on the superdifferential of composite functions.

Theorem C.5 Let f : ℜm → ℜ be concave and increasing componentwise and g : ℜn → ℜm be
concave. Then, for each x ∈ ℜn,

∂(f ◦ g)(x) =

{

m
∑

i=1

ρisi : (ρ1, . . . , ρm) ∈ ∂f(g(x)) and si ∈ ∂gi(x) ∀i = 1, . . . ,m

}

,

where gi(x) is the i-th component of g(x), i.e.: g(x) = (g1(x), . . . , gm(x)).

Proof of Theorem C.5. See Hiriart-Urruty and Lemaréchal (2004, Theorem C.4.4.3.1, p.186).

We can also obtain the result on the superdifferential of partially constant functions.

Theorem C.6 Let f be a real-valued function on ℜm. Also define the real-valued function g on
ℜm ×ℜn by g(x, y) = f(x) for each (x, y) ∈ ℜm ×ℜn. Then, for each (x, y) ∈ ℜm ×ℜn,

∂g(x, y) = {(s, 0) ∈ ℜm ×ℜn : s ∈ ∂f(x)}.

Proof of Theorem C.6. Let A := {(s, 0) ∈ ℜm × ℜn : s ∈ ∂f(x)} and (x, y) ∈ ℜm × ℜn. We first
show that each (s, 0) ∈ A belongs to ∂g(x, y). For this aim, let (x′, y′) ∈ ℜm ×ℜn. Then, it follows
that

g(x′, y′)− g(x, y)− ⟨(s, 0), (x′ − x, y′ − y)⟩ = f(x′)− f(x)− ⟨s, x′ − x⟩ ≥ 0,
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where the last inequality follows from the fact that s ∈ ∂f(x). This implies that (s, 0) ∈ ∂g(x, y).
We then show that each (s, t) ∈ ∂g(x, y) belongs to A by two steps. Let (s, t) ∈ ∂g(x, y). As the

first step, we show that s ∈ ∂f(x). By the definition of ∂g(x, y), it follows that, for each x′ ∈ ℜm,

0 ≤ g(x′, y)− g(x, y)− ⟨(s, t), (x′ − x, y − y)⟩ = f(x′)− f(x)− ⟨s, x′ − x⟩,

which implies that s ∈ ∂f(x). As the second step, we show that t = 0. For this aim let ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ ℜn, where the 1 is in i-th position for each i = 1, . . . , n. Then, it follows
from the definition of ∂g(x, y) that

0 ≤ g(x, y + ei)− g(x, y)− ⟨(s, t), (x− x, y + ei − y)⟩ = f(x)− f(x)− ti = −ti,

0 ≤ g(x, y − ei)− g(x, y)− ⟨(s, t), (x− x, y − ei − y)⟩ = f(x)− f(x) + ti = ti,

which implies that ti = 0. Therefore, t = (t1, . . . , tn) = 0. The above two steps impliy that
(s, t) ∈ A. This completes the proof of Theorem C.6. Q.E.D.

The next theorem provides a result on the supperdifferential of the infimum of concave functions.

Theorem C.7 Let J be a compact set in some metric space and {fj}j∈J be a family of differentiable
concave real-valued functions on ℜn, where j 7→ fj(x) is upper semi-continuous for each x. Define
the real-valued function f on ℜn by

f(x) := inf
j∈J

fj(x)

and let J(x) := {j ∈ J : fj(x) = f(x)} for each x ∈ ℜn. Then, it follows that

∂f(x) = co {∇fj(x) : j ∈ J(x)} .

Proof of Theorem C.7. See Hiriart-Urruty and Lemaréchal (2004, Corollary D.4.4.4, p.191). Q.E.D.

We also provide useful results for solving optimization problems.

Theorem C.8 For each concave real-valued function f on ℜn and each x ∈ ℜn, f(x) ≥ f(y) for
each y ∈ ℜn if and only if 0 ∈ ∂f(x).

Proof of Theorem C.8. See Hiriart-Urruty and Lemaréchal (2004, Theorem C.4.2.2.1, p.177).
Q.E.D.

Finally, we provide the Karash-Kuhn-Tucker theorem for concave but nondifferentiable cases. Con-
sider the constrained optimization problem (P) such that

max
x∈C

f0(x)

subject to f1(x) ≥ 0, . . . , fr(x) ≥ 0,

fr+1(x) = 0, . . . , fm(x) = 0,

where C is a nonempty convex set in ℜn, fi is concave on C for i = 0, 1, . . . , r, and fi is affine on
C for i = r + 1, . . . ,m.

Theorem C.9 An element x∗ ∈ C is an optimal solution to (P) if and only if there exists λ∗ =
(λ∗

1, . . . , λ
∗
m) ∈ ℜm satisfying that

(a) λ∗
i ≥ 0, fi(x

∗) ≥ 0, and λ∗
i fi(x

∗) = 0 for i = 1, . . . , r,

(b) fi(x
∗) = 0 for i = r + 1, . . . ,m, and

(c) 0 ∈ ∂f0(x
∗) + λ∗

1∂f1(x
∗) + · · ·+ λ∗

m∂fm(x∗).

Proof of Theorem C.9. See Rockafellar (1970, Theorem 28.3, p.281).
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