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1 Introduction

The recent pandemic not only created a large loss in human lives but also devastated the

economy on an unprecedented scale. This necessitated an analysis of the epidemic and

the economy, namely, a trade-off between infection and economic activities. Importantly,

the outbreak and development of epidemics are often hard to predict which obligate

people to make economic decisions under uncertainty. How does “infection shock” create

a trade-off between infection and economic activities? What kind of policy shocks or

rules are successful at mitigating infectious disease while limiting economic losses? How

do we quantify the impact of infection on economic activities? To answer these questions,

we provide a macroeconomic model of epidemics with uncertainty in a full-scale DSGE

model. We believe that the analytical framework we propose is general enough and can

be applied to any type of infectious disease such as influenza and STD.

We model uncertainty with respect to virus transmission. Specifically, “infection

shock” that triggers a new infection is defined as a random variable. There are three

types of agents: susceptible, infected and recovered. New infections every period arise

not only through direct contact of susceptible individuals with infected individuals but

also from their economic activities, namely consumption and working. Importantly, sus-

ceptible individuals decide how much to work and to consume while facing an uncertain

future infection rate. The theoretical model is calibrated with recent US data under

the COVID-19 crisis. It is then solved with the standard perturbation technique around

a deterministic infectious steady state. We show how infection shock, as well as other

types of shock including policy shock, propagates and creates a trade-off between infec-

tion and economic activity. Finally, we estimate the infection process together with other

exogenous processes with Bayesian methods for US data.

Our findings are the following. A positive infection shock increases new infections

while it reduces aggregate consumption and hours worked as a result of precautious be-

havior of susceptible individuals. A positive technology shock providing higher income

also increases infections since it encourages people to consume more. Surprise in the con-

sumption tax reduces infections since it discourages people from consuming and working.
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In estimation, we find that a policy rule that systematically decreases the consumption

tax along with the development of new infections, accounts for the dynamics of infection

and aggregate consumption and aggregate hours worked in the US economy. The histor-

ical decomposition based on our estimation results reveals that the development of new

infection is largely due to infection shock. We also find that despite the development

of infections in the US, a decrease in aggregate consumption is avoided largely due to a

positive technology improvement while a fall in aggregate hours worked is avoided mainly

because of the systematic dis-containment policy rule that encourages people to work

more.

To the best of our knowledge, this is the first paper to incorporate the uncertainty in

the macroeconomic model of epidemics. Many attempts have been made since the out-

break of COVID-19 among which a seminal work by Eichenbaum et al. (2020b) analyzes

such trade-offs by adding macroeconomics to an otherwise classical SIRD model. Eichen-

baum et al. (2020c) explore the impact of testing while Eichenbaum et al. (2020a) extend

their framework into a New Keynesian setup. Along this line, Krüger et al. (2021) in-

corporate a two-sector setup in which substitutability between goods differs. Giagheddu

and Papetti (2020) extend the SIR-macro model by incorporating different age groups

and age-specific economic interactions. Hamano et al. (2020) introduce misperception of

households about the true state of infection.

Bodenstein et al. (2020) incorporate deterministic epidemiological dynamics into a

multi-sector growth model. Similarly, Acurio Vásconez et al. (2020) introduce deter-

ministic epidemiological dynamics into a DSGE model with financial frictions. Different

from the endogenous labor supply decision of susceptible individuals in Eichenbaum et al.

(2020b), in their setup, the labor supply is assumed to be exogenous and tied into the

epidemiological dynamics. All these papers, however, rely on a deterministic perfect fore-

sight simulation without explicitly treating uncertainty with respect to virus transmission,

as ours does.

There have been many attempts to estimate SIR-type epidemiological models. For

example, Fernández-Villaverde and Jones (2020) take a standard SIRD model to the
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data from various cities, states, and countries by allowing for time-varying contact rates.

These time variations are meant to capture changes in social distancing. The work of

Arias et al. (2021) is the most closely related to our paper. They cast the SIRD dynamics

to a non-linear state-space representation. They use Sequential Monte Carlo techniques

and Belgian data to estimate time-varying parameters that govern the infection dynamics.

While they focus on the SIRD epidemiological model, we estimate the SIR-macro model

that incorporates interactions between epidemiological dynamics and economic activity.

Krüger et al. (2021) estimate some of the key model parameters that are related to

health status in a SIR-macro model. Their approach is based on a grid search method

to minimize the root mean square error between the actual and model-implied weekly

deaths from Swedish data while our estimation strategy is based on a Bayesian posterior

simulation. Fujii and Nakata (2021) attempt to forecast the economic impact of the

COVID-19 pandemic in Japan by establishing a reduced-form relationship between the

state of the pandemic and output with a perfect foresight simulation. The advantage of

our approach is that it is quite suitable for utilizing the existing computational routines.1

The remainder of this paper is organized as follows. In the next section, we present

the SIR-macro model with uncertainty. In Section 3, we calibrate the model based on

US data. Various types of impulse response functions are shown in Section 4. Section 5

provides the Bayesian estimation results and historical decomposition based on US data.

The last section concludes the paper.

2 The Model

We present an SIR-macro model with uncertainty. Uncertainty arises with respect to

future virus transmission as well as labor productivity, preference for current consumption,

disutility in supplying labor, and consumption tax. To ease the comparison, other parts of

the model explicitly follow Eichenbaum, Rebelo, and Trabandt (2020b) which incorporates

1They also update their simulation results. Our model, which incorporates the endogenous trade-off
between containment policies and economic activity, potentially compliments their approach because our
model can be easily estimated in real-time once the latest data become available by using the idea of
online estimation developed by Cai et al. (2021).
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economic activities in the standard SIR model.

2.1 Infection

In the baseline SIR model, there were four groups: susceptible, infected, recovered, and

dead people. Those who are susceptible are a mass St at period t who are not infected

yet but potentially will be in the future. The infected is a mass It. After the disease,

some people recover or die and join a mass of recovered Rt. Among those who recover, a

fraction again falls into a mass of susceptible St. The dynamics of the three groups are

thus

St+1 = St + πsRt − Tt,

It+1 = Tt + (1− πr − πd) It,

Rt+1 = (1− πs)Rt + (πr + πd) It,

where πr is the recovery rate and πd is the death rate. πs is the fraction of these people who

become susceptible.2 Following Eichenbaum, Rebelo, and Trabandt (2020b), we consider

a linear process for new infection Tt. The total number of newly infected people Tt evolves

as

Tt = π1 (StC
s
t )
(

ItC
i
t

)

+ π2 (StN
s
t )

(

ItN
i
t

)

+ π3StIt + π4StVt, (1)

where Cj
t and N j

t represent total consumption and hours worked of group j = {s, i, r}.

Parameters π1, π2, π3, and π4 govern the infection due to consumption, working and

through other types of contact with infected people, respectively. Furthermore, a propor-

tion of the new infections, π4StVt comes from direct contact with “virus” Vt. Specifically,

we assume that Vt follows the AR(1) process as

log (Vt) = ρV log (Vt−1) + εV t,

2Fukao and Shioji (2021) in a reduced form SIR-macro model consider similar stationary dynamics
for individuals.
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where εV t is “infection shock” which is an independent and identically distributed (iid)

random variable with zero mean, and ρv represents the persistence of the shock.3 With

the above new infection, the endogenous new infection rate is defined as

τt ≡
Tt

St

.

As a result of infection shock, the probability of a new infection is also stochastic.

2.2 Susceptible People

The susceptible person maximizes the following lifetime utility U s
t under uncertainty about

the future infection:

U s
t = u (cst , n

s
t) + βEt

[

(1− τt)U
s
t+1 + τtU

i
t+1

]

,

where cst and ns
t are consumption and hours worked for the susceptible person, U i

t is the

lifetime utility in case of infection, and β represents the discount factor. Due to infection

shock, the infection rate τt is stochastic and defined as:

τt = π1c
s
t

(

ItC
i
t

)

+ π2n
s
t

(

ItN
i
t

)

+ π3It + π4Vt. (2)

The susceptible person maximizes her lifetime utility subject to the following budget

constraint

(1 + µct) c
s
t = wtn

s
t + Γs

t , (3)

where µct is the tax rate on consumption, wt is real wage, and Γs
t represents the lump-sum

transfer from the government. In the following section, we assume that µct has zero mean

and follows an AR(1) process.

3Infection shock is very similar to “technology shock” in the neoclassical growth model (Solow, 1957).
We don’t know when the epidemic outbreaks will occur or how infectious the virus is. Just a no one
observes “technology”, and this is the reason why we often label it as “residual”, no one can see the virus
infecting susceptible individuals, and thus, it is also considered a residual transmission.

6



The first-order condition with respect to cst yields:

u1 (c
s
t , n

s
t)− (1 + µct)λ

s
bt + λs

τtπ1

(

ItC
i
t

)

= 0.

where λs
bt is the Lagrange multiplier for the budget constraint (3) and λs

τt is the Lagrange

multiplier for the infection rate (2). The first-order condition with respect to ns
t gives

u2 (c
s
t , n

s
t) + wtλ

s
bt + λs

τtπ2

(

ItN
i
t

)

= 0.

The first-order condition with respect to τt is

λs
τt = β

[

U i
t+1 − U s

t+1

]

+ βEt

[

λs
τt+1

(

π1c
s
t+1C

i
t+1 + π2n

s
t+1N

i
t+1 + π3

)

St

]

.

The second term on the right-hand side of the equation arises because today’s decision to

prevent infection influences the number of people infected in the future.

2.3 Infected People

In the case of infection, the patient will recover with a probability πr or stay infected.

Her lifetime utility is given by:

U i
t = u

(

cit, n
i
t

)

+ βEt

[

(1− πr − πd)U
i
t+1 + πrU

r
t+1

]

,

where cit and ni
t are consumption and hours worked of the infected person, respectively,

and U r
t is the lifetime utility of a recovered person. The infected person maximizes her

lifetime utility subject to the following budget constraint:

(1 + µct) c
i
t = wtφ

ini
t + Γi

t, (4)
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where φi denotes productivity in the case of infection and Γi
t represents the lump-sum

transfer from the government. The first-order condition with respect to cit yields:

u1

(

cit, n
i
t

)

− (1 + µct)λ
i
bt = 0,

where λi
bt is the Lagrange multiplier for (4). The first-order condition with respect to ni

t

gives

u2

(

cit, n
i
t

)

+ φiwtλ
i
bt = 0.

2.4 Recovered People

A recovered person may become susceptible again with the exogenous probability πs. Her

lifetime expected utility is:

U r
t = u (crt , n

r
t ) + βEt

[

(1− πs)U
r
t+1 + πsU

s
t+1

]

,

where crt and nr
t are consumption and hours worked of the recovered person, respectively.

She maximizes the above utility subject to the following budget constraint:

(1 + µct) c
r
t = wtn

r
t + Γr

t , (5)

where Γr
t represents the lump-sum transfer from the government. The first-order condition

with respect to crt yields:

u1 (c
r
t , n

r
t )− (1 + µct)λ

r
bt = 0,

where λr
bt is the Lagrange multiplier for (5). The first-order condition with respect to nr

t

gives

u2 (c
r
t , n

r
t ) + wtλ

r
bt = 0.
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2.5 Firms

Production in the economy is isomorphic as Eichenbaum, Rebelo, and Trabandt (2020b).

There is a continuum of competitive firms of unit measure. They produce consumption

goods Ct using the following linear production technology:

Ct = AtNt,

where Nt is the aggregate hours worked. The firm chooses Nt by maximizing its current

profits. A variable At represents the level of technology that has mean one and follows

an AR(1) process as

log

(

At

A

)

= ρA log

(

At−1

A

)

+ εAt,

where εAt is “technology shock” which is iid random variables with zero mean and ρA

represents the persistence of the shock.

2.6 Government and Welfare

The budget of the government is balanced as:

µct

(

StC
s
t + ItC

i
t +RtC

r
t

)

= Γs
tSt + Γi

tIt + Γr
tRt.

Additionally, the government implements the following simple containment policy:

µct = ρµc
µct−1 + ξ log

(

Tt

T

)

+ εµct, (6)

where εµct is “containment shock” which is iid random variables with zero mean and ρµc

represents the persistence of the shock. The parameter ξ governs the reaction following

the development of the newly infected. A priori, we do not know whether ξ is positive or

negative.

Finally, social welfare is defined as the lifetime utility at the initial date of being
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susceptible and infected as

U0 = S0U
s
0 + I0U

i
0.

2.7 Equilibrium

The model is completed by the following two market-clearing conditions: The goods

market clears as

StC
s
t + ItC

i
t +RtC

r
t = Ct.

The labor market clears as

StN
s
t + ItN

i
tφ

i +RtN
r
t φ

r = Nt.

In equilibrium, we have Cj
t = cjt and N j

t = nj
t for j = s, i, r. Also, we assume the same

amount of subsidy across different types of agents as Γt ≡ Γs
t = Γi

t = Γr
t .

2.8 Preference and Shock Process

For the preference, we assume that a group-j has the following utility function:

u(cjt , n
j
t) = αt ln(c

j
t)−

θt
2
(nj

t)
2,

where αt stands for the shift in the preference towards consumption, and θ captures the

disutility from working. These exogenous variables are assumed to follow the following

AR (1) processes:

log (αt) = ρα log (αt) + εαt, log

(

θt
θ

)

= ρθ log

(

θt−1

θ

)

+ εθt,

where εαt and εθt are iid random variables with zero mean and ρα and ρθ represent the

persistence of the shock.
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3 Calibration

In this section, we calibrate the model presented in the previous section. In calibration,

we use recent US data under the COVID-19 crisis. Specifically, we define the infectious

steady state and argue its characteristics.4

3.1 Infectious Steady State

Our purpose is to capture the infection dynamics and its trade-off with economic activity

in the epidemic crisis. To this end, we assume an infectious steady state. One period

in our model corresponds to one week. Specifically, we set the share of new infection at

the steady state T/(S + I + R) as 0.15% so that it corresponds to the average share of

new infection from the first week of February 2020 to the second week of April 2021 in

the United States. As of May 5, 2021, after the third wave of infection, the Centers for

Disease Control and Prevention (CDC) reports that approximately 35% of the population

has been infected in the United States. Given this number, we assume that 80 % of the

population S/(S + I + R) is susceptible implying that 20% of the population has been

infected, has recovered or is dead at the infectious steady state. We swap π4, the parameter

that determines the transmission from virus Vt, for the first share and πs for the second

share and we get π4 = 0.00095304 and πs = 0.0076267, respectively. Specifically, the

latter implies that 0.76 % of those recovered have no herd immunity. Note that by setting

π4 = 0, the model is identical to that discussed in Eichenbaum, Rebelo, and Trabandt

(2020b) where they assume a zero infection steady state and discuss the pandemic with

a deterministic perfect foresight simulation.

Based on influenza and activity survey data in the US, Eichenbaum, Rebelo, and

Trabandt (2020b) assume that 1/6 of a new infection comes from consumption and 1/6

of a new infection is related to working. Following them, we assume that the 1/6 of

transmission comes from consumption and 1/6 of a new infection is related to working,

and the remaining new infections are attributed to direct contact with infected individuals

4All the computation and estimation in the paper are implemented by the RISE toolbox developed
by Junior Maih.
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or with the “virus”. Specifically, at the infectious steady state, we assume that

π1C
sICi

π1CsICi + π2N sIN i + π3I + π4V
=

1

6
,

π2N
sIN i

π1CsICi + π2N sIN i + π3I + π4V
=

1

6
,

π3I + π4V

π1CsICi + π2N sIN i + π3I + π4V
=

2

3
.

In calibration, we set V = 1 without loss of generality and obtain π1 = 1.1321 × 10−7,

π2 = 0.00014372, and π3 = 0.10476.5 Note that, by construction, the model’s basic

reproduction number at the infectious steady state is 1.6 This is, however, no longer the

case once the epidemic starts.

Our choice of other parameter values in the preference also follows Eichenbaum, Re-

belo, and Trabandt (2020b). We assume and φi = 0.8, which implies lower productivity

in the case of infection. The discount factor is β = 0.961/52. We set the level of technology

A = 39.8352 and the weight on disutility from working θ = 0.0013 so that the steady-state

matches the observed 28 hours of work for recovered individuals and $58, 000/52 weekly

income in the United States.

We provide the steady state values in Table 1. As argued, in our infectious steady

state, the share of susceptible individuals S and new infections T are set at 0.8 and

0.15, respectively. As a result, there is substantial heterogeneity across agents. While

recovered and infected individuals work the same hours (N i = N r), because of lower

productivity due to infection, consumption by individuals who are infected is lower (C i <

Cs). Susceptible individuals work fewer hours to avoid the possibility of being infected at

the steady state (N s < N i = N r). Recovered individuals get the highest lifetime utility

followed by that of susceptible individuals while those who are infected get the lowest

value (U r>U s>U i).

5These values are in line with those obtained in Eichenbaum, Rebelo, and Trabandt (2020b) which
find π1 = 7.8× 10−8, π2 = 0.000124, and π3 = 0.390186 at the pre-infection steady state.

6With (2.1), the basic reproduction number at the steady state is R ≡ T/I
πr

= 1.
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Table 1: Infectious steady state

S Cs N s us U s λs
b

0.8 1.1007× 103 27.6320 6.5168 8.2237× 103 8.9663× 10−4

I C i N i ui U i λi
b

0.0038 892.3077 28 6.2938 8.1898× 103 0.0011
R Cr N r ur U r λr

b

0.1962 1.1154× 103 28 6.5170 8.2312× 103 8.9655× 10−4

T λs
τ µc Γ A V

0.0015 −41.8892 0 0 39.8352 1

4 Macroeconomic Dynamics with Epidemics

To understand the macroeconomic dynamics with epidemics, we solve the model with

the perturbation (Judd and Guu, 1993 and Juillard, 2003) around the above-mentioned

infectious steady state. We present the impulse response functions following infection

shock, technology shock, and containment policy shock. Through the exercises, we will

see a clear trade-off between infection and economic activities such as consumption and

hours worked. Finally, we show that the policy rule that we specify can be a powerful

stabilization device in containing the outbreak of epidemics.

4.1 Infection Shock

Figure 1 shows the impulse response functions of major variables following one percentage

point increases in infection shock εV t. In the figure, we set ρv = 0.95 and ξ = 0 (no

containment policy). Following such an infection shock, new infection Tt and infection rate

τt increase dramatically achieving more than 60 percentage points higher in 7 weeks than

their initial steady-state values. After the peak, these values start to decrease gradually.

In 65 weeks, they become lower than their initial steady-state values before achieving

the original steady state. Infection It also shows a similar pattern. In our model, in

addition to the number of new infections Tt and infection It, the dynamics of St and Rt

are stationary because of the possibility of being susceptible to infection after recovery

(πs > 0).

Following the development of infection, susceptible individuals reduce consumption
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Figure 1: IRFs following infection shock

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage
deviation of the infection shock.

Cs
t and hours worked N s

t , the extent of which, however, is very limited compared to the

dramatic evolution of the epidemic. Both consumption and hours worked of susceptible

individuals fall the most by more than 0.8 percentage points in 9 weeks in our benchmark

setting of parameter values. Interestingly, consumption and hours worked decline for

the first 66 weeks and then increase slightly after achieving their initial values. These

economic boom periods correspond to those with a lower rate of infection than the steady

state infection. Contrary to susceptible individuals, the consumption and hours worked

of those who are infected and recovered, or dead, (C i
t , C

r
t , N

i
t and N r

t ) remain unchanged

following the infection shock.
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4.2 Technology Shock

Figure 2 shows the result of IRFs following one percentage point increase in labor pro-

ductivity shock εAt. As expected, a higher income provided by such a nice technology

increases consumption of all types of agents. Cs
t , C

i
t and Cr

t increase by approximately

2.5 percentage points on impact. In our infectious economy, however, a higher level of

consumption induces a new round of transmissions. New infections Tt and the number

of infected individuals It increase by approximately 1 %. Accordingly, the number of

susceptible individuals St gradually decreases, while those who are recovered or dead Rt

gradually increases before reaching the original infectious steady state. Following such

an outbreak of the epidemic, susceptible individuals cut consumption and hours worked,

which is why the hours worked of susceptible individuals N s
t declines. Consumption of the

susceptible individuals Cs
t still increases since the income effect due to a nice technology

dominates their precautionary consumption behavior. The hours worked of those who are

infected and recovered or dead N i
t and N r

t remain unchanged following the technology

shock with our specific preference as (2.8).

4.3 Consumption Tax Shock

As a salient feature of the SIR macro model, the epidemic can be further contained by

scarifying economic activity. Figure 3 shows the IRFs following one percentage point

increase in containment policy shock εµct. Containment policy embedded as a unilateral

increase of consumption tax reduces consumption and hours worked for all agents. Cs
t , C

i
t

and Cr
t and N s

t , N
i
t and N r

t decrease by more than 40 percentage points. Less consumption

and fewer hours worked both for individuals who are susceptible and infected result in

mitigating the spread of new infection Tt and infection It to the same extent. Accordingly,

the number of susceptible individuals St increases gradually, while those who are recovered

or dead Rt decrease before achieving the original steady state. The result shows the

specificity of the perturbation around the infectious steady state. Obviously, if there were

no infections at the steady state, the containment policy shock would have no impact.
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Figure 2: IRFs following technology shock

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage
deviation of the technology shock.

4.4 Containment Policy Rule

We consider the case of the containment policy rule as specified in (6) with which the

government systemically increases consumption tax following the development of new

infection. Figure 4 shows the cases with different containment policies. The solid line

corresponds to the case without any containment policy, ξ = 0 as in Figure 1. The

dashed and dotted lines correspond to the case with ξ = 0.1 and ξ = 0.5, respectively.

For instance, in the case of ξ = 0.5, by increasing the consumption tax systematically

following the development of new infections, aggregate consumption and aggregate hours

worked fall by approximately 40 percentage points while the infection peak becomes half

(dashed lines).
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Figure 3: IRFs following consumption tax shock

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage
deviation of the consumption tax shock.

5 Estimation

We estimate the virus infection process, namely, the persistence and the standard devia-

tion of the infection shock as well as other exogenous processes. Additionally, we estimate

the parameter of the containment policy rule ξ. To this end, we use consumption and

hours worked as well as weekly new infection for the US. The data ranges from the last

week of January 2020 until the last week of March 2021, which corresponds to the first

case of COVID-19 until the end of the third wave of infection. Consumption and hours

worked are measured as indexes with respect to the sample average and only available at

monthly frequencies. Figure 5 shows the data.

For the estimation, we rely on Bayesian techniques. Table 2 summarizes priors and
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Figure 4: IRFs following infection shock with containment policy rule

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage deviation of the infection shock for the
benchmark economy (solid line, ξ = 0), the economy with a higher level of containment rule (dashed line, ξ = 0.1), and the economy with the
highest level of containment rule (dotted line, ξ = 0.5).
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Figure 5: US data

The figure shows weekly new infection (solid line), monthly aggregate consumption (circles) and
monthly aggregate hours worked (asterisks) for the US from the last week of January 2020 until the last
week of March 2021. The new infection is shown as a percentage of the total population and measured
on the left axis. Consumption and hours worked are defined as indexes relative to the sample average
and measured on the right axis.

the result of the posterior simulation.7 Priors in the table are shown with distribution

and its upper and lower quantiles. These are standard as in the literature (Smets and

Wouters, 2003 and Levin et al., 2006). We use uninformative priors for the parameter of

the containment policy rule. Other priors are standard in the literature. Posterior modes

and their 90% credible sets are reported.

The posterior mode of the standard deviation of infection shock is found to be sig-

nificantly high (σV = 50.20), and it is persistent (ρV = 0.93).8 The posterior modes of

7MCMC is conducted with 2500000 draws of posterior simulation in which the first 500000 draws are
removed.

8Despite its high standard deviation and persistence, the contribution of the fourth term π4Vt in
generating new infections in equation (1) boils down and is comparable to other terms, all other things
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standard deviation of technology shock σA and persistence ρA are well in the range found

in the literature. On the other hand, persistence parameters of both preference shock ρα

and labor disutility shock ρθ are only weakly identified with relatively wide 90% credible

sets while playing a limited role in propagation with a small standard deviation close to

zero.

Compared to the posterior mode of the standard deviation of the technology, pref-

erence, and labor disutility shocks, the posterior mode of the standard deviation of the

containment policy shock is larger (σµc
= 0.17) and well-identified. Containment policy

is sufficiently persistent as ρµc
= 0.70. Finally, the parameter of the containment policy

rule is found to be slightly negative (ξ = −0.0064), suggesting a dis-containment policy

rule to account for the observed US infection and macroeconomic dynamics.

being equal. However, the other terms are endogenous. As we will see with the historical decomposition
the contribution of infection shock is found to be substantially high for new infection dynamics.

20



Table 2: Estimation
Prior distribution Lower quantile Upper quantile Posterior mode 90% Interval

σV Std D. of infection Invgamma 0.0001 2.0000 50.1990 44.5751 59.0969
σA Std D. of technology Invgamma 0.0001 2.0000 0.0304 0.0257 0.0509
σα Std D. of preference Invgamma 0.0001 2.0000 0.0001 0.0001 0.0114
σθ Std D. of labor disutility Invgamma 0.0001 2.0000 0.0001 0.0001 0.0286
σµc

Std D. of containment Invgamma 0.0001 2.0000 0.1654 0.1289 0.2652
ρV Persistence of infection Beta 0.0256 0.7761 0.9317 0.8911 0.9620
ρA Persistence of technology Beta 0.0256 0.7761 0.9598 0.8931 0.9817
ρα Persistence of preference Beta 0.0256 0.7761 0.0042 0.0000 0.7442
ρθ Persistence of labor disutility Beta 0.0256 0.7761 0.0042 0.0000 0.7421
ρµc

Persistence of containment Beta 0.0256 0.7761 0.6967 0.6543 0.7291
ξ Containement policy reaction Uniform -10 10 -0.0064 -0.0072 -0.0057
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5.1 Historical Decomposition

Figure 6 provides the historical decomposition obtained with our estimation results.9

As the IRFs in the previous section indicate, the outbreak of epidemics leads to lower

consumption and fewer hours worked for susceptible individuals. On the other hand, a

positive technology shock εAt increases consumption of all types of agents including those

who are susceptible.

As the parameter of the containment policy rule is estimated with ξ = −0.0064,

following the rise in the number of newly infected individuals Tt, consumption tax µct

decreases encouraging consumption and hours worked for both infected and recovered

individuals. Such increased economic activity of infected individuals amplifies further the

development of new infections Tt.

The dynamics of aggregate consumption and aggregate hours worked materialize as

net dynamics of all types of agents discussed above. In Figure 6, the historical decompo-

sition of aggregate consumption and hours worked are shown in the second and the third

column panels. It can observed that aggregate consumption does not fall much along with

the development of the epidemic because of technological improvements which encourage

individuals to consume more (shown with the light green part in the panel of “Aggregate

consumption”). Also, our historical decomposition reveals that aggregate hours worked

do not fall sufficiently because of the dis-containment policy rule that encourages infected

and recovered to work more despite the development of the epidemics (shown with the

blue part in the panel of “Aggregate hours worked”). Containment policy shock εµct

also plays a role. Specifically, it contributes positively at each peak of the infection wave

(shown with the black part in the panels of “Aggregate consumption” and “Aggregate

hours worked). For new infections Tt, however, almost all its variation during the sample

period is due to infection shock εV t (shown with the blue part in the panel of Tt).

9The standard deviations of new infection, aggregate consumption, and hours worked in the data are
14.0147, 5.0891, and 4.7528, respectively. With the estimated shock processes and ξ, the standard devi-
ations of these variables in the theoretical model are found to be 13.046, 22.689, and 18.84, respectively.
Consumption and hours worked are four times higher than the data. Our estimation results replicate
relatively well the standard deviation of new infection although the standard deviations are not targeted
in estimation.
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Figure 6: Historical Decomposition

Each entry shows the historical decomposition of one of the model’s variables. Shocks considered are infection shock εV t, technology shock εAt,
preference shock εαt, consumption tax shock εµct and labor disutility shock εθt.
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6 Conclusion

We propose a novel SIR-macro model in which virus transmission is uncertain. The model

is solved with the perturbation method around an infectious steady state. Assuming a

stationary infection process, a positive infection shock increases the number of newly

infected individuals while reducing consumption and hours worked for susceptible indi-

viduals. Furthermore, we estimate our model with the recent US data on the COVID-19

outbreak. Historical decomposition obtained with Bayesian techniques finds that con-

tainment policy shock and/or rule, as well as infection shock, play important roles in

characterizing US infection and macroeconomic dynamics.
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Appendix

A Preference and Labor Disutility Shock

A higher marginal utility in consumption brought by one percentage point increase in εαt
also induces new infections. As Figure 7 shows the number of newly infected and infected
individuals increase by approximately 40 percentage points. This is a direct consequence
of a higher level of consumption and thus hours worked to finance consumption for both
susceptible and infected individuals. Both consumption and hours worked of these agents
(Cs

t , C
i
t , N

s
t and N i

t ) increase more than 40 percentage points. Thus the desire to consume
prevails more the precautionary behavior of susceptible individuals.

We somehow see the opposite pattern as the case of consumption preference shock
argued previously in case of a rise in labor disutility. Figure 8 shows the IRFs following
one percentage point increase in εθt. Consumption and hours worked for both susceptible
(Cs

t and C i
t) and infected individuals (N s

t and N i
t ) drop substantially by approximately

35000 percentage points followed by a sharp decline in the number of newly infected Tt

and infected individuals It to the same extent. This is, again, a direct consequence of fewer
hours worked and, thus, less consumption for both susceptible and infected individuals.
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Figure 7: IRFs following consumption preference shock

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage
deviation of the consumption preference shock.
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Figure 8: IRFs following labor disutility shock

Each entry shows the percentage-point response of one of the model’s variables to a one-percentage
deviation of the labor disutility shock.
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