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Abstract

We apply a Bayesian Panel VAR (BPVAR) and DSGE approach to study the regional

effects of the 2011 Great East Japan Earthquake. We disentangle the persistent fall

in electricity supply following the Fukushima accident, from the immediate but more

temporary production shock attributable to the natural disaster. Specifically, we

estimate the contribution of the electricity fall on the regions’ economic

recovery. First, we estimate a BPVAR with regional-level data on industrial

production, prices, and trade, to obtain impulse responses of the natural disaster

shock. We find that all regions experienced a strong and persistent decline in

trade, and long-lasting disruptions on production. Inflationary pressures were

strong but short-lived. Second, we present a DSGE model that can capture key

observations from this empirical model, and provide theoretical impulse response

functions that distinguish the immediate earthquake shock from the persistent

electricity supply shock. Thirdly, in line with the predictions from the theoretical

model, counterfactual analysis via conditional forecasts based on our BPVAR reveals

that the Japanese regional economies, particularly the hit regions, did experience a

loss in production and trade due to the persistent fall in electricity supply.

Anastasios Evgenidis

Newcastle University

Business School

5 Barrack Road Newcastle upon Tyne NE1 4SE

anastasios.evgenidis@ncl.ac.uk

Masashige Hamano

TCER

and

Waseda University

School of Political Science and Economics

1-6-1 Nishiwaseda Shinjuku-ku, Tokyo

169-8050

masashige.hamano@waseda.jp

  

Wessel N. Vermeulen

Newcastle University

Economics

5 Barrack Road Newcastle upon Tyne NE1 4SE

wessel.vermeulen@ncl.ac.u



Economic consequences of follow-up disasters: lessons

from the 2011 Great East Japan Earthquake∗

Anastasios Evgenidis†

Newcastle University

Masashige Hamano‡

Waseda University

Wessel N. Vermeulen§

Newcastle University

2nd August 2020

Abstract

We apply a Bayesian Panel VAR (BPVAR) and DSGE approach to study the

regional effects of the 2011 Great East Japan Earthquake. We disentangle the

persistent fall in electricity supply following the Fukushima accident, from the im-

mediate but more temporary production shock attributable to the natural disaster.

Specifically, we estimate the contribution of the electricity fall on the regions eco-

nomic recovery. First, we estimate a BPVAR with regional-level data on industrial

production, prices, and trade, to obtain impulse responses of the natural disaster

shock. We find that all regions experienced a strong and persistent decline in trade,

and long-lasting disruptions on production. Inflationary pressures were strong but

short-lived. Second, we present a DSGE model that can capture key observations

from this empirical model, and provide theoretical impulse response functions that

distinguish the immediate earthquake shock from the persistent electricity supply

shock. Thirdly, in line with the predictions from the theoretical model, counter-

factual analysis via conditional forecasts based on our BPVAR reveals that the

Japanese regional economies, particularly the hit regions, did experience a loss in

production and trade due to the persistent fall in electricity supply.

Keywords: natural disasters; Bayesian Panel VAR; DSGE; regional spill-overs; coun-

terfactual analysis

JEL codes: E3, E6, Q54, R1

∗We are grateful to JSPS KAKENHI Grant Number 18K01521 for financial support.
†anastasios.evgenidis@ncl.ac.uk
‡masashige.hamano@waseda.jp
§corresponding author, wessel.vermeulen@ncl.ac.uk

1



1 Introduction

The study of natural disasters in macroeconomics deserves scrutiny as the economic dam-

age from such events can have severe regional and even national repercussions that demand

from policy makers the right assessment and implementation of fiscal or monetary meas-

ures to dampen the blow, and aid recovery. While disasters are often taken as a single

event, in reality they tend to be differentiable into multiple events. For instance, an earth-

quake may cause severe destruction, but may also trigger further distinguishable events

that can aggravates the situation, for instance through the outbreak of diseases or, as in

Japan, a nuclear accident.

In this article, we introduce the concept of follow-up (natural) disasters to macroe-

conomic modelling both in empirics and theory. Ideally, the role of a follow-up disaster

that is triggered by the first disaster and confounds economic effects with it, would be

separately identified for analysis and policy.1 Specifically for the 2011 Great East Japan

Earthquake, the earthquake caused physical damage to the north-eastern coastal regions

in Japan, while the nuclear accident at Fukushima triggered a policy response that ordered

a complete shutdown of all nuclear power plants in the country, creating a severe negative

electricity supply shock.2

While natural disasters tend to be rare, they regularly enact a domino of follow-up

incidents that can further harm the economy. For instance, in 2017 the destructive force of

hurricane Maria affected the power and water supply of Puerto Rico. While the hurricane

was first said to have caused just 64 fatalities, this number was questioned and increased

after research indicating an excess mortality of several thousand attributable to cuts in

water and electricity and the interruption of healthcare services (Kishore et al., 2018).

Such secondary effects are also important for lower income economies. For instance, the

earthquake in Haiti in 2010, cost a massive amount in lives and physical damage (160,000

fatalities according to Kolbe et al., 2010).3 The outbreak of cholera ten months later was

a second disaster, (arguably) triggered by the first (around 9,000 died in Haiti due to the

cholera outbreak, PAHO/WHO, 2017, Alstom, 2016).4

On 11 March 2011 and the week that followed it, Japan was struck by multiple dis-

asters.5 The earthquake and subsequent tsunami had an immediate negative production

1Such follow-up disasters are sometimes called, secondary. However, calling it secondary does not
need to imply that the disaster is smaller in magnitude, just that its occurrence was triggered by the one
preceding it (Pelling et al., 2002).

2This nationwide energy supply shock is what we measure, rather than the more localised effect of the
nuclear contamination on land and sea, the loss of economic activity within the evacuation zone, or the
spending associated with the clean-up and reconstruction.

3An early economic assessment of the Haiti earthquake is provided by Cavallo et al. (2010).
4The earthquake destroyed much of the water and sewage system. UN forces from Nepal, who were

present as part of a long-established UN peacekeeping force, introduced the cholera bacteria in the country
due to unsanitary practices at their base, which were not be mitigated in the post-disaster circumstances.

5Further context of the disaster is given in Section 3.2.
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effect mainly for one region, Tohoku, but with potential economic spill-overs to the rest

of the country. The earthquake directly affected firms in north east Japan, and through

input-output supply linkages between firms, it spread across the country (Carvalho et al.,

2016). The tsunami in turn impacted the Fukushima nuclear power plant in such way

that the reactors experienced an uncontrolled melt-down, causing an explosion and re-

lease of highly radio active material in the atmosphere and water. Arguably, the main

nationwide economic impact from the nuclear accident came through the subsequent gov-

ernment policy to shut down all nuclear power plants in Japan.6 In effect, this imposed

a substantial negative and persistent supply shock to the Japanese electricity network.

Therefore, it is not immediately clear how the economic costs to the Japanese economy

can be attributed separately to the regional production shock and the national energy

supply shock. We aim to answer this question.

We estimate and model the impact of the disaster and separate the regional produc-

tion shock from the nation-wide energy process in a within-country regional context. We

focus on three key macroeconomic indicators that we observe regionally: industrial pro-

duction (IP), prices and international trade (through exports and imports). We take a

semi-structural approach in three steps. First, we estimate the impact of the combined

disaster on Japanese regions using a Bayesian Panel VAR (BPVAR) with data at monthly

frequency. The shock, measured through the abnormal deviation of Tohoku IP, will be

represented as an exogenous regressor.7 This approach allows us to estimate impulse re-

sponses for IP, prices, imports and exports of the combined disaster that provide insights

on the regional heterogeneity of the impact of the combined disaster and recovery pro-

cess. Second, we set out a DSGE model of a small open economy à la Gaĺı and Monacelli

(2005). Our model can approximate the empirical impulse responses from the first step,

specifically through general equilibrium economic spill-overs between regions. We extend

the model with the inclusion of an electricity supply sector to model an additional trans-

mission channel of the natural disaster to the national level. Therefore, our model gives us

a first understanding on the potential impact of the severe and persistent electricity sup-

ply shock that followed the shutdown of all nuclear power plants in Japan in response to

the nuclear accident. Third, following the assumptions and predictions of the theoretical

model, we use an extended version of the BPVAR that applies the theoretical results to

the observed data and generate conditional forecasts based on counterfactual paths of the

6In the terminology of Pelling et al. (2002, p. 284), one could say that the earthquake and tsunami
are “natural disasters”, with the nuclear accident a “technological disaster”. In the examples above,
the Haiti cholera outbreak, as well as the excess mortality in Puerto Rico may constitute a “deterior-
ation of services”. The Fukushima nuclear accident did not cause immediate fatalities. Officially, one
death is attributed to the nuclear accident, years after the event itself (BBC News, 5 September 2018,
https://www.bbc.co.uk/news/world-asia-45423575). However, the nuclear fall-out affected economically
(mostly rural) communities in the direct vicinity of the plant.

7“Abnormal deviation” is defined as the difference between observed IP and the 95% confidence bound-
aries of an hypothetical IP, that is created as a linear combination of IP from other Japanese regions,
with coefficients estimated based on a pre-disaster period, see Section 4.
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electricity supply. Our goal is to measure the contribution of the electricity process in the

recovery of the regional economies by simulating how a disaster without the shortage of

electricity supply caused by ‘Fukushima’ would have looked like in the Japanese context.

Empirical evidence from the BPVAR points to considerable regional heterogeneity

in the magnitude of the response to the natural disaster among the included variables.

Overall, both hit and non-hit regions experienced a reduction in production, although the

effect is much stronger and more persistent in the hit regions. Our findings also show that

some regions that were not directly hit by the disaster, such as Hokuriku and Hokkaido,

witness an increase in their export activity as a result of the earthquake, indicating a

form of export substitution. Inflationary pressures were strong but short-lived. As our

theoretical model suggests, the persistent reduction in electricity supply resulted in a more

severe decline in local output and trade because of forward looking behaviour of economic

agents. A persistent decline in electricity supply in the subsequent future periods reduces

the expected income and results in a significant fall in consumption and production in

the current period. This effect is stronger in hit regions. The model also suggests that,

in the absence of an energy supply shock, regions not directly hit by the earthquake

would have experienced a faster and potentially stronger recovery following the negative

production shock in the disaster hit regions. The empirical counterfactual is designed

to specifically uncover what would have happened if there was no national policy to

reduce the nuclear electricity supply, confirms the predictions from the theoretical model.

Notably, the Japanese regional economies did experience a loss in industrial production

and trade capacity due to the fall in national wide electricity supply that followed the

nuclear shutdown. However, our results suggest that the overall contribution to this

persistent energy supply shock was minor.

Please see the section headings for the organisation of the remainder of the paper.

2 Literature review

Our paper contributes to the literature that estimates the economic effects on natural

disasters in a macro context in four ways. First, Raddatz (2007, 2009) and Fomby et al.

(2013) have used Panel VAR methods using cross-country data at the yearly frequency

to study the medium and long-run economic outcomes. We estimate our BPVAR using

data at the monthly frequency. The higher frequency specifically allows the investigation

of short-term adjustments following a natural disaster. Second, one of the underlying as-

sumptions in the before mentioned studies is that a disaster in one country does not affect

another. While this maybe a reasonable assumption for cross-country studies, we must

explicitly relax it in our within-country regional setting.8 Microeconomic evidence from

8Nevertheless, there also exist a potential for international spill-overs in policy and economic linkages
from natural disasters. Specifically, in the context of the Great East Japan Earthquake, Csereklyei (2014)
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the Great East Japan Earthquake indicates that the economic effects propagated through

business links (Todo et al., 2015; Cole et al., 2015; Carvalho et al., 2016). Additionally,

Hamano and Vermeulen (2020) suggest that the potential of firms to use alternative ports

for their trade activity likely aided the resilience of the Japanese economy. Therefore, in

our estimation of the contribution of each of the shocks, we must allow for cross-sectional

spill-overs. Within this context, and to the best of our knowledge, this is the first study

to explore the economic impact of natural disasters using a Bayesian Panel VAR in a

regional context on monthly macroeconomic data. Third, while Fomby et al. (2013) and

Raddatz (2007) offer empirical evidence on various outcomes and channels through which

disasters could affect the economy, we provide a theoretical background for our selection

of endogenous variables through a DSGE model that incorporates regional interactions.

Fourth, we provide a general equilibrium context to studies that investigate the spatial

spillovers in labour markets or trade in a within-country perspective (e.g. McIntosh, 2008;

Volpe Martinicus and Blyde, 2013; Hamano and Vermeulen, 2020).

As an alternative to Panel VAR models, some studies used dynamic panel models

to estimate the effect of natural disasters on country level macroeconomic outcomes

(Ramcharan, 2007; Noy, 2009; Raddatz, 2009; Fratzscher et al., 2020). These have been

especially useful to investigate what country characteristics and institutions aggravate or

mediate a disaster’s economic impact, specifically when concentrating on GDP as the

outcome variable. Others, using various univariate estimation techniques and (within)

country and time samples, focused on other key economic indicators, such as prices and

inflation (Cavallo et al., 2014; Abe et al., 2014; Parker, 2018; Heinen et al., 2018), or trade

(Gassebner et al., 2010; Volpe Martinicus and Blyde, 2013; Sytsma, 2020; Hamano and

Vermeulen, 2020). Our panel VAR structure explicitly allows each endogenous variable

in our system to depend simultaneously on their lags; other endogenous macroeconomic

variables of the region; and macroeconomic variables of all other regions.

We also contribute to the theoretical macroeconomic literature of natural disasters. In

fact, there is a remarkable lack of theoretical modelling in a DSGE setting that incorpor-

ates a natural disaster. To the best of our knowledge, Keen and Pakko (2011) is the only

published study. They develop a model to study monetary policy in this context. Our

model takes a different benchmark framework as a starting point in order to explicitly in-

corporate and demonstrate the role of regional interactions in the national propagation of

shocks due to natural disasters. However, this does mean that in our analysis we abstract

from some other relevant policy aspects of economic adjustment, such as optimal mon-

etary policy, the roles of fiscal transfers (Deryugina, 2017) and labour markets (Belasen

and Polachek, 2008) .

Modelling or estimating specifically the effects of a nuclear accident on a macro level

studies the policy spill-over from the nuclear incident on Germany’s decision to close its nuclear plants
early, and Boehm et al. (2019) study the effect of the disaster on Japanese subsidiaries in the US.
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is not widely attempted. Naturally, and fortunately, this may be due to rarity of such ac-

cidents in the past. Before the accident of Fukushima nuclear power plant, only two other

major nuclear accidents occurred. The incident at the Three Mile Island nuclear power

plant in the US in 1979 and the Soviet-Ukraine Chernobyl disaster in 1986. The main

research on the economic consequences of these incidents, including the one in Fukushima,

concern risk perception effects on house prices (e.g. Söderqvist, 1995; Tanaka and Managi,

2015; Munro, 2016; Coulomb and Zylberberg, 2016), financial market responses in stocks

of energy companies (Bowen et al., 1983; Kalra et al., 1993; Kawashima and Takeda,

2012; Betzer et al., 2013; Lopatta and Kaspereit, 2014), and local effects of economic

activity (Tveten et al., 1998; Söderqvist, 2000). The Three Mile Island incident was too

small to have larger direct economic effects on regional, let alone national output, while

the Chernobyl disaster was extreme in any comparison, but occurred in a non-market

economy.9

3 Data and methodology

3.1 Road map

Our methodology consists of the following steps. First, we estimate the impact of the

exogenous natural disaster shock on the regional economic indicators using a BPVAR.

The VAR structure allows our macroeconomic variables to be treated as endogenous.

Additionally, the panel dimension is used to estimate heterogeneous responses by region.

In this stage, we concentrate on the magnitude of the combined disaster to each region

and the path and speed of recovery, without modelling the transmission between regions

and through the electricity supply sector.

Second, we are interested in obtaining an estimate of the contribution of the policy to

reduce nuclear electricity supply and separate this from the effect of the earthquake and

tsunami. We introduce a DSGE model based on Gaĺı and Monacelli (2005) extended in a

multi-region economy and with energy in the production function. This model reasonably

approximates the direction of responses and the regional heterogeneity that are estimated

in the first step. Additionally, the inclusion of the electricity supply sector, allows to un-

cover the potential impact of the severe and persistent electricity supply shock in response

to the nuclear accident.

Finally, we return to our data and conduct conditional forecasts with an extended

version of the BPVAR framework that incorporates the assumptions from the theoretical

model, i.e. introducing the electricity supply sector and allowing for interactions and

9Analyses of the Chernobyl disaster using non-stochastic Computable General equilibrium (CGE)
models based on input-output modelling have been conducted as PhD dissertations (Yevdokimov, 1998;
Konovalchuk, 2006). Okuyama (2007) reviews developments in modelling disasters in non-stochastic CGE
and input-output models.
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spillovers among regions. Our scenario analysis models regional electricity supply based

on its pre-crisis trend, in order to measure how a natural disaster would have looked like

in the Japanese context without a shortage of the electricity supply due to the accident

at the Fukushima nuclear power plant.

3.2 Context

On 11 March 2011, an earthquake of magnitude 9 at the Richter scale struck 70 km off the

north eastern coast of Japan at depth of 70 km, and was followed by dozens of ‘smaller’

earthquakes of magnitude 6 and higher. The earthquake caused a tsunami to hit the coast.

Multiple waves hit the shore of north eastern Honshu (Tohoku) with heights up to 6 meters

from sea level, see Figure 1. The force of the wave made the water surge inland as much as

40 meters above sea level, and in some areas a few kilometres from the coast, albeit these

were local extremes.10 The flooding caused major damage along coastline where many

cities and ports are located. Most prominently, it caused the flooding of a nuclear power

plant at Fukushima, which subsequently malfunctioned, partly exploded and released

nuclear radiation in the air and water (Hayashi, 2012). Immediate government aid and

reconstruction helped to normalise a large part of the hit area. A majority of business

opened within two weeks (Todo et al., 2015; Cole et al., 2015). Seaports located directly

in the line of the tsunami took much longer to recover, which hampered international

trade links (Ono et al., 2016; Hamano and Vermeulen, 2020). The Fukushima disaster

had major repercussions for the entire country. All nuclear plants in Japan were ordered

to shutdown, which happened gradually. This in turn caused a major electricity supply

disruption across the country. However, nuclear power was eventually replaced with power

from other sources, such as imported natural gas.

3.3 Data

We collect data from public sources released by various Japanese (semi-)public organisa-

tions. At the monthly-regional level we have access to: industrial production index (IP),

prices, electricity supply by power source, exports and imports of merchandise goods.11

We also observe the monetary policy rate.12

10Some researchers have been able to differentiate between the effects of the earthquake and the tsunami
due to geographical nature of the impact using micro-data (Cole et al., 2015; Carvalho et al., 2016).

11The sources are as follows. IP: Japan Ministry of Economy, Trade and Industry, avail-
able at http://www.meti.go.jp/statistics/tyo/iip/chiiki/index.html; Prices: Official Stat-
istics of Japan, https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=
00200573&tstat=000001084976&cycle=0&tclass1=000001085995&tclass2=000001085937; Electricity
supply: Japan Ministry of Economy, Trade and Industry, available at http://www.enecho.meti.go.jp/
statistics/total_energy/; international trade: Japan Ministry of Finance, Trade Statistics, available
at http://www.customs.go.jp/toukei/info/tsdl_e.htm.

12Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/search?st=Japan+real+

exchange+rate.
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Figure 1: Japan regions and the 2011 Great East Japan Earthquake

The shaded squares indicate the measured maximum wave height at these specific points,
which are sea ports (Ministry of Land, Infrastructure and Transport, 2011). The indicated
location of the epicentre of the largest earthquake is from the US Geological Survey (2011)
(http://earthquake.usgs.gov/earthquakes/browse/significant.php).

Figure 2 presents the main endogenous regional data series that we incorporate in our

BPVAR, for the period April 2008 to March 2014. The impact of the earthquake is clearly

visible for Tohoku in terms of IP and trade. For Kanto, we can observe some effect in IP

but not in trade. All regions demonstrate a similar boost in inflation, but this does not

seem to be timed with the disaster. The electricity supply is combined from all energy

sources, including nuclear power. The data has been cyclically adjusted using the mean

for each month over all years. A persistent reduction for Tohoku and Kanto is noticeable

in the bottom left panel.

Figure 3 indicates descriptive variables of the exogenous processes that affected the

Japanese economy; the earthquake and nuclear power supply by region. The earthquake

series are obtained from the US Geological survey world wide database on earthquake

events, limited to those with epicentres within 100km of Japanese landmass and less than

70km deep, whereafter we associated the epicentres to the closest Japanese region using

geospatial tools.13 The top-left figure clearly indicates that Tohoku experienced a large

number of major earthquakes over several months. The Kanto region experienced also

some of these, but the other regions did not. It reveals that the exogenous earthquake

shock was sudden, but it also has some persistence.

13United States Geological Survey, available at https://earthquake.usgs.gov/earthquakes/search/,
downloaded on 23 April 2018.
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Figure 2: Endogenous variables
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Figure 3: Follow-up shocks to the Japan economy
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observed and a predicted value.

To obtain a more direct measure of the economic effect of the earthquake and tsunami

on the most affected region, we calculate a measure of Tohoku’s abnormal IP deviation.14

14This variable is different from measures commonly found in the literature, such as the estimated
(direct) damage variable in money terms (Noy, 2009; Cavallo and Noy, 2011; Fratzscher et al., 2020), or
number of people affected (Fomby et al., 2013). Our variable approximates the indirect damage from
forgone economic activity. We do this for two reasons. Firstly, given that we focus on a single event,
and in contrast to papers studying multiple disasters over time and countries, we require a little more
information on the shock over time to identify the coefficients in the system, rather than the (estimated)
capital damage at the time of impact. The estimated excess under-production in Tohoku aims to capture
the aggregate exogenous effect over time on industrial activity relative to other Japanese regions Secondly,
a harmonised estimated measure of damage value is useful for analysis across many disaster events (e.g. at
the global cross-country level), but we do not need this. See Kajitani and Tatano (2014) for an alternative
methodology of estimating production loss based on more fundamental data.
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Table 1: Pre-disaster monthly nuclear supply (April 2008 - February 2011)

region mean min max

Chubu 12.4 0.0 22.4
Chugoku 9.6 0.0 20.4
Hokkaido 32.6 14.1 56.1
Hokuriku 34.4 0.2 60.5
Kanto 24.8 17.2 34.0
Kinki 40.9 27.5 58.7
Kyushu 41.5 32.1 53.3
Okinawa 0.0 0.0 0.0
Shikoku 47.0 28.1 62.6
Tohoku 22.9 13.7 30.8
Total 27.2 22.8 32.1

Figures are the percentage of total electricity supply.
Source: author calculations based on http://www.

enecho.meti.go.jp/statistics/total_energy/

We regress Tohoku IP on the IP of Hokkaido, Kinki and Shikoku using the sample period

January 2008 to March 2011. Using the estimated model we predict the rest of the period

(up to March 2014), with 95% confidence band. The Tohoku abnormal IP deviation is

then defined as the distance of observed Tohoku IP from the predicted band. The resulting

series is presented in the top-right panel of Figure 3.

To demonstrate where the potential variation from total electricity supply in Figure

2 originates from, we present in the bottom-left panel of Figure 3 the index of nuclear

energy supply (2010=100, no cyclical adjustment). It is generally volatile over time, due

to occasional (planned maintenance) shutdowns of individual plants. However, after 2011

the general decline in nuclear supply is clearly noticeable. Nuclear energy presents an

important share of Japans’ electricity supply mix. Table 1 presents the mean, minimum

and maximum share of monthly nuclear energy of a region’s total energy supply over the

period from April 2008 to February 2011. The supply varies considerably, with the lowest

mean value for the regions that we concentrate on in Chubu (12.4% of total) and the

largest for Kinki (40.9). Nonetheless, the effect in total energy supply, as indicated in

Figure 2, is not as strong since the loss of nuclear energy can partly be absorbed by other

sources.15

4 Bayesian Panel VAR

Panel VARs are widely used in the context of macroeconomic (mainly) and microeco-

nomic analysis. For example, in macroeconomics, Panel VARs have been used to study

15Japan has two major electricity regions, one based on 50 Hz in east Japan and 60 Hz in West
Japan. Within these regions electricity flows freely, but not between. However, the policy of shutting
down nuclear powerplants was nation wide, and so affected all regions, independent of their electricity
frequency.
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fiscal multipliers (Ilzetzki et al., 2013; Corsetti et al., 2012), the transmission of monetary

policy shocks (Jarocinski, 2010; Goodhart and Hofmann, 2008) and also external shocks

to macroeconomic aggregates across countries (Canova, 2005; Raddatz, 2007). In microe-

conomics, Panel VARs have been used to examine the dynamics of earnings and hours

worked among workers (Vidangos, 2009) and financial development and firm behaviour

(Love and Zicchino, 2006).16

Our Panel VAR is perfectly suitable to be applied to the analysis of a natural disaster

for the following reasons. First, in contrast to univariate and panel data models, the

Panel VAR provides rich information on specific sources of variation that are important

for our analysis. Specifically, crucial for understanding the regional effects of disasters is

to measure the dynamic effects of natural disasters in each of the variables in the system

and each of the regions. Second, this framework allows us to investigate the contribution

of disasters shocks to short-run and medium-run movements in macroeconomic variables,

thus, providing a good insight on the regional heterogeneity of the impact and recovery.

Third, we can incorporate regional interaction and spill-overs into our Panel VAR.

Furthermore, the VAR dimension of the BPVAR allows for all economic indicators to

be endogenous to the system. In addition, we allow the VAR coefficients and residual

variances to be region-specific, i.e. we introduce cross-regional heterogeneity. Finally, we

incorporate exogenous variables.

The focus of the analysis in this section is the impact of a common exogenous natural

disaster shock and the estimation of the aggregate effect of the natural disaster on the

regional economies, rather than the origin of the cross-sectional spillovers. Therefore,

we start with a model that assumes no dynamic interdependencies between regions and

without disentangling a production effect from an energy supply effect. We capture the

external shock through the abnormal deviation of Tohoku IP and estimate the response

for each regions’ endogenous variables. Below, we provide a summary description of the

estimation method. A detailed description of the estimation is provided in Appendix

A.1.17

Traditional VARs estimated either by least squares or maximum likelihood, often

require many lags to improve the in-sample fit, leading to a significant loss of degrees of

freedom and thus to poor forecasts. Bayesian shrinkage, which is obtained by a prior that

concentrates more around zero for higher lags, allows us to reduce the number of lags,

hence, limiting the over-parameterisation issue. Moreover, the length of the data-span

in our case, as will be demonstrated below, is rather short for the number of parameters

16For an in-depth survey of Panel VAR applications see Canova and Ciccarelli (2013).
17Bayesian Panel VARs are estimated by using the BEAR toolbox of Dieppe et al., 2016. A similar

Panel VAR approach was adopted by Ciccarelli et al. (2013) who analyse how financial fragility has
affected the transmission mechanism of the single Euro area monetary policy during the crisis until the
end of 2011 and Jarocinski (2010), who provides systematic comparisons of impulse responses to monetary
shocks in the euro area countries before the EMU and in the New Member States from central and eastern
Europe.
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that we aim to estimate. As a consequence, estimation of objects of interest for this

paper such as, impulse responses and forecasts, can become imprecise. By supplying prior

information into the estimation, we obtain estimates which are generally more precise

than those obtained using traditional methods, thus compensating for the short sample.

Last, Bayesian simulation methods, such as Gibbs sampling that we use in this paper,

provide an efficient way to obtain point estimates and to characterise the uncertainty

around those point estimates by obtaining confidence bands.

The general form of the BPVAR model for region i = 1, . . . , N at time t is given by

yi,t = A1
i yi,t−1 + · · ·+ A

p
i yi,t−p + Ci,txt + εi,t, (1)

where yi,t denotes a n × 1 vector of n endogenous variables of region i at time t, Ap
i is a

n×n matrix of coefficients, xt is the m× 1 vector of exogenous variables, Ci,t is the n×n

matrix connecting the endogenous to the exogenous variables, and εi,t denotes a n × 1

vector of residuals with εi,t ∼ N(0,Σ) , where Σ is a diagonal matrix with Σi elements

in the diagonal. In our estimations the number of lags of the endogenous variables, p, is

four. By transposing (1), writing in compact form and stacking over T sample periods,

we get

Yi = XiBi + ei, (2)

where Yi =




yi,1
...

yi,T


 ,Xi =




y′i,0 · · · y′i,1−p x′

i
...

. . .
...

...

y′i,T−1 · · · y′i,T−p xT


 , Bi =




A1
i
...

A
p
i

C ′

i



, ei =




e′i,1
...

e′i,T


 .

This reformulates in vectorised form as,

yi = X̄iβi + εi, (3)

where yi = vec(Yi), Xi = In ⊗Xi, βi = vec(Bi) and εi = vec(ei). Note that εi,t now takes

the following form, εi,t ∼ N(0,Σi ⊗ It).

Next, we introduce cross-sectional heterogeneity, essentially allowing our model to

replicate regional specific VARs. We implement this by assuming that for each region

i, βi can be expressed as βi = b + bi, with b being a n × 1 vector of parameters and

bi ∼ N(0,Σb). It follows that βi ∼ N(b,Σb), which implies that the Panel VAR coefficients

will differ across regions, but they are drawn from a normal distribution with a constant

mean and variance. We estimate the model using Bayesian techniques. We follow the

hierarchical prior approach of Jarocinski (2010) to derive the posterior distributions of

our model parameters.

To identify the BPVAR model correctly and allow for meaningful interpretation of
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the impulse responses we adopt the following strategies. First, as already mentioned, we

identify the impact of earthquake events as an exogenous variable. This strategy implies

that the earthquake shock affects all the macroeconomic variables in the system and across

regions, contemporaneously, but none of them is allowed to affect the earthquake variable.

Second, the block of endogenous, regional variables is identified through Cholesky

decomposition. Specifically for our case, IP is ordered first, followed by CPI inflation and

last, the trade variables (imports and exports).18 The identification strategy implies that

a shock to the regional IP has a contemporaneous effect on all other domestic variables in

the region, but none of them can affect the regional IP, except through the exogenously

defined earthquake shock. Similarly, a shock to the regional CPI inflation impacts all the

other variables within the region apart from IP, but only the exogenous earthquake shock

and regional IP can affect prices contemporaneously.

Producing impulse responses with the BPVAR model is aided by the imposed structure

as the model ultimately results in the estimation of a set of N independent VAR models,

one for each region. Moreover, the Bayesian framework that we adopt makes it possible

to integrate the impulse responses calculation into the Gibbs sampling framework that is

set out in Appendix A.1.3. In particular, to calculate the impulse responses functions, we

obtain the predictive distribution f(yt+1:t+h | yt) where h is the forecasting period.

4.1 Evidence from Bayesian Panel VAR

Figure 4 shows the responses of the four endogenous variables to an exogenous earthquake

shock in Tohoku in all six regions for horizons up to sixteen months. For exposition we

divided the responses by the two regions closest to the epicentre of the earthquake (hit)

and four regions further away (non-hit). We did not impose this categorisation in the

estimation. The dots on the lines indicate that the 68% confidence interval does not

encompass zero.

Industrial production Broadly speaking, the findings point to considerable heterogen-

eity in the impact of earthquakes on different sectors of the economy, across regions. The

starting point is industrial production (IP). The figures show that in response to earth-

quake shocks, there is a substantial and persistent decline in IP for three out of four

non-hit regions, Chubu, Kinki (Kansai), Hokuriko, and both hit regions, Kanto and To-

hoku. Chubu appears to be affected due to its regional proximity to Kanto. There is

heterogeneity in the size of the effect between these regions. Moreover, the shock has a

persistent effect, as the adjustment towards zero takes about 12 months. The response of

Hokkaido is the smallest and statistically indistinguishable from zero, indicating a level

18The ordering of the variables that we use in this paper follows the broader literature of VAR modelling
in a macroeconomic context (e.g. Eichenbaum and Evans, 1995; Christiano et al., 1999).
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Figure 4: BPVAR, impulse responses to Tohoku IP abnormal deviation.
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Note: Impulse responses from BPVAR estimation. Lines indicate monthly median impulse responses of
each variable to a one standard deviation shock of Tohoku IP abnormal deviation To avoid overlapping
confidence bands, the dots at a line indicate statistical significance at 68% level. The two regions closest
to the epicentre of the earthquake are named hit, and the four regions further away non-hit. This
categorisation was imposed during the estimation.
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of regional isolation of the northern main island. Overall, the significant decline of IP ob-

served in the majority of regions is consistent with the micro-evidence of disruption from

domestic supplier linkages for those firms that had links with firms in the earthquake hit

region (Carvalho et al., 2016).

Prices In relation to prices, all regions exhibit a strong positive increase in the first

months after the shock. What is also common to all regions is that, the responses are

short lived as they very quickly become statistically insignificant. The only exceptions are

the hit region of Tohoku and non-hit region of Chubu for which inflationary pressures are

more persistent. The positive but relative limited response in prices is consistent with a

more detailed analysis of Cavallo et al. (2014) and Abe et al. (2014), who study detailed

retail prices and purchase behaviour around the time of 2011 disaster, and the analysis of

Parker (2018) encompassing cross-country data and many different types of disasters.

Exports Regarding exports, Tohoku, Kanto and Chubu, are strongly affected as indic-

ated by the substantial decline of the responses immediately after the shock. In all three

cases, the rapid initial fall slowly dissipates; this is evidence that the impact of earthquake

on exports is not temporary. The response of exports for Kinki rises on impact, but this

initial increase is rapidly reversed as evidenced by a decline into negative territory. The

response is smaller in magnitude, compared with the other three regions, and quicker to

revert to zero levels. On the contrary, Hokuriku and Hokkaido witness an increase in their

exports as a result of the shock, indicating a form of export substitution (Hamano and

Vermeulen, 2020). This rise, in both cases, lasts for approximately five months; thereafter,

the responses become insignificant.

Imports Tohoku’s response points to a significant drop in imports. Imports for Chubu,

Kinki and Kanto (to a lesser extent) exhibit a sudden and temporary hike, which afterward

becomes negligible. Responses for Hokuriku and Hokkaido are statistically insignificant,

which provides additional evidence in favour of the hypothesis that the impact of the

earthquakes in these two regions, compared with the impact in the other four regions, is

rather modest.

The analysis in this section demonstrated the direct impact of earthquakes on the eco-

nomies of various regions, notably Chubu, Kanto, Kinki and Tohoku. As a result of the

disaster, all these regions experienced a strong and persistent decline in trade, as indic-

ated by the fall in exports and also, long-lasting disruptions on production. Inflationary

pressures were strong but short-lived.

These responses are the result of the combined immediate impact of the earthquake

and tsunami and the nation-wide shutdown of all nuclear energy plants. Therefore, a

natural question to ask is whether it is possible to disentangle the impact of these two

16



distinct shocks on the economy. We do this in two steps. First, we set out a DSGE

model that can broadly replicate the above responses through regional interactions and

separate the effects between those of the production shock from the natural disaster and

the reduction in energy supply. Secondly, guided by this theoretical model, we estimate

the impact of nuclear plant shutdown by adding the total energy supply component in an

extended form of BPVAR that accommodates interactions among regions and we use this

empirical model to build counterfactuals for policy analysis.

5 Theoretical Model

We develop a small open economy theoretical framework with price rigidity that features

heterogeneous regional economies and allows us to further explore some of our results.

We prefer the model to be tractable and intuitive, potentially at the cost of being

stylised and not suitable for a detailed calibration of the Japanese economy. Therefore,

we extend Gaĺı and Monacelli (2005) to include a continuum of small openeconomies

with an energy sector. Our objective is three-fold: we aim to explore the impact of

a regional productivity shock, provide a mechanism through which regional productivity

shocks impact the nation wide energy supply, and investigate how aggregate output shocks

may affect individual, non-hit regions. In particular, each region, functioning as a small

open economy, is subject to one of the following exogenous shocks: either a region specific

productivity shock, which refers to the impact of a shock that is generated in the hit

region or, an aggregate output shock which approximates a shock that takes place outside

the region. In the theoretical model, in line with the BPVAR in the previous section, we

consider Tohoku and Kanto as the regional economies that were hit directly by a region

specific productivity shock. Chubu and Kinki are treated as the non-hit regions that were

indirectly affected by an aggregate output shock.

We present the model focusing on the changes with respect to Gaĺı and Monacelli

(2005) and relegate the details of the model to Appendix B. Throughout the presentation,

variables represent those of individual regions that function as small open economies,

while the variables with ∗ stand for the rest of the world which is outside of the small

open economy.

5.1 Households

Within a country, there is a continuum number of atomistic regions, which is indexed by i

in unit interval. The representative household in a generic region maximises the expected

inter-temporal utility with respect to nominal consumption and labor supply.

The basket of goods Ct is defined as
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Ct =

[
(1− α)

1

η C
η−1

η

H,t + α
1

ηC
η−1

η

F,t

] η

η−1

, (4)

where α is the demand attached to the bundle of goods produced in other regions CF,t,

η (> 0) denotes the elasticity of substitution between locally produced goods in Home

region (CH,t) and imported goods from Foreign region (CF,t). Further, imported goods

CF,t are composed from imperfectly substituted goods from each region Ci,t. The basket of

locally produced goods CH,t is also composed from imperfectly differentiated goods Ci,t(j)

which is produced by firm j within region. We assume that the elasticity of substitution

across products within the same region i is higher than η.

5.2 Production

There is a continuum of firms within a unit interval in each region. Firms are monopol-

istically competitive and produce one product variety, which is imperfectly differentiated.

Production requires energy as well as labor. The production function of a particular final

good j is thus given by

Yt(j) = AtN
µ
t (j) (Et(j))

1−µ
,

where At is total factor productivity, Nt(j) stands for labor used in final good sector, and

Et(j) represents energy as intermediate inputs whose price is Pe,t.

The cost minimisation yields the optimal demand for each factor of production. The

optimal labour and energy demand is found to be respectively

Nf,t(j) =

(
Wt

MCt

)
−1

µYt(j), Et(j) =

(
Pe,t

MCt

)
−1

(1− µ)Yt(j), (5)

where Wt stands for nominal wages. In the above expressions, nominal marginal cost MCt

is defined as

MCt ≡ A−1
t

(
Wt

µ

)µ(
Pe,t

1− µ

)1−µ

. (6)

The firm sets the price knowing the demand it faces. The price is assumed to be sticky

à la Calvo (1983) and only a fraction 1− θ of firms can re-optimise their prices.19

5.3 Interregional Financial Market and General Equilibrium

Financial markets are assumed to be complete, implying the perfect inter-regional con-

sumption risk sharing. Complete financial markets allow households to insure perfectly

for consumption risk arising from disasters. As a result of the inter-regional lendings and

19Cavallo et al. (2014) mention limited price updating of firms around disasters. This would be an
important observation that need to be addressed. However, we do not model a specific pricing behaviour
at the timing of the disaster and stick to a standard staggered price setting framework in our analysis.
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borrowings, trade is not balanced.20 The model is completed by considering two market

clearing conditions. First, the goods markets clears for a typical good j with

Yt(j) = CH,t(j) +

∫ 1

0

C i
H,t(j)di.

Second, denoting the national energy supply with E∗

t , energy market clears as E∗

t =∫ 1

0

∫ 1

0
Ei
t(j)djdi. Plugging the energy demand found previously, we can further rewrite the

energy market clearing condition as21

E
∗

t =

(
1− µ

µ

)µ

Y ∗

t A
∗

t

(
W ∗

t

Pe,t

)µ

, (7)

where we define the output in other regions and technology level in other regions as

Y ∗

t ≡
∫ 1

0
Y i
t di and A∗

t ≡
∫ 1

0
Ai

tdi = 1. Note that energy circulates freely within the country

without any cost implying that energy price is the same across regions, i.e., P i
e,t = Pe,t =

P ∗

e,t. Workers are assumed to be mobile across regions implying that W ∗

t ≡
∫ 1

0
W i

t di = Wt.

We assume the following process for At, E
∗

t and Y ∗

t ,




lnAt

lnE∗

t

lnY ∗

t


 =




ρa 0 0

0 ρe∗ 0

0 0 ρy∗







lnAt−1

lnE∗

t−1

lnY ∗

t−1


+




εa,t

εe∗,t

εy∗,t




where ρa, ρe∗ and ρy∗ stand for the persistence of each shock. The errors εa,t and εy∗,t are

i.i.d. innovations. We assume that innovation on total electricity supply εe∗,t is perfectly

correlated with either εa,t or εy∗,t.

Finally, the interest rate on nominal bonds, rt, is risk free and controlled by the central

bank following a simple Taylor rule such that rt = φPπ
∗

t where π∗

t stands for nationwide

inflation rate and φP is the reaction of the central bank with respect to the inflation in

setting the risk free rate rt.
22

20For each region which is defined as a small open economy, there is no distinction between regional
trade and international trade. See Appendix for the definition of net export, export and import.

21Putting the energy demand found in (5) and the expression of the marginal cost (6), we have

E
∗
t =

∫ 1

0

∫ 1

0

E
i
t(j)djdi =

∫ 1

0

∫ 1

0

(
P i
e,t

MCi
t

)−1

(1− µ)Y i
t (j)djdi

= (1− µ)Y ∗
t

∫ 1

0

(
P i
e,t

MCi
t

)−1

di =

(
1− µ

µ

)µ

Y ∗
t

∫ 1

0

Ai
t

(
W i

t

P i
e,t

)µ

di.

Finally plugging the definition of aggregate output and technology as well as wage equality across
regions, we get (7).

22We introduce monetary policy rate without considering zero lower bound. As we will see, this is not
problematic given our specific Taylor rule that produces interest rate hike following inflationary disaster
shock. Our focus in the paper is to see the inflation dynamics and output contraction following the
disasters and not the way of conduct of monetary policy that potentially could mitigate the impact,
which is of course an interesting topic for future research (e.g. Keen and Pakko, 2011).
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The whole (log-linear) system is summarised in Table B-1 in the appendix.

5.4 Calibration

We calibrate the model with parameter values at monthly basis in Table B-2 in the Ap-

pendix. The parameter values of preferences and elasticities are taken from Gaĺı and

Monacelli (2005). We set the Calvo price setting probability as θ = 0.92 which is con-

sistent with a price duration of 12 months as is standard in the literature. Electricity

consumption demand in total energy in Japan was around 25.4% in 2010 (among which

nuclear generated electricity accounted for 27.2%. See Table 1).23 Fujiwara et al. (2005)

estimates the share of capital in Japanese economy as 37 %. Given these numbers, we set

the share of electricity in production as 1− µ = 0.254× 0.37 = 9.4%.

Following the analysis of our BPVAR, we aim to show qualitatively the impulse re-

sponses of hit and non-hit regions. In particular, we produce the responses of the hit-

regions by assuming a persistent reduction in energy supply E∗

t that is induced by a 1 %

negative standard deviation shock on log of regional productivity (εa,t = 1 and εe∗,t = εa,t).

On the other hand, the responses of the non-hit regions are produced as the result of a

persistent reduction in energy supply E∗

t caused by a 1% negative standard deviation shock

on log of output in the other regions (εy∗,t = 1 and εe∗,t = εy∗,t). In the calibration, we

set ρa = ρy∗ = 0.1 and ρe∗ = 0.9 to capture a relatively short-lived impact of productivity

and output shock in contrast with the persistent energy supply shock.

5.5 Impulse Response Functions

Figure 5 shows the impulse responses of our model.24 Figure 5(a) presents the responses of

the hit regions, following a 1% negative standard deviation shock on regional productivity

εa,t. The green solid lines show the responses under the benchmark calibration. In line

with our BPVAR, local output, exports and imports decrease on impact and remain

persistently low for several months, before returning to their initial steady state level.

This contraction in capacity is responsible for the inflation spikes on impact. Again,

consistent with our BPVAR, the latter effect quickly decays after a few months. Turning

to Figure 5(b), a negative output shock in other regions, εy∗,t, causes the local, non-hit

economy to contract on impact, as evidenced by the fall in output, exports and imports,

followed by an immediate inflation spike. However, note that six months after the shock,

output, exports and imports recover quickly and even strongly increase. The positive

23Japans electricity consumption as a share of total energy consumption in 2010 was 3.73 ex-
ajoules/14.71 exajoules=0.254 (Statista, 2020, https://www.statista.com/statistics/868332/japan-
electricity-consumption/ , https://www.statista.com/statistics/868275/japan-final-energy-
consumption/).

24Appendix B.4 provides the IRFs of the other variables.

20

https://www.statista.com/statistics/868332/japan-electricity-consumption/
https://www.statista.com/statistics/868332/japan-electricity-consumption/
https://www.statista.com/statistics/868275/japan-final-energy-consumption/
https://www.statista.com/statistics/868275/japan-final-energy-consumption/


boost in the real economy variables is due to the substitution of other regions’ economic

activities.

Overall, our model approximates well, at least qualitatively, the direction of the re-

sponses for each variable and the heterogeneity by region. A positive deviation of IP

for non-hit regions was not observed empirically, which is not unexpected given that the

empirical model cannot explicitly capture substitution effects between locally produced

goods and imported goods from foreign regions. However, generally we observe a similar

pattern for both hit and non-hit regions as in Figure 4. The signs of the responses of IP

and trade variables for the hit regions from the BPVAR are in line with their respective

responses from the theory. Price responses are positive in the theory and data for both

types of regions. Furthermore, the theoretical model predicts mirrored responses of re-

gional imports and exports depending on the hit/non-hit classification, which is broadly

consistent with those observed in the empirical model

The theoretical model allows us to perform a counterfactual analysis that excludes the

fall in energy supply. To do this, we now set εe∗,t = 0 implying that there is no reduction

in energy supply in the subsequent periods. The blue dashed lines in Figure 5 show the

counterfactual responses from this specification. As expected, the subsequent reduction

in energy supply creates a stronger and more prolonged decline in local output and trade,

particularly in the hit regions. This is a direct consequence of a lower permanent income

induced by a persistently lower energy supply.

As Figure 6 indicates, the higher the persistence of the energy supply shock is, the

stronger the fall of output on impact in hit regions. An expected prolonged lower energy

supply in the future periods results in a lower consumption and output in the current

periods. Inflation becomes slightly lower without an energy fall, reflecting the lower

marginal cost with lower energy prices. On the other hand, in the absence of a persistent

electricity fall, non-hit regions would have experienced a somewhat higher level of output

as well as exports and imports following an output shock in other regions. However,

judging from the modest gap between the two lines, the effect is rather weak indicating

that the major impact is driven by the fall in nationwide output. The upshot is that while

a persistent fall in energy supply induces a significant negative impact for hit regions, it

creates a relatively limited negative impact for non-hit regions.

6 Empirical counterfactual analysis of ‘no follow-up energy

supply cut’.

The results from the theoretical model suggest that the persistent fall in electricity supply

confounded the impact on both hit and non-hit regions, although the negative impact on

macroeconomic variables are more emphasised in hit regions. We examine this closer by
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Figure 5: IRFs of a decrease in regional productivity and output in other regions

(a) Decrease in regional productivity

(b) Decrease of output in other regions

Impulse responses from a shock in (a) regional productivity, εa,t and energy supply εe∗,t, which can be

used to approximate one hit region; (b) output in other regions, εy∗,t and energy supply εe∗,t, which can

be used to approximate for non-hit regions. The green solid line presents the benchmark case where (a)

the regional shock and energy supply shock take simultaneously; (b) the shock on output in other regions

and energy supply shock take simultaneously. The blue dashed line represents the same productivity

shock with zero persistence of energy supply shock.
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Figure 6: Persistence of energy supply shock and fall in output

The line presents the fall in production on impact in hit region, y1, with respect to different persistence

of energy supply shock, ρe∗ .

using our empirical model to construct a counterfactual policy scenario.

Following the theoretical model, we introduce energy supply and regional interdepend-

ence to our BPVAR. These two features will allow us to generate counterfactual scenarios

based on an alternative hypothetical energy supply path. Similar approaches that deal

with dynamic interdependencies (in non-disaster contexts) have been adopted by Canova

and Ciccarelli (2004, 2009) and Dées and Güntner (2017). The model is described in detail

in the Appendix A.2. We use our extended BPVAR to perform counterfactual policy ana-

lysis based on conditional in-sample forecasts. Within our context, conditional forecasts

can be thought of as scenarios that involve projections of a set of variables of interest on

future paths of some other variables, in our case this is total electricity supply.25

We augment the vector of endogenous variables with one additional variable, the total

electricity supply for each of the included regions. To limit the number of parameters

to estimate, we limit our analysis to the regions of Chubu, Kanto, Kinki and Tohoku.

Hokkaido and Hokuriku are omitted since these were less affected by the earthquake and

tsunami in 2011, as evidenced in section 4.1. Our sample period now runs from April 2008

25Conditional forecasts for scenario analysis have been used for stress tests conducted in the US, Euro
area and the UK in the aftermath of the 2007 financial crisis, or another example, for informing monetary
policy decisions conditional on specific paths of the policy rate. Recent studies that use conditional
forecasts are, Bryan and Morten (2019), Stock and Watson (2002), and Giannone et al. (2010, 2012,
2014). Details on the approach that we follow to calculate conditional forecasts can be found in Waggoner
and Zha (1999).
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Figure 7: Counterfactual paths-electricity supply

Chubu Kinki
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The counterfactual paths used for the conditional forecasts, return and follow a pre-March 2011

trend. Data points and labels are set at the last day of the month.

up to December 2011 and we perform conditional forecasts from May 2011, that is, the

first month after the earthquake, until December 2011. As Figure 7 shows, we conduct

conditional forecasts based on the assumption that total electricity supply follows a higher

path that corresponds to levels prior to the 2011 earthquake.26 As a result, macroeconomic

variables in the current period depend on all expected future passes of counterfactual

electricity supply. Practically, this aims to approach the dynamics of a counterfactual

world in which the government did not order the closure of the nuclear plants across the

country.

The results for the counterfactuals are depicted in Figure 8. The regions are ordered

from top to bottom, from most exposed to the earthquake (Tohoku and Kanto) to the least

(Chubu and Kinki). As before, the focus is on industrial production, prices and exports.

Each plot indicates the past data, with the continuation of the forecast period (in green

solid). Then we present two (in-sample) forecasts. The red dash-dot line presents the

median forecast conditional on the actual process of electricity supply. The blue dashed

line presents the median forecast conditional on the counterfactual electricity supply series

26In particular, the paths of electricity supply are generated by estimating the same model as described
above and obtaining the unconditional forecasts of electricity supply, from January 2011 up to December
2011. Note that in our context, unconditional forecasts simply implies that no knowledge is assumed for
the future path of the variables.
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as described above.

The following messages emerge from the results. Firstly, and most importantly for

this study, the counterfactual forecasts of IP, exports and prices are consistently above

the forecasts based on the actual path of electricity. The results suggest that the empirical

model is in line with the predictions from the theoretical model, pointing that the Japanese

regional economies did experience a loss in production and trade due to the persistent

electricity shutdown. Second, the magnitude of the effect (i.e. the gap between the blue-

dashed and red dotted lines) for both IP and exports is much larger for the hit regions

(Tohoku and, to a lesser extent, Kanto) than the non-hit ones, corroborating the evidence

from the theoretical model. We also notice that the median counterfactual for Tohoku

exports overshoots the actual data, suggesting that exports would completely return to

pre-disaster levels in the absence of a shortage of electricity supply. Compared with the

forecast of Tohoku IP, the forecast for exports appears a bit too optimistic in our view.

Since the tsunami had a large destructive impact on the ports of Tohoku, the recovery

exports lagged for a longer period than production (Hamano and Vermeulen, 2020).

Another result that is revealed by the BPVAR is that Kinki presents a divergence

between the two forecasts, in contrast to the other three regions that exhibit a convergence

of their IP and exports forecasts. The divergence in Kinki is consistent with the idea the

persistent electricity process became increasingly important for this region’s economic

performance in the aftermath of the earthquake. Next, note that in most cases, the

median estimates of the conditional forecasts based on the observed electricity supply

(red dotted line) track rather well the trends in the observed data (the green solid line),

capturing, for example, the general increase in IP observed in three out of four cases, the

rise in exports in two regions, and the fall of exports in one. However, admittedly, the

timing could have been better. Similarly, for prices, the median forecasts capture well the

actual path of regional CPIs. Note that at the end of the forecasting period, the median

inflation forecasts for all regions appear to move upwards, diverging from the actual data.

In Appendix C.1, we present the same two conditional forecasts together with their

confidence bands. Although the results cannot be said to statistically differ from the ob-

served data, we take confidence in the consistent patterns across regions and over time, the

consistency with the theoretical model, and particularly, the notable differences between

the forecasts based on the actual and the counterfactual electricity supply paths. These

clearly suggest that the regions experienced a loss in production and trade due to the

shutdown of the nuclear power plants.

7 Conclusion

Shocks from natural disasters will strike local economies, which are often integrated with

a larger national economy. This paper uses the case of the 2011 Great East Japan Earth-
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Figure 8: Scenario analysis - Forecasts based on counterfactual electricity supply
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quake to study regional spill-overs of follow-up disasters. We separate two major exogen-

ous processes that represent the event, notably an immediate production shock in one

set of regions, followed by a persistent nation-wide reduction in nuclear electricity supply.

We estimate a Bayesian Panel VAR model to demonstrate regional heterogeneity in the

macroeconomic indicators. We also develop a DSGE model that rationalises these results

through a mechanism of regional spillovers. Finally, we provide simulations of a case

where the national electricity reduction did not occur, representing a hypothetical case

where the Fukushima nuclear power plant was not affected by the tsunami.

For the economic indicators, we focus on industrial production, prices, and trade

variables. Each of these are observed monthly for each region in Japan. We estimate

impulse response functions and find that price pressures are nationally propagated but

short-lived. In contrast, trade indicators for the hit regions point towards a significant loss

in trade while the responses of some non-hit areas, suggest that goods exports and imports

are replaced to non-hit areas. Industrial production is negatively affected nationally. The

impact is stronger and more persistent in the hit regions.

Next, we seek to disentangle the shock of the natural disaster from the persistent

energy shock that was triggered by the accident at the Fukushima nuclear power plant.

We do so by extending the DSGE model of a small open economy of Gaĺı and Monacelli

(2005). We find that the persistent shortage of electricity supply aggravated the national

economic production shock attributable to the natural disaster by delaying and slowing

down the recovery of the disaster hit areas. The counterfactual results from the empirical

model, in line with the predictions from the theoretical one, suggest that the Japanese

regional economies did experience a loss in production and trade due to the electricity

shutdown that persisted for a long time.

From a policy perspective, our study highlights the key role of the government and

institutions in times of such extreme events. The government and institutions may devise

regional recovery plans that help anchor expectations and contribute to stability, so that

they can strengthen the ability of the regional economies, and thus that of the whole

country, to absorb shocks from natural disasters. When this is the case, our paper shows

that better outcomes can be observed for real economic indicators, prices and trade.
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of Economics and Statistics, 101(1):60–75.

Bowen, R. M., Castanias, R. P., and Daley, L. A. (1983). Intra-industry effects of the ac-

cident at Three Mile Island. Journal of Financial and Quantitative Analysis, 18(1):87–

111.

Bryan, G. and Morten, M. (2019). Economic development and the spatial allocation of

labour: Evidence from Indonesia. Journal of Political Economy, 127(5):2229–2268.

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of

Monetary Economics, 12:383–398.

Canova, F. (2005). The transmission of US shocks to Latin America. Journal of Applied

Econometrics, 20(2):229–251.

Canova, F. and Ciccarelli, M. (2004). Forecasting and turning point predictions in a

Bayesian panel VAR model. Journal of Econometrics, 120(2):327–359.

Canova, F. and Ciccarelli, M. (2009). Estimating Multicountry Var Models. International

Economic Review, 50(3):929–959.

Canova, F. and Ciccarelli, M. (2013). Panel vector autoregressive models: A survey.

In Fomby, T. B., Kilian, L., and Murphy, A., editors, VAR Models in Macroeconom-

ics – New Developments and Applications: Essays in Honor of Christopher A. Sims,

volume 32 of Advances in Econometrics, pages 205–246. Emerald Group Publishing

Limited.

Carvalho, V. M., Nirei, M., Saito, Y. U., and Tahbaz-Salehi, A. (2016). Supply chain

disruptions: Evidence from the Great East Japan Earthquake. PRI Discussion Paper

Series (No.16A-15).

Cavallo, A., Cavallo, E. A., and Rigobon, R. (2014). Prices and supply disruptions during

natural disasters. Review of Income and Wealth, 60(S2):449–471.

28



Cavallo, E. and Noy, I. (2011). Natural disasters and the economy - a survey. International

Review of Environmental and Resource Economics, 5:63–102.

Cavallo, E., Powell, A., and Becerra, O. (2010). Estimating the direct economic damages

of the earthquake in Haiti. The Economic Journal, 120:F298–F312.

Christiano, L. J., Eichenbaum, M., and Evans, C. (1999). Monetary policy shocks: What

have we learned and to what end? In Woodfoord, M. and Taylor, J., editors, Handbook

of Monetary economics, number 1A in Handbooks in Economics, chapter 2. Elsevier.
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Söderqvist, T. (2000). Natural resources damage from chernobyl: Further results. Envir-

onmental and Resource Economics, 16:343–346.

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a

large number of predictors. Journal of the American Statistical Association, 97:147–162.

Sytsma, T. (2020). The impact of hurricanes on trade and welfare: Evidence from US

port-level exports. Economics of Disasters and Climate Change. Forthcoming.

Tanaka, K. and Managi, S. (2015). Impact of a disaster on land price: Evidence from

fukushima nuclear power plant accident. Singapore Economic Review, 61(1):1640003.

Todo, Y., Nakajima, K., and Matous, P. (2015). How do supply chain networks affect the

resilience of firm to natural disasters? Evidence from the Great East Japan Earthquake.

Journal of Regional Science, 55(2):209–229.

Tveten, U., Brynildsen, L. I., Amundsen, I., and Bergan, T. D. (1998). Economic con-

sequences of the Chernobyl accident in Norway in the decade 1986–1995. Journal of

Environmental Radioactivity, 41(3):233 – 255.

32



Vidangos, I. (2009). Fluctuations in individual labor income: a panel VAR analysis.

Finance and Economics Discussion Series 2009-09, Board of Governors of the Federal

Reserve System (U.S.).

Volpe Martinicus, C. and Blyde, J. (2013). Shaky roads and trembling exports: Assessing

the trade effects of domestic infrastructure using a natural experiment. Journal of

International Economics, 90:148–161.

Waggoner, D. F. and Zha, T. (1999). Conditional forecasts in dynamic multivariate

models. The Review of Economics and Statistics, 81(4):639–651.

Yevdokimov, Y. (1998). Macroeconomic consequences of large environmental impacts:

The case of the Chernobyl accident in the Soviet economy. PhD Dissertation, University

of Manitoba.

Zellner, A. and Hong, C. (1989). Forecasting international growth rates using bayesian

shrinkage and other procedures. Journal of Econometrics, 40:183–202.

33



A Appendix.

A.1 Bayesian Panel VARX

In this paper, we use a Bayesian Panel VARX model to identify the impact of earth-

quake events using the excessive Tohoku IP shock as an exogenous variable, henceforth

‘earthquake shock’.The general form of the Panel VARX model for region i at time t with

i = 1, ..., N is given by:

yi,t = A1
i yi,t−1 + ...+ A

p
i yi,t−p + Ci,txt + εi,t, (A-1)

where yi,t denotes a n × 1vector of n endogenous variables of region i at time t for p,

where p = 4 in our case. Ap
i,t is a n× n matrix of coefficients, while xt is the m× 1 vector

of exogenous variables and Ci,t is the n × m matrix connecting the endogenous to the

exogenous variables. Last, εi,t denotes a n × 1 vector of residuals with εi,t ∼ N (0, Σ),

where Σ is a diagonal matrix with Σi elements in the diagonal. Note that, as the focus

of this first part of the empirical analysis is the impact of common exogenous earthquake

shocks rather than spillovers across regions, cross-region inter-dependencies assumed to

be zero, that is, the A
p
i matrix in (A-1) is block diagonal.

By transposing (A-1), writing in compact form and stacking over T sample periods, we

get

Yi = XiBi + ei, (A-2)

where

Yi =




y′i,1

y′i,2
...

y′i,T




T×n

,Xi =




y′i,0 · · · y′i,1−p x′

0

y′i,1 · · · y′i,2−p x′

1
...

. . .
...

...

y′i,T−1 · · · y′i,T−p x′

T




T×k

,

Bi =




(A1
i )

′

...

(Ap
i )

′

C ′

i




k×n

,ei =




ε′i,1

ε′i,2
...

ε′i,T




T×n

,

with k = np+m. Equation (A-2) reformulates in vectorised form as

yi = X̄iβi + εi, (A-3)

where yi = vec(Yi), X̄i = (In ⊗Xi), βi = vec(Bi) and εi = vec(ei). Note that εi ∼

N (0, Σ) as defined earlier, now takes the following form εi ∼ N
(
0, Σ̄i

)
, with Σ̄i = Σi⊗IT .

Next, in order to examine how each region responds to earthquake shocks, we introduce
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cross-sectional heterogeneity; essentially allowing our model to obtain a domestic VAR

for each region. We introduce this property by assuming that for each region i, βi can be

expressed as

βi = b+ bi, (A-4)

with b a k × 1 vector of parameters and bi ∼ N(0, Σb). Therefore, it follows that the

distribution of βi will be

βi ∼ N(b, Σb), (A-5)

which implies that the Panel VAR coefficients will differ across regions, but they are

drawn from a normal distribution with shared mean and variance. In order to derive

the posterior distribution of βi we follow the hierarchical prior approach developed by

Jarocinski (2010). The reason is that the identification methodology adopted under this

strategy, assumes that {βi, Σi}, and {b, Σb} are unknown, random variables, and therefore,

they are all including in the estimation process, which implies that they are endogenously

estimated by the model. This makes this strategy much richer and sophisticated compared

with other techniques which only treat βi as unknown (see for example Zellner and Hong,

1989).

The complete posterior distribution for the model is given by

π(β, b, Σb,Σ | y) ∝ π(y | β,Σ)π(β | b, Σb)π(b)π(Σb)π(Σ). (A-6)

That is, the full posterior distribution is equal to the product of the data likelihood

function π(y | β,Σ), along with the conditional prior distributions π(β | b, Σb) for β

and the priors of π(b), π(Σb) and π(Σ) for b, Σb and Σ respectively. In particular, the

likelihood function is given by

π(y | β,Σ) ∝
N∏

i=1

∣∣Σ̄i

∣∣− 1

2 exp

(
−
1

2
(yi − X̄iβi)

′(Σ̄i)
−1(yi − X̄iβi)

)
, (A-7)

while the prior distributions of all parameters are set as follows. Start with βi, given (A-4)

and (A-5), the prior density for the vector of coefficients βi is

π(β | b, Σb) ∝
N∏

i=1

|Σb|
−

1

2 exp

(
−
1

2
(βi − b)′(Σb)

−1(βi − b)

)
. (A-8)

Next, the prior distribution for Σi is a diffuse prior given by

π(Σ) ∝
N∏

i=1

|Σi|
−(n+1)/2

, (A-9)

while, similarly for the hyper-parameter b, the prior assumed is diffused

π(b) ∝ 1. (A-10)

Last, for the hyper-parameter Σb, the prior chosen, follows the design of the Minnesota

prior. Specifically, the full covariance matrix is given by

Σb = (λ1 ⊗ Iq)Ωb, (A-11)
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where Ωb, is a diagonal matrix which is constructed based on three different assumptions

(Litterman, 1986).27 The further the lag, the more confident one should be that coefficients

linked to this lag will have a zero value, implying that the variance should be smaller on

distant lags. Also, similarly, one should be more certain that the variance of the coefficients

relating variables to past values of other variables is small. Finally, it is assumed that little

is known about exogenous variables. Regarding, λ1, this represents the overall tightness

parameters. When λ1 = 0, all βi’s will take the same value, b (pooled estimator). As

λ1 is becoming larger, the βi’s are allowed to vary across regions, while as λ1 → ∞, the

prior becomes uninformative. As the results might be sensitive to the use of this prior

(Jarocinski, 2010), particularly when the number of regions included in our analysis is

bigger than five, we use the following uninformative prior

π(λ1) ∝ λ
−

1

2

1 , (A-12)

where λ1 = 0.01, following typical analysis in the literature.

Having all priors in hand and substituting into (A-6), one is able to obtain the full pos-

terior distribution. The conditional conjugacy of the priors implies that all conditional

posteriors are also normal, inverted gamma or inverted Wishart, which enables us to use a

Gibbs sampling algorithm to approximate the posterior distributions of each of the model

parameters (see further detailed below).

A.1.1 Identification

To identify the Panel VARX model correctly and allow for meaningful interpretation of

the impulse responses, we adopt the following strategies. First, as already mentioned,

we identify the impact of earthquake events as an exogenous variable. This strategy im-

plies that the earthquake shock affects all the macroeconomic variables in the system

and across regions, contemporaneously, but none of them is allowed to affect the earth-

quake variable. Secondly, the block of endogenous, regional variables is identified through

Cholesky decomposition that consists of obtaining an upper triangular matrix A0 such

that A0A
′

0 = Σ, where A0 represents the contemporaneous impact of the structural shocks

υi,t such that εi,t = A0υi,t.

The ordering of the variables that we use in this paper is standard in the literature

(Eichenbaum and Evans, 1995; Christiano et al., 1999) and it is as follows: IP is ordered

first, followed by CPI inflation and last, the trade variables (imports/exports). The iden-

tification strategy implies that a shock to the regional IP has a contemporaneous effect

on all other domestic variables in the region but none of them can affect the regional IP

(except, of course, the exogenous earthquake shock). Similarly, a shock to the regional

CPI inflation impacts all the other variables within the region apart from IP but a shock

27For a detailed explanation of the Minnesota prior and the construction of Ωb, see Blake and Mumtaz
(2012).
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in IP is the only regional shock that could affect prices (except of the common exogenous

earthquake shock).

Next, producing impulse responses with the Panel VARX model is straightforward as the

model can ultimately results in the estimation of a set of N independent VAR models,

one for each region. Moreover, the Bayesian framework that we adopt makes it possible

to integrate the impulse responses calculation into the Gibbs sampling framework that is

set out below. In particular, to calculate the impulse responses functions, we obtain the

predictive distribution f(yt+1:t+h | yt) where h is the forecasting period. The logic is that

at each iteration of the estimation algorithm (see below), given the draw of β from its

posterior distribution we obtain A1
i , ..., A

p
i and given the draw of Σ from its conditional

distribution, we obtain A0 by computing the Cholesky factor of Σ. Having these in hands,

we generate recursively the simulated values ỹT+1, ỹT+2, . . . , ỹT+h from (A-1) by replacing

εt = A0υt.

A.1.2 Posterior distributions

We start with the posterior of βi. Starting from the full posterior distribution in (A-6)

and relegating any term not involving βi to the proportionality constant, yields

π(βi|β−i, y, b, Σb, Σ) ∝ π(y | β,Σ)π(β | b, Σb), (A-13)

where β−idenotes all β coefficients except for βi. Now, inserting the likelihood function

(A-7) and the prior density of βi (A-8), into the above equation indicates that the posterior

for βi is multivariate normal,

π(βi | β−i, y, b, Σb, Σ) ∼ N (β̈i, Ω̈i), (A-14)

where Ω̈i = [Σ−1
i ⊗X ′

iXi+Σ−1
b ]−1, β̈i = Ω̈i[(Σ

−1
i ⊗X ′

i)yi+Σ−1
b b]. Next, for the posterior

distribution of b, starting again from (A-6) and relegating to the normalising constant

any term not involving b to the proportionality constant yields: π(b | y, β,Σb, Σ) ∝

π(β | b, Σb)π(b). Following the same logic as before, we insert (A-8) and (A-10) in the

above equation, and rearranging, to show that the posterior of b is a multivariate normal

distribution

π(b | y, β,Σb, Σ) ∼ N (βϑ, N
−1Σb), (A-15)

where βϑ = N−1
∑N

i=1 βi is the arithmetic mean over the βi. Following exactly the same

process we can show that the posterior distribution for Σb is an inverse Gamma distribu-

tion
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π(Σb | y, β, b, Σ) ∼ IG

(
s̈

2
,
ü

2

)
, (A-16)

where s̈ = s0 that is set equal to a very small number s0 < 0.001 and ü = u0 +∑N
i=1

{
(βi − b)′Ω−1

b (βi − b)
}
. Finally, once again relegating to the proportionality con-

stant any term not involving Σi,one can obtain the conditional distribution of Σithat is

an inverse Wishart distribution

π(Σi | Σ−1,y, β, b) ∼ IG
(
S̈i, T

)
, (A-17)

where T denotes the degrees of freedom and S̈i = (Yi −XiBi)
′(Yi −XiBi).

A.1.3 Estimation algorithm

Having all these elements in hand, we apply the following Gibbs algorithm to derive the

model parameters.We first define starting values for β, Σ, b, and Σb. For β
(0) we use OLS

estimates for β̂i; similarly we set starting values for Σ(0) by using OLS estimates of Σ̂i.

For b we set β
(0)
ϑ = N−1

∑N
i=1 β̂i, while for Σbwe set λ

(0)
1 = 0.01, which from (A-12) give

us

√
λ
(0)
1 = 0.1. Note that, in our experience, the choice of starting values has negligible

impact on the final results because the number of the iterations of the algorithm is large

enough. The Gibbs sampler consists of the following steps: at each iteration 28,:

1. draw b from (A-15);

2. given an estimate of b, draw Σb from (A-16);

3. given estimates of b andΣb from previous steps, draw β from (A-14);

4. given estimates of b, Σb and β from previous steps, draw Σ from (A-17).

A.2 Panel VARX with cross-sectional spillovers

To see the procedure, rewrite (A-2) in a simultaneous equations format as

y′t = XtB + εt, (A-18)

where now Xt = (y′t−1 . . . y
′

t−p x
′

t)1×k and B =




(A1)
′

...

(A1)
′

C ′




k×Nn

This equation reformulates into a vectorised form as

yt = X̄tβ + ε′t, (A-19)

28Note that we use 50,000 total iterations discarding the first 45,000 as burn-in. As pointed out by
Dieppe et al., 2016, this number of total and burn in iterations is sufficient to ensure convergence of the
Gibbs algorithm and lead to accurate posterior distributions.
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where X̄t = (INn ⊗Xt) β = vec(B). Allowing for inter-dependencies means that both

the variance-covariance matrix Σ and the coefficient matrix Ap do not need to be block

diagonal anymore. Particularly for the matrix Σ, we allow a higher degree of flexibility

by assuming that the error term follows the normal distribution as

ει,t ∼ N (0, Σ) Σ = ϕΣ̈, (A-20)

where ϕ is a scaling random variable following an inverse Gamma distribution as,

ϕ ∼ IG
(α0

2
,
ω0

2

)
. (A-21)

Now, the problem that arises related to the curse of dimensionality, as the total number of

parameters to be estimated in the model (h = N2n2p) easily exceeds the available sample

period. To deal with this issue, we follow Canova and Ciccarelli (2013), by assuming that

the h elements of the vector of coefficients β, can be expressed as a linear function of a

significantly lower number of structural factors r,

β =
r∑

i=1

Ξiϑi, (A-22)

where ϑi are vectors of dimension di and contain the structural factors, while Ξi are se-

lection matrices of dimension h× di that take values of either 0 or 1 picking the relevant

elements of ϑi. To identify the model we follow the authors by assuming r = 5 structural

factors. In particular, ϑ1 captures components which are common across regions and

variables, say its dimension is d1 = τ ; ϑ2 captures components which are common within

regions, thus its dimension equals the number of regions d2 = N ; ϑ3 captures components

which are variable specific, thus its dimension equals the number of variables d3 = n;

ϑ4captures lag specific components and comprises d4 = p− 1 coefficients and last, ϑ5 cap-

tures the effects of the exogenous variables in the model and contains d5 = m coefficients.

Factoring β as in (A-22) allow us to reduce the number of coefficients to estimate from h

elements to d = τ +N + n+ (p− 1) +m. Practically, using (A-22) in (A-19), we obtain

yi = Ji×ϑ+ εi, (A-23)

where Ji = X̄i × Ξ. Intuitively, the decomposition presented in (A-23) allows us to

measure the relative importance of common, unit specific and variable specific influences

in fluctuations in y. As Canova and Ciccarelli (2013) point out, the slow moving structure

of Ji implies that X̄i capture low frequency movements present in the Panel VARX. This

feature is particularly important in medium term out-of-sample forecasting exercises that

we conduct in this paper. It is possible to stack (A-23) over T and estimate the model

by OLS methods. However, we will adopt the Bayesian avenue as when the sample size
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is short, as it is the case in this paper, we need to practically select priors that could help

to obtain economically meaningful estimates, something that it is hard to obtain with

classical techniques.

Our objective now is to estimate the three parameters ϑ, Σ̈ and ϕ. Once estimate ϑ, it

will be possible to recover draws for β from (A-22). As in Appendix A.1, by using Bayes’

rule, the complete posterior distribution for the model is given by

π(ϑ, Σ̈,ϕ | y) ∝ f(y | ϑ, Σ̈,ϕ)π(ϑ)π(Σ̈)π(ϕ). (A-24)

That is, the posterior distribution equals to the product of the data likelihood function

with the respective prior distributions of ϑ, Σ̈ and ϕ. Starting with the likelihood function,

it is given by

f(y | ϑ, Σ̈,ϕ) ∝ (ϕ)−TNn/2
∣∣∣Σ̈
∣∣∣
−

T
2

T∏

i=1

exp

(
−
1

2
ϕ−1(yt − Jtϑ)

′(Σ̈)−1(yt − Jtϑ)

)
. (A-25)

Next with the priors, the prior for ϑ is multivariate normal given by

π(ϑ | ϑ0, Θ0) ∝ exp

[
−
1

2
(ϑ− ϑ0)

′Θ−1
0 (ϑ− ϑ0)

]
, (A-26)

where the mean ϑ0 is set as a vector of zeros and the form of covariance Θ0 is simply an

uninformative prior and is therefore set as a diagonal matrix with large values. For Σ̈, an

uninformative prior is used as follows

π(Σ̈) ∝
∣∣∣Σ̈
∣∣∣
−(Nn+1)/2

, (A-27)

while for ϕ, as we mentioned above, an inverse Gamma distribution is used with shape
α0

2
and scale ω0

2
as

π(ϕ) ∝ ϕ−
α0
2
−1 exp

(
−ω0

2ϕ

)
. (A-28)

Similar to Appendix A.1, combining the likelihood function in (A-25) with the priors in

equations (A-26), (A-27), (A-28) and substituting into (A-24), one is able to obtain the

full posterior distribution. As it is not possible to use analytical methods to integrate out

the posterior distributions we will use a Gibbs sampling algorithm to approximate them.

Details on the posterior distributions of the model parameters and the Gibbs algorithm

can be found above.

The Panel VARX with dynamic interrelationships is used to produce forecasts as described

in Section 6. Similar to the derivation of impulse responses, producing forecasts is a simple

task given that the Panel VARX can be seen as a set of N independent VAR models to
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be estimated.

As we are interested in performing conditional forecasts for scenario analysis, we follow

the methodology of Waggoner and Zha (1999) for constructing the posterior predictive

distribution of the conditional forecasts. We can then integrate this into the Gibbs sampler

framework described next in order to produce the posterior distribution of conditional

forecasts (see Dieppe et al., 2016 for more details on the description of the algorithm that

we adopt).

A.2.1 Estimation of the Panel VARX with interrelationships

Combining (A-25) to (A-28) one can obtain the joint posterior as

f(y | ϑ, Σ̈,ϕ) ∝
T∏

i=1

{
exp

(
−
1

2
ϕ−1(yt − Jtϑ)

′(Σ̈)−1(yt − Jtϑ)

)}
×

exp

(
−ω0

2ϕ

)
× ϕ−(NnT+α0)/2−1 ×

∣∣∣Σ̈
∣∣∣
−(T+Nn+1)/2

×

exp

[
−
1

2
(ϑ− ϑ0)

′Θ−1
0 (ϑ− ϑ0)

]
. (A-29)

Next, in order to obtain the conditional posterior distributions for ϑ, Σ̈ and ϕ, we start

from (A-29) and relegate any term not involving ϑ to the proportionality constant in order

to obtain the conditional posterior of ϑ and then rearranging we have, π(ϑ | y, Σ̈,ϕ) ∝

exp
[
−1

2
(ϑ− ϑΥ )

′

Θ−1
Υ (ϑ− ϑΥ )

]
, where ΘΥ = (JtIΣJ

′

t + Θ−1
0 )−1 and ϑΥ = ΘΥ (JtIΣy +

Θ−1
0 ϑ0). This is the kernel of a multivariate normal distribution,

π(ϑ | y, Σ̈,ϕ) ∼ N (ϑΥ , ΘΥ ) . (A-30)

Next, relegating to the proportionality constant any term not involving Σ̈ in (A-29) and

rearranging we obtain, π(Σ̈ | y, ϑ, ϕ) ∝

∣∣∣Σ̈
∣∣∣
−(T+Nn+1)/2

× exp
(
−1

2
tr
{
Σ̈−1Ψ̄

})
where

Ψ̄ = ϕ−1(y − JIϑ)(y − JIϑ)
′

. This is the kernel of an inverse Wishart distribution with

scale Ψ̄ and T degrees of freedom,

π(Σ̈ | y, ϑ, ϕ) ∝∼ IW
(
Ψ̄ , T

)
. (A-31)

Last, relegating to the proportionality constant any term not involving φ̈in (A-25) and

rearranging we get : π(ϕ | y, ϑ, Σ̈) ∼ ϕ−
α̈
2
−1 exp

(
−ω̈
2ϕ

)
, where α̈ = NnT + α0 and ω̈ =

[
tr
(
(y − JIϑ)(y − JIϑ)

′

Σ̈−1
)
+ ω0

]
. This is the kernel of an inverse Gamma distribution

π(ϕ | y, ϑ, Σ̈) ∝∼ IG

(
α̈

2
,
ω̈

2

)
. (A-32)
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Having obtained all posteriors, we can eventually apply the following Gibbs algorithm to

derive the model parameters. We first have to define starting values for ϑ, Σ̈ and ϕ. For

ϑ(0) we use OLS estimates for ϑ̂; for Σ(0),we use (A-23) to obtain ˆ̈
Σ while for ϕ(0)the

value is set to 1. Then, the Gibbs sampling proceeds through the following steps: at each

iteration

1. draw Σ̈ from (A-31);

2. draw ϕ from (A-32);

3. given estimates of ϕ and Σ̈,use (A-20) to compute Σ = ϕΣ̈;

4. draw ϑ from (A-30).

B Theoretical Model

We provide the detail of our small open economies with energy sector. There is a con-

tinuum number of atomistic regions which is indexed by i in unit interval within country.

As in the main text variables relate to regional indicators, where regions function as small

open economies. Variables with ∗ stand for nation wide aggregates. Small characters

represent log of original variables.

B.1 Households

The representative household in a generic region maximises her life time utility, Et

∑
∞

s=t β
s−tUt,

where β (0 < β < 1) is exogenous discount factor. Utility of individual household at time

t depends on consumption Ct and labor supply Nt as follows

Ut =
C1−σ

t

1− σ
−

N
1+ϕ
t

1 + ϕ
,

where the parameter σ represents risk averaging and ϕ measures the inverse of the Frisch

elasticity of labor supply.

The basket of goods Ct is defined in the main text.

Locally produced goods in Home region (CH,t) and imported goods from Foreign region

(CF,t) are defined over a continuum of goods as

CH,t =

(∫ 1

0

CH,t(j)
ǫ−1

ǫ dj

) ǫ
ǫ−1

,

and

CF,t =

(∫ 1

0

C
γ−1

γ

i,t di

) γ

γ−1

, Ci,t =

(∫ 1

0

Ci,t(j)
ǫ−1

ǫ dj

) ǫ
ǫ−1

,
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where ǫ stands for the elasticity of substitution among product varieties in the same region

while γ represents the elasticity of substitution of the basket of goods produced in different

regions.

The optimal consumption for each domestic basket, imported basket and individual

product variety is found to be

CH,t =

(
PH,t

Pt

)
−η

(1− α)Ct,

CF,t =

(
PF,t

Pt

)
−η

αCt, Ci,t =

(
Pi,t

PF,t

)
−γ

CF,t,

CH,t(j) =

(
PH,t(j)

PH,t

)
−ǫ

CH,t, Ci,t(j) =

(
Pi,t(j)

Pi,t

)
−ǫ

Ci,t,

where PH,t(j) and Pi,t(j) denote the price of a particular product produced in Home

region and a generic region i, respectively. Price indices that minimise expenditures on

each consumption basket are given by

Pt =
[
(1− α)P 1−η

H,t + αP
1−η
F,t

] 1

1−η , (B-33)

PF,t =

(∫ 1

0

P
1−γ
i,t di

) 1

1−γ

,

PH,t =

(∫ 1

0

P 1−ǫ
H,t (j)dj

) 1

1−ǫ

, Pi,t =

(∫ 1

0

P 1−ǫ
i,t (j)dj

) 1

1−ǫ

.

Following Gaĺı and Monacelli (2005), we define the bilateral terms of trade Si,t ≡
Pi,t

PH,t
,

from which we define the effective terms of trade as

St ≡
PF,t

PH,t

=

(∫ 1

0
P

1−γ
i,t di

) 1

1−γ

PH,t

=

(∫ 1

0

S
1−γ
i,t di

) 1

1−γ

.

With the above definition of the effective terms of trade and price index as found in

(B-33),29 we have the following relation around the symmetric steady state for inflation

πt = πH,t + α∆st,

where πt = pt − pt−1 and πH,t = pH,t − pH,t−1.

29Taking log at first order, pt = (1− α) pH,t + αpF,t and combined with st = pF,t − pH,t, we have
pt = (1− α) pH,t + α (st + pH,t) = pH,t + αst. By subtracting pt−1 from both side, we get

pt − pt−1 = pH,t − pH,t−1 + α (st − st−1) .
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It is assumed that law of one price for each goods and each basket in bilateral trade

holds: Pi,t(j) = P i
i,t(j) for all i, j ∈ [0, 1]. Accordingly, we have Pi,t = P i

i,t for all i ∈ [0, 1].

Further from the definition of PF,t =
(∫ 1

0
P

1−γ
i,t di

) 1

1−γ

, we have pF,t = p∗t around the

symmetric steady state. Combined with the definition of the terms of trade, we have

st = π∗

t − πH,t (B-34)

where π∗

t = p∗t − p∗t−1. Also the bilateral real exchange rate is defined as Qi,t ≡
Pi,t

Pt
,so the

real effective exchange rate for a small open economy is

qt ≡

∫ 1

0

(pi,t − pt) di = p∗t − pt.

With p∗t = pF,t and pt = (1− α) pH,t + αpF,t,

qt = pF,t − (1− α) pH,t − αpF,t

= (1− α) (pF,t − pH,t)

= (1− α) st.

Using the above-mentioned notation, the budget constraint of a representative house-

hold in this small open economy is thus given by

PtCt + Et [Qt,t+1Dt+1] = Dt +WtNt + Tt,

where Qt,t+1 is stochastic discount factor between t and t+1, Dt stands for nominal bond

holdings, Wt represents nominal wages and Tt is the lamp-sum transfer. The household

maximises the expected inter-temporal utility with respect to Dt+1, Ct and Nt subject to

the above budget constraint for all time periods.

As a result, the Euler equation for bond holdings can be derived as

βRtEt

[(
Ct+1

Ct

)
−σ (

Pt

Pt+1

)]
= 1,

where Rt =
1

Et[Qt,t+1]
stands for gross nominal rate.

Also the optimal condition for supplying labor is

Cσ
t N

ϕ
t =

Wt

Pt

.

B.2 Production

Production is detailed in the main text except firms’ pricing behaviour. T
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The price is assumed to be sticky à la Calvo (1983) and only a fraction of 1− θ share

of firms can re-optimise their prices. Specifically, the firm maximises the following sum of

expected discounted profits by setting P
′

H,t

Et

∑∞

s=0
θsQt,t+sYt+s

[
P

′

H,t −MCt+s

]
.

The first order condition gives

Et

∑∞

s=0
(βθ) sP−1

t+sC
−σ
t+sYt+s

[
P

′

H,t −
ǫ

ǫ− 1
MCt+s

]
.

Around the symmetric steady state, the above expression can be rewritten as

πH,t = βEt [πH,t+1] + λm̂ct,

where m̂ct ≡ (mct − pH,t)− (mc− pH) is the log of real marginal cost defined in terms of

domestic price and λ ≡ (1−θ)(1−βθ)
θ

.30

B.3 International Financial Market and General Equilibrium

In equilibrium, all firms within a small open economy behave in the same way. So Yt =

Yt(j), Nt = Nt(j), Et = Et(j). It is assumed that asset markets are complete within

country. This implies

Ct = C i
tQ

1

σ

i,t, (B-35)

where Qi,t stands for the bilateral real exchange rate which is defined as Qi,t ≡
Pi,t

Pt
. Using

lower case letters for log variablesand iterating over i, we have31

ct = c∗t +

(
1− α

σ

)
st. (B-36)

The above is the perfect risk sharing condition in effective terms.

30m̂ct gives the same dynamics at first order as mct − pH,t.
31Taking the log in both side of (B-35),

ct = cit +
1

σ
qi,t.

Integrating over i (considering of effective risk sharing), we have

ct =

∫ 1

0

citdi+
1

σ

∫ 1

0

qi,tdi

= c∗t +
1

σ
qt

= c∗t +

(
1− α

σ

)
st.
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Good markets clear for a typical good j with

Yt(j) = CH,t(j) +

∫ 1

0

C i
H,t(j)di

By plugging the demand found previously, combined with the above complete market

condition and taking the first-order approximation around the symmetric steady state,

we have32

yt = ct +
αω

σ
st, (B-37)

where ω ≡ σγ + (1− α) (ση − 1).

Further, good market clearing (B-37) and (B-36) provide the following equation33

32Noting that demand from country i for goods produced in H, Ci
H,t(j),

Ci,t(j) =
(

Pi,t(j)
Pi,t

)−ǫ

Ci,t, Ci,t =
(

Pi,t

PF,t

)−γ

CF,t and Ci
F,t =

(
P i

F,t

P i
t

)−η

αCi
t

Ci
H,t(j) =

(
PH,t(j)

PH,t

)−ǫ
(
PH,t

P i
F,t

)−γ (
P i
F,t

P i
t

)−η

αCi
t

Yt(j) =

(
PH,t(j)

PH,t

)−ǫ



(
PH,t

Pt

)−η

(1− α)Ct +

∫ 1

0

(
PH,t

P i
F,t

)−γ (
P i
F,t

P i
t

)−η

αCi
tdi




Plugging the above in the definition of aggregate output such as Yt =

(∫ 1

0

Yt(j)
ǫ−1

ǫ dj

) ǫ
ǫ−1

,

Yt =

(∫ 1

0

(
PH,t(j)

PH,t

)−ǫ ǫ−1

ǫ

cst
ǫ−1

ǫ dj

) ǫ
ǫ−1

=

(∫ 1

0
P 1−ǫ
H,t (j)di

PH,t

)
cst

=

(
PH,t

Pt

)−η

(1− α)Ct +

∫ 1

0

(
PH,t

P i
F,t

)−γ (
P i
F,t

P i
t

)−η

αCi
tdi

Plugging the demand and with complete asset market condition,

Yt =

(
PH,t

Pt

)−η

(1− α)Ct +

∫ 1

0

(
PH,t

P i
F,t

)−γ (
P i
F,t

P i
t

)−η

αCi
tdi

=

(
PH,t

Pt

)−η


(1− α)Ct +

∫ 1

0

(
PH,t

P i
F,t

)η−γ (
Pt

P i
t

)−η

αCi
tdi




=

(
PH,t

Pt

)−η

Ct

[
(1− α)Ct + α

∫ 1

0

S
γ−η
i,t Q

η− 1

σ

i,t di

]

where for the last equality we have used the definition of bilateral terms of trade, bilateral real exchange

rate and bilateral risk sharing condition as Si,t ≡
Pi,t

PH,t
, Qi,t ≡

Pi,t

Pt
and Ct = Ci

tQ
1

σ

i,t.
33The above market clearing condition holds for a generic region i as yit = cit +

αω
σ
sit.

Iterating over i, we have

∫ 1

0

yitdi =

∫ 1

0

citdi+
αω

σ

∫ 1

0

sitdi

= c∗t .
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yt = y∗t +
1

σa

st,

where σa ≡
σ

(1−α)+αω
.

With energy market clearing in the main text, the system is completed by specifying

the following national level of inflation dynamics and marginal cost:

π∗

t = βEt

[
π∗

t+1

]
+ λ (mc∗t − p∗t ) .

Since the whole nation consist of a part of the rest of the world for a small open

economy, there is no distinction between regional trade and international trade. We define

real net exports at first order approximation measured in domestic output following Gaĺı

and Monacelli (2005)

nxt = yt − ct − αst.

Also nominal expenditure on imported goods for a small open economy is

PF,tCF,t =

(
PF,t

Pt

)1−η

αPtCt =

(
StPH,t

Pt

)1−η

αPtCt.

Thus real imports is given by

Mt ≡
PF,tCF,t

PH,t

= S
1−η
t

(
PH,t

Pt

)
−η

αCt.

With its first order we have

mt = (1− η) st − η (pH,t − pt) + ct.

Real exports at first order approximation is thus given by

xt = nxt +mt

The shocks and monetary policy were given in the main text.

The whole (log-linear) system is summarised in Table B-1.

Since
∫ 1

0
sitdi = 0 so y∗t ≡

∫ 1

0
yitdi = c∗t ≡

∫ 1

0
citdi. Together withy∗t = c∗t and (B-37) and (B-36), we

have

yt = c∗t +

(
1− α

σ

)
st +

αω

σ
st

= y∗t +

(
(1− α) + αω

σ

)
st.
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Table B-1: The Model

Price indices πt = πH,t + α∆st

National inflation ∆st = π∗
t − πH,t

Euler equation rt = σ (Et [ct+1]− ct)− Et [πt+1]

New Keynesian Phillips curve πH,t = βEt [πH,t+1] + λ (mct − pH,t)

National output yt = y∗t − 1
σa

st

Goods market clearing yt = ct +
αω
σ
st

Optimal labor supply wt − pt = σct + ϕnt

Definition of net export nxt = α(ω
σ
− 1)st

Import mt = (1− η) st − η (pH,t − pt) + ct

Export xt = nxt +mt

Definition of producer inflation πH,t = pH,t − pH,t−1

Definition of inflation πt = pt − pt−1

Definition of world inflation π∗
t = p∗t − p∗t−1

Monetary Policy rt = φpπ
∗
t

Labor demand nt = − (wt +mct) + yt

Energy market clearing e∗t = µ (wt − pe,t) + y∗t

Marginal cost mct = µwt + (1− µ) pe,t − at

National inflation π∗
t = βEt

[
π∗
t+1

]
+ λ (mc∗t − p∗t )

B.4 Calibration and Impulse Response Functions

We calibrate the model with the following parameters’ values as in Table B-2.

Impulse response functions of all variables following local productivity shock and out-

put shock in other regions are found in Figure B-1 and Figure B-2, respectively.
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Table B-2: Calibration of the model

β Discount factor 0.99

ϕ Inverse of Frisch elasticity of labor supply 3

σ Risk aversion 2

η Elasticity between local and imported goods 1

γ Elasticity of substitution across region 1

θ Calvo price revision 0.92

α Consumption Openness 0.4

µ Non-Energy Share 0.91

φπ Taylor rule 1.5

ρy∗ Persistence of national output 0.1

ρe∗ Persistence of energy supply 0.9

ρa Persistence of local productivity 0.1
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Figure B-1: IRFs of 1% decrease in regional productivity

Impulse responses from a shock in (a) regional productivity, εa,t and energy supply εe∗,t, which can be

used to approximate one hit region; (b) output in other regions, εy∗,t and energy supply εe∗,t, which can

be used to approximate for non-hit regions. The green solid line presents the benchmark case where (a)

the regional shock and energy supply shock take simultaneously; (b) the shock on output in other regions

and energy supply shock take simultaneously. The blue dashed line represents the same productivity

shock with zero persistence of energy supply shock.
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Figure B-2: IRFs of 1% decrease in nationwide output

Impulse responses from a shock in (a) regional productivity, εa,t and energy supply εe∗,t, which can be

used to approximate one hit region; (b) output in other regions, εy∗,t and energy supply εe∗,t, which can

be used to approximate for non-hit regions. The green solid line presents the benchmark case where (a)

the regional shock and energy supply shock take simultaneously; (b) the shock on output in other regions

and energy supply shock take simultaneously. The blue dashed line represents the same productivity

shock with zero persistence of energy supply shock.
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C Additional Empirical results

C.1 Confidence bands of conditional forecasts

Figure C-3: Scenario analysis - Forecasts based on actual electricity supply

Kinki, IP Kinki, exports Kinki, prices

Chubu, IP Chubu, exports Chubu, prices

Kanto, IP Kanto, exports Kanto, prices

Tohoku, IP Tohoku, exports Tohoku, prices
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Note: Conditional forecast based on a BPVAR model, as described in the text. Actual represents observed

data, while conditional forecast represents the median response of the forecast using observed total energy

supply, as provided in Figure 7.
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Figure C-4: Scenario analysis - Forecasts based on counterfactual electricity supply

Kinki, IP Kinki, exports Kinki, prices

Chubu, IP Chubu, exports Chubu, prices

Kanto, IP Kanto, exports Kanto, prices
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Note: Conditional forecast based on a BPVAR model, as described in the text. Actual represents observed

data, while condition forecast represents the median response of the forecast using a counterfactual path

of total energy supply, as provided in Figure 7.
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