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1 Introduction

Evolutionary game theory considers the dynamics of behavior in a large popu-

lation of agents who choose actions in response to the action distribution in the

population. For example, a consumer’s choice of purchasing a status good or a

fashion good depends on the number of consumers buying the same good. How-

ever, the exact action distribution is not always available and agents may only

have limited information on others’ actions. Sandholm [2001] and Oyama et al.

[2015] consider evolutionary dynamics for such an imperfect information environ-

ment where agents draw a random sample of others’ actions and best-respond to

it. This paper takes a step further by assuming that the agents are able to use some

statistical inference procedure to form an estimate of the action distribution.

Salant and Cherry [2020] pioneer the idea of incorporating statistical inference

based on random sampling into games. They introduce a solution concept called

the sampling equilibrium with statistical inference (SESI), prove its existence, and pro-

vide a dynamic justification for it. It is a distribution of actions such that sampling

from this distribution and best-responding to the estimate using statistical infer-

ence result in the same distribution of actions. Based on their insights, we further

explore the dynamic implications of statistical inference by describing population

dynamics at the individual level. Agents with heterogeneous preferences play a

two-action population game, and periodically revise actions in discrete time. The

revising agents obtain a random sample of others’ actions, use statistical inference

to estimate the action distribution, and best-respond to the estimate.

Since agents’ preferences are diverse, we propose a solution concept called the

Bayesian SESI, in which each agent best-responds to the estimate derived from

the drawn sample using statistical inference. Though it is conceptually equivalent

to the original SESI in Salant and Cherry [2020], it provides a formal mathemati-

cal expression for the action distribution for each preference. Then we propose a

Bayesian k-sampling statistical inference best response dynamic (Bayesian dynamic, for

short) based on the evolutionary model with heterogeneous preferences (Ely and

Sandholm 2005).1 The Bayesian dynamic gives rise to a simple aggregate dynamic

with one variable, the proportion of agents playing one of the actions, which coin-

1See Zusai [2018, 2019a,b] for general treatments of heterogeneity and aggregability in evolu-
tionary dynamics.
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cides with the dynamic in Salant and Cherry [2020]. Our first main result shows

that the Bayesian dynamic converges to a Bayesian SESI if and only if the aggregate

dynamic converges to the corresponding SESI proportion. Hence, we can utilize

the aggregate dynamic to study the convergence of the Bayesian dynamic. Our sec-

ond main result shows the global asymptotic stability of the set of Bayesian SESIs.

That is, the Bayesian dynamic must converge to a Bayesian SESI. The two results

clarify that there must be a process at the level of individual strategy adjustment

that underlies the aggregate dynamic, and that nothing essential is lost by working

directly with the aggregates in terms of convergence.

We examine the implications of our model in two classes of games, anti-

coordination and coordination games. In anti-coordination games, there exists a

unique Bayesian SESI, and the Bayesian dynamic globally converges to it. This

supports the convergence result on the aggregate level shown in Salant and Cherry

[2020] from the individual level perspective. Nevertheless, the Bayesian dynamic

in general converges more slowly than the aggregate dynamic does. This discrep-

ancy between the two dynamics suggests fluctuations in social welfare even after

the aggregate behavior is stabilized. On improving social welfare, we extend the

model to a form of an implementation problem. Equilibria in anti-coordination

games are, in general, inefficient since the agents do not take into account the neg-

ative externality. We characterize a simple condition under which a tax scheme can

improve social welfare. In coordination games with strict Nash equilibria, the dy-

namic has a sharp equilibrium selection result: for unbiased statistical inferences,

the dynamic almost globally converges to the 1/k-dominant equilibrium when the

sample size is larger than 1 and at most k. This extends the results of Sandholm

[2001] and Oyama et al. [2015] to games with heterogeneous preferences and sam-

pling best response dynamics with statistical inference.

We consider two extensions. First, we extend the (almost) global convergence

result in coordination games to network games. Network games assume an arbi-

trary structure for the interactions among agents. Hence, they are different from

population games. Nevertheless, with a slight modification, our evolutionary dy-

namics can describe a particular diffusion process on networks, considered in Jack-

son and Yariv [2007], with agents using statistical inference. The global conver-

gence result for coordination games can be extended almost directly. Second, we

allow the agents to adopt different inference procedures and different sample sizes.
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The two main theorems, namely the simultaneous convergence of the aggregate

and Bayesian dynamics and the global asymptotic stability of the Bayesian SESIs,

are robust against such heterogeneity.

The idea of sampling in games has long been considered in the literature.

Young [1993, 1998] consider stochastic learning in games where the agents sample

from the recent history of play. Kosfeld et al. [2002] consider an adjustment process

in multi-player normal form games where the agents sample (pure-) action profiles

from their opponents’ mixed strategies. Kreindler and Young [2013] examine the

expected convergence time in a logit stochastic evolution model where the agents

obtain a random sample of other agents’ actions as in Sandholm [2001] and Oyama

et al. [2015]. Heller and Mohlin [2018] consider settings where agents stochastically

choose the size of the sample in every period, and show that the mean of sample

size greatly determines the dependence of future behavior on initial behavior. The

procedurally rational agents of Osborne and Rubinstein [1998] sample the payoffs

of each action and choose the one with the highest realized payoffs. This is called

the payoff sampling approach, and its application is studied by Spiegler [2006a,b],

Miekisz and Ramsza [2012], and Mantilla et al. [2020], for example. Evolutionary

dynamics with such agents are considered by Sethi [2000, 2021], Sandholm et al.

[2019, 2020], and Arigapudi et al. [2021]. Osborne and Rubinstein [2003] consider

sampling equilibrium in static games similar to Salant and Cherry [2020] but with-

out the consideration of statistical inference. To our limited knowledge, our paper

is the first to systematically investigate statistical inference based on random sam-

pling in evolutionary dynamics.

Examples of standard statistical inferences include Bayesian updating, maxi-

mum likelihood estimation, among others. It is also becoming increasingly ap-

parent that people may adopt certain heuristics in their inference procedures.

We just name a few related studies. Prospect theory of Kahneman and Tversky

[1979] posits that people transform objective probabilities non-linearly. Roughly

speaking, people weigh unlikely events more than their objective probabilities.2

Prospect theory fits experimental data well and is further examined and devel-

oped by many studies, Bernheim and Sprenger [2020], Tversky and Kahneman

[1992], Wu and Gonzalez [1996], for example.

Network games and network diffusion have been important research topics ex-

2See Example 2 for a model that incorporates such a non-linear transformation.
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plored by a number of studies, including Arieli et al. [2020], Galeotti et al. [2010],

Jackson and Yariv [2007], Kobayashi and Onaga [2021], Morris [2000], Newton and

Angus [2015], Oyama and Takahashi [2015], for example. Our extension follows

the network diffusion model in Jackson and Yariv [2007]. In contrast to the extant

literature, we assume that agents use statistical inference to estimate a state vari-

able of the network, and we characterize a sufficient condition for contagion with

such agents.

The paper is organized as follows. Section 2 introduces the population game

and our equilibrium concept. Section 3 introduces the evolutionary model, es-

tablishes the key equivalence result between the aggregate dynamic and the dy-

namic of the subpopulation of agents with a given preference, and prove the global

asymptotic stability of the set of Bayesian SESIs. Sections 4 and 5 consider anti-

coordination games and coordination games, respectively. Section 6 discusses an

application to network games and the extension of heterogeneous inference proce-

dures. Section 7 concludes.

2 Model

2.1 Population game

There is a single unit-mass population of agents who play a two-action game. Let

S = {A, B} denote the set of actions. The utility from action B is 0. The utility

from action A is u(θ, α) = θ − f (α), where θ is an agent’s idiosyncratic preference,

and f (α) is the cost incurred by an agent taking action A when the proportion of

agents taking A is α. The function f is continuous on [0, 1]. The distribution of

preference θ is described by a probability measure λ on the set Θ = [0, 1]. The

probability measure λ is absolutely continuous with respect to the Lebesgue mea-

sure on Θ. Compared with Salant and Cherry [2020], who consider the uniform

distribution, we allow for general preference distribution. We call the fraction of

agents choosing action A the aggregate population state. Let A = [0, 1] be the set of

aggregate population states. The game’s payoffs can be described by the continu-

ous function F : Θ ×A → R
S . Let Fθ

s (α) denote the payoff obtained at state α by

agents with preference θ choosing s ∈ S, i.e. Fθ
A(α) = θ − f (α) and Fθ

B(α) = 0.

The pure best response correspondence to the aggregate population state is
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denoted by bθ:

bθ(α) = argmax
s∈S

Fθ
s (α). (1)

We assume that the agents choose action B when there is a tie. For each aggregate

population state α ∈ A, the set of agents who are indifferent between the actions

has measure zero. Thus, our result does not depend on the tie-breaking rule.

2.2 Statistical inference and equilibrium concept

The agents know their own payoff functions but do not have precise information

on the population state α.3 They are assumed to choose action using a statistical

inference. Each agent randomly samples k agents, uses an inference procedure,

which is an analogue of an estimator in statistics, to estimate the probability distri-

bution over action distributions, and best-responds to it. Let z denote the sample

mean of action A, that is, z = j/k where j is the number of action-A agents in

the sample. An inference procedure G = {Gk,z} assigns a cumulative distribution

function Gk,z to every sample (k, z) such that Gk,ẑ strictly first-order stochastically

dominates Gk,z when ẑ > z. We introduce a few examples of inference procedures.

Examples 1 and 3 are Examples 2 and 4 in Salant and Cherry [2020].

Example 1 (Maximum Likelihood Estimation (MLE)). The agents use the maxi-

mum likelihood estimation method (MLE) to estimate the most likely parameters

to generate the sample. That is, the agents observing z solve for α that maximizes

αkz(1 − α)k(1−z). The solution is α = z. The inference procedure with MLE is

GMLE
k,z (α) = 1α≥z =







0 if α < z,

1 if α ≥ z.

Hence, the agents consider the distribution of the sample as the true distribution.

Example 2 (Overweighting Low Probabilities (OLP)). This is a modified version

of the nonlinear transformation of probabilities in Tversky and Kahneman [1992].

3Our results do not depend on whether the distribution λ is known to the agents.
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The agents observing z use the following inference procedure:

GOLP
k,z (α) = 1α≥z̃ =







0 if α < z̃,

1 if α ≥ z̃,
where z̃ =

zδ

zδ + (1 − z)δ
for some δ ∈ (0, 1].

If δ = 1, then this inference procedure coincides with the MLE. For δ < 1, this

inference procedure exhibits the property of overweighting low probabilities and

underweighting high probabilities.

For example, suppose δ = 0.6. When z = 0.1,

z̃ =
0.10.6

0.10.6 + 0.90.6
≈ 0.211 > 0.1.

When z = 0.9,

z̃ =
0.90.6

0.90.6 + 0.10.6
≈ 0.789 < 0.9.

Example 3 (Truncated Normal (TN)). The agents observing z believe that α is dis-

tributed according to a normal distribution truncated symmetrically around the

mean z with the variance being
z(1−z)

k .

Note that both MLE and OLP result in point estimators, while TN results in a

continuous cumulative distribution function.

Let us start by considering static solution concepts for this game. It is useful to

first examine the one proposed by Salant and Cherry [2020]:

Definition 1 (SESI). A sampling equilibrium with statistical inference (SESI) is a

number αk,G ∈ [0, 1] such that an αk,G proportion of agents chooses action A when each

agent obtains k independent observations from the aggregate population state α = αk,G,

forms an estimate according to inference procedure G, and best-responds to this estimate

in choosing an action. We refer to αk,G that constitutes a SESI as a SESI proportion (of

degree k with respect to the inference procedure G).

Next, we characterize the SESI (proportion) αk,G . The pure best response cor-

respondence of agents with preference θ, inference procedure G, and observation

(k, z) is denoted by bθ
G . It is described as
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bθ
G(k, z) = argmax

s∈S

∫

α∈A
Fθ

s (α)dGk,z(α) ∀z ∈

{

0,
1

k
. . . , 1

}

.

Recall that the agents choose action B when there is a tie. This means that

bθ
G(k, z) ∈ {A, B}. Let

Bθ
G(z) =







1 if bθ
G(k, z) = A,

0 if bθ
G(k, z) = B.

In words, Bθ
G(z) is an index function that becomes one if action A is the best re-

sponse to the estimate for the agents with preference θ and sample mean z.

Using the above expressions, a SESI proportion αk,G can be written as follows.

αk,G =
∫

θ∈Θ

k

∑
j=0

(

k

j

)

α
j
k,G(1 − αk,G)

k−jBθ
G

(

j

k

)

dλ. (2)

Let Fk,z denote the expected cost f under Gk,z, that is,

Fk,z =
∫

α∈A
f (α)dGk,z(α).

Observe that the integral of the index function Bθ
G(z) over Θ can be rewritten as

∫

θ∈Θ
Bθ
G(z)dλ =

∫

θ∈Θ
1

[

∫

α∈A
Fθ

A(α)dGk,z(α) > 0

]

dλ =
∫

θ∈Θ
1 [θ > Fk,z] dλ

= 1 − Λ(Fk,z),

where Λ(x) =
∫ x

0 dλ. Then, Eq.(2) is written as follows.

αk,G =
k

∑
j=0

(

k

j

)

α
j
k,G(1 − αk,G)

k−j(1 − Λ(Fk,j/k)).
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Define the kth-order Bernstein polynomial of function v as4

Bernk(α; v) =
k

∑
j=0

(

k

j

)

αj(1 − α)k−jv(j/k) ∀α ∈ [0, 1]. (3)

The SESI proportion αk,G can be rewritten as follows.

1 − αk,G = Bernk(αk,G ; ΛF,k), (4)

where ΛF,k is a function such that ΛF,k(z) = Λ(Fk,z).
5 We have the following

observation. This comes from the fact that Eq.(3) is a polynomial function of α

with Λ(Fk,z) bounded for all z = {0, 1/k, . . . , 1}.

Observation 1. For any finite k > 0, the Bernstein polynomial Bernk(αk,G ; ΛF,k) is

Lipschitz continuous in αk,G .

The SESI proportion αk,G is a concise expression for an equilibrium. However,

it is uncertain that a scalar value is sufficient to describe an equilibrium when it

comes to large population games where heterogeneous agents may occasionally

update.

To examine such dynamics, we use the notion of Bayesian strategy (Ely and

Sandholm 2005), which describes the action distribution for each preference.

A Bayesian strategy is a mapping σ : Θ → [0, 1], where σ(θ) is the fraction of the

agents with preference θ ∈ Θ choosing action A. Let Σ = {σ : Θ → [0, 1]} denote

the set of all Bayesian strategies that are measurable (with respect to (Θ, L(Θ), λ),

where L(Θ) is the set of all Lebesgue measurable sets on Θ). Recall that the

distribution of preferences is described by the probability measure λ on Θ. Us-

ing the Bayesian strategy σ, the aggregate population state can be expressed as

α(σ) =
∫

Θ
σ(θ)dλ.

We define the k-sampling statistical inference (k-SI) best response correspon-

4See Chapter 7 of Phillips [2003] for the Bernstein polynomial. Salant and Cherry [2020] list
some of its properties.

5When the preference distribution is uniform, we have Λ(Fk,z) = Fk,z, which gives the identical
characterization of SESI in Salant and Cherry [2020].
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dence as

Bk,θ(α) =
k

∑
j=0

(

k

j

)

αj(1 − α)k−jBθ
G

(

j

k

)

.

Bk,θ(α) is the probability of action A being the best response to the estimate when

an agent with preference θ samples k agents from the aggregate populate state

α.6 Using Bk,θ(·), we define a Bayesian SESI. A Bayesian SESI σ∗ is the same as

a SESI except that it offers a mathematical expression that is amenable to formal

evolutionary analysis of individual strategy adjustment.

Definition 2. A Bayesian SESI is a Bayesian strategy σ∗ : Θ → [0, 1] such that

σ∗ = Bk(α(σ∗)) ≡
{

Bk,θ(α(σ∗))
}

θ∈Θ

where α(σ∗) =
∫

Θ
σ∗(θ)dλ. In the above expression, σ∗ = {Bk,θ(α(σ∗))}θ∈Θ is inter-

preted as σ∗(θ) = Bk,θ(α(σ∗)) for all θ ∈ Θ.

In words, σ∗ is a strategy profile where every agent with inference procedure

G best-responds to the estimate. Obviously, α(σ∗) is a SESI proportion if σ∗ is

a Bayesian SESI. The converse, however, does not necessarily hold. To see this,

consider the following example.

Example 4. Assume that f (·) is continuous, convex, and increasing on [0, 1], and

λ is the uniform distribution on [0, 1]. Suppose σ∗ is the unique Bayesian SESI (see

Proposition 1 in Section 4.1 for the existence and the uniqueness) and α(σ∗) is the

corresponding SESI proportion. Suppose the Bayesian strategy σ satisfies that for

all agents with θ < α(σ∗), they choose action A and for all agents with θ ≥ α(σ∗),

they choose action B. σ is not a Bayesian SESI, but α(σ) = α(σ∗).

Consider a Bayesian strategy with a SESI proportion as in Example 4. If all

agents simultaneously update their strategy, then the Bayesian strategy will be-

come a Bayesian SESI in the next period. It is, however, not obvious whether the

Bayesian strategy converges to a Bayesian SESI if not all agents simultaneously

update. Thus, Example 4 raises the following question. Would there be any differ-

ence in terms of convergence between the dynamic defined on the individual level

6The k-SI best response correspondence coincides with the sampling best response correspon-
dence of Oyama et al. [2015] when the inference procedure is MLE in Example 1.
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and the one defined on the aggregate level? We will answer this question in the

next section.

3 Evolutionary dynamics

Now we turn to the dynamic version of the game. Every agent receives a revision

opportunity with probability ε in each discrete period t ∈ {0, 1, . . .}. When an

agent receives a revision opportunity, she randomly samples k agents from the

population, uses statistical inference to estimate the distribution of actions, and

chooses a best response to the estimate.

Recall that Bk(α) = {Bk,θ(α)}θ∈Θ, and that every agent revises strategy with

probability ε in each discrete time. The Bayesian k-sampling statistical inference (k-SI)

best response dynamic (Bayesian dynamic, for short) is described by the following

difference equation:

σt = (1 − ε)σt−1 + εBk(αt−1), (5)

where αt−1 =
∫

Θ
σt−1(θ)dλ.

The aggregate dynamic of the population, i.e. the dynamic of the fraction of

action-A agents, is described as,

αt =
∫

Θ
σt(θ)dλ = (1 − ε)αt−1 + ε

∫

Θ
Bk,θ(αt−1)dλ. (6)

Using the Bernstein polynomial in Eq.(3), the last term of Eq.(6) is written as fol-

lows.

∫

Θ
Bk,θ(αt−1)dλ =

k

∑
j=0

(

k

j

)

α
j
t−1(1 − αt−1)

k−j
∫

Θ
Bθ
G

(

j

k

)

dλ = 1 − Bernk(αt−1; ΛF,k),

where recall that ΛF,k is such that ΛF,k(z) = Λ(Fk,z). The aggregate dynamic (6) is

rewritten as

αt = (1 − ε)αt−1 + ε(1 − Bernk(αt−1; ΛF,k)). (7)

This is equivalent to the dynamic presented in Salant and Cherry [2020].
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Recall that α(σ) =
∫

Θ
σ(θ)dλ. Define ‖σ‖ =

∫

Θ
|σ(θ)|dλ for all σ ∈ R

Θ. Then

‖σ − σ̂‖ > 0 for all σ, σ̂ ∈ Σ with σ 6= σ̂, and ‖σ − σ̂‖ = 0 if and only if σ = σ̂.

In other words, ‖·‖ is the L1 norm for a pair of Bayesian strategies. We say that σt

converges to σ∗ if limt→∞‖σt − σ∗‖ = 0; αt converges to α∗ if limt→∞ |αt − α∗| = 0.

A Bayesian strategy that is not a Bayesian SESI can induce the SESI proportion

as shown in Example 4. Hence, the convergence of the aggregate dynamic (6) to the

SESI proportion does not guarantee the convergence of the Bayesian dynamic (5).

The following lemma shows that if the aggregate dynamic is at a SESI proportion

α∗, then the Bayesian strategy converges to Bk(α∗). Note that we relegate all the

proofs to the Appendix.

Lemma 1. A SESI proportion α∗ is a stationary aggregate population state under the

aggregate dynamic (6), that is, αt+1 = α∗ if αt = α∗. If the aggregate dynamic is at α∗,

then any Bayesian strategy σ with α(σ) = α∗ converges to Bk(α∗) under the Bayesian

dynamic (5).

More importantly, our first main result shows that the Bayesian strategy con-

verges if and only if the aggregate population state converges.

Theorem 1. The Bayesian strategy σ converges to σ∗ under the Bayesian dynamic (5) if

and only if the aggregate population state α converges to α∗ = α(σ∗) under the aggregate

dynamic (6).

Thus, the introduction of the Bayesian SESI and the Bayesian k-sampling sta-

tistical inference (k-SI) best response dynamic provides further supports for the

analysis of the aggregate dynamic in Salant and Cherry [2020].

Next, we consider asymptotic stability of SESI. Though Theorem 1 implies

that the convergence to a Bayesian SESI must coincide with the convergence to

a SESI proportion, it does not tell whether the Bayesian dynamic (or the aggre-

gate dynamic) ever converges. We will answer the question in the affirmative.

For what follows, recall Observation 1 and let KB(k) be a Lipschitz constant for

Bernk(α; ΛF,k) with sample size k. To simplify the analysis, we assume that (1 − α)

and Bernk(α; ΛF,k) are not tangent to each other and the intersection of the two

curves contains at most finite points.

Lemma 2. Let α∗ be a SESI proportion. Fix an open interval (α, α) that satisfies the three

conditions: i) α∗ ∈ (α, α), ii) 1 − α > Bernk(α; ΛF,k) for all α ∈ (α, α∗), and iii) 1 − α <

12



Bernk(α; ΛF,k) for all α ∈ (α∗, α). The aggregate population state starting with some

α ∈ (α, α) converges to α∗ for any ε ∈ (0, ε), where ε = min{1/KB(k), α∗ − α, α − α∗}.

Recall Theorem 1, which implies that two different Bayesian strategies con-

verge to the same strategy if their aggregate populations states converge to the

same aggregate state. An implicaton of Lemma 2 is that all Bayesian strategies

that have the same aggregate population state converge to the same Bayesian SESI

regardless of any difference they may have. With Lemma 2 in hand, we can show

global asymptotic stability of the set of Bayesian SESIs.

Theorem 2. For any inference procedure, any sample size k, any preference distribution,

and all sufficiently small ε > 0, the Bayesian strategy converges to some Bayesian SESI

under the Bayesian dynamic (5).

In the proof of Lemma 2 and Theorem 2, we use a discrete version of the Lya-

punov stability theorem (see Theorem 7 in the Appendix) to show convergence.

The implications of Lemma 2 and Theorem 2 include not only the global conver-

gence to SESIs but also a characterization of stability of SESIs. The next example

provides an illustration.

Example 5 (Convergence and (in)stability of SESIs). Consider the uniformly dis-

tributed λ on [0, 1] and the two continuous cost functions f1 and f2 below:

f1(α) = α2,

f2(α) = max{0.9 − 1.3α2, 0}.

f1 is a typical convex cost function, while f2 is a decreasing cost function. The latter

represents settings where action A has positive externality. The initial adoption

cost is high, but the cost decreases as more agents adopt A. The left of Figure

1 shows the graphs of 1 − α, Bernk(α; ΛF,k) with MLE, and Bernk(α; ΛF,k) with

OLP, with the cost function f1. The right of Figure 1 shows the graphs of 1 − α,

Bernk(α; ΛF,k) with MLE, with the cost function f2. Each intersection of 1 − α and

Bernk(α; ΛF,k) represents a SESI proportion. The sample size is 10 for both settings.

Theorem 2 implies that the Bayesian strategy converges to some Bayesian SESI

from any initial state. For the setting with f1, this means that the aggregate pop-

ulation state globally converges to the unique SESI proportion for each statisti-

cal inference. For the setting with f2, a SESI proportion to which the aggregate
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Figure 1: (1 − α) and Bernk(α; ΛF,k) with function f1 (left) and with f2 (right)

population state converges depends on the initial state. Lemma 2, however, tells

that some SESIs may be unstable. To see this, let α∗1 , α∗2 , and α∗3 denote the SESIs

(α∗1 < α∗2 < α∗3 = 1). According to Lemma 2, the aggregate population state con-

verges to α∗1 if the initial state is in [0, α∗2), while it converges to α∗3 if the initial

state is in (α∗2 , 1]. The middle SESI α∗2 is unstable, that is, the aggregate population

state starting from any close neighborhood of α∗2 moves away from α∗2 . Any small

perturbation to α∗2 will move the state to a different SESI.

Note also that, in the setting with f2, the total utility of agents is maximized

in α∗3 because the adoption cost is zero in α∗3 and thus all agents receive positive

utility. However, if the society starts with a low adoption rate, it will be trapped in

an inefficient SESI α∗1 .

In Section 4, we discuss a sufficient condition on the cost function which guar-

antees the uniqueness of SESI, and an implication of our results on social welfare.

We also discuss a tax scheme improving social welfare. In Section 5, we character-

ize a class of games where (almost) global convergence to a SESI is obtained even

if there are more than one SESI. The analysis of global convergence is extended to

determine diffusion in network games in Section 6.1.
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4 Anti-coordination games

4.1 Equilibrium existence and uniqueness

We consider anti-coordination games, which are games where f (·) is weakly increas-

ing on [0, 1] and 0 ≤ f (0) < f (1) ≤ 1. The game of this type is studied in Salant

and Cherry [2020]. It captures the nature of anti-coordination — agents have an

incentive to differ from others. Evolutionary dynamics in such games are studied

by Kojima and Takahashi [2007], Zhang [2016], and Zusai [2017], among others.

We first extend some results of Salant and Cherry [2020] for any preference distri-

bution, and then discuss a tax scheme that improves social welfare.

Roughly speaking, the Bernstein polynomial Bernk(α; ΛF,k) is the fraction of

agents whose best response to the estimate is action B when the fraction of agents

choosing A is α. This implies that the Bernstein polynomial is weakly increasing

in α in anti-coordination games, and further implies the next proposition.

Proposition 1. In an anti-coordination game, for any inference procedure, any sample

size, and any preference distribution, there exists a unique SESI.

The next corollary is immediate from Lemma 2 and Theorem 2. Its implication

on the Bayesian strategy and social welfare is illustrated in Example 6.

Corollary 1. Let α∗ be the unique SESI proportion in the anti-coordination game for a

given tuple of the inference procedure, sample size k, and preference distribution. Then,

under the Bayesian dynamic (5) for any ε ∈ (0, 1/KB(k)), the aggregate population state

converges to α∗, and the Bayesian strategy converges to Bk(α∗).

Example 6. Consider the game with the cost function f1 in Example 5. The utility

from action B is 0, the utility from action A is u(θ, α) = θ − α2, and the preference

θ is uniformly distributed on [0, 1]. Corollary 1 guarantees the convergence of the

Bayesian strategy to Bk(α∗). Furthermore, Lemma 1 implies that the aggregate

population state never deviates from α∗ once it is reached. That is, if αt reaches α∗,

then the Bayesian strategy σt will approach Bk(α∗) without changing the aggregate

population state thereafter.

Figure 2 illustrates the dynamics of the aggregate population state and Bayesian

strategy for agents using MLE. Initially, the fraction of agents choosing A is the

SESI proportion (≈ 0.6) for all preferences. The left figure shows the dynamics of
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Figure 2: Evolution of the aggregate state (left) and Bayesian strategy (right) with
MLE. The sample size is 10, and the revision probability is ε = 3 × 10−3.
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Figure 3: Evolution of the aggregate state (left) and Bayesian strategy (right) with
OLP (δ = 0.6). The sample size is 10, and the revision probability is ε = 3 × 10−3.

the aggregate population state α and the sum of agents’ payoffs normalized to that

sum in the Bayesian SESI, which measures the social welfare of a state relative to

the Bayesian SESI. The right figure shows the dynamics of the Bayesian strategies,

where agents’ preferences are on the horizontal axis and the fraction of action-
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A agents for each preference is on the vertical axis. As illustrated in Figure 2,

the aggregate state does not fluctuate. The agents, however, frequently switch

their actions until they reach the Bayesian SESI, which is roughly illustrated by the

graph at time t = 1500 in the right figure. The action distribution is becoming more

diverse across preferences over time. This suggests that the aggregate population

state may not be a good indicator for welfare. Even if it is in the steady state, the

social welfare may be far from the one in equilibrium as shown in Figure 2.

Figure 3 illustrates the dynamics for the agents using OLP with δ = .6. The

parameters are the same as the ones with MLE, except that the initial fraction of

agents choosing A is the SESI proportion under OLP (≈ 0.63) for all preferences.

We have an observation similar to MLE. Recall that agents with OLP moderately

evaluate objective probabilities, that is, their subjective probabilities are closer to

50% than the objective probabilities are. The action distribution with OLP in the

Bayesian SESI is more polarized than the action distribution with MLE. For ex-

ample, with OLP, the agents with θ > .6 choose A with probability close to one.

In contrast, with MLE, only the agents with θ > .8 do so. The reason is that, for

example, if the agents with OLP draw a sample with only one agent choosing A,

they think that the fraction of agents choosing A in the population is around 0.211

instead of 0.1 (see Example 2). This makes more agents with higher θ choose A.

4.2 On improving social welfare

We discuss that some intervention by the social planner may improve the social

welfare. We restrict our attention to simpler settings — anti-coordination games

with a fixed fee on the choice of action A. The revenue from the fee is equally dis-

tributed to all agents, and thus is not considered as a welfare loss. The intervention

we consider is akin to an evolutionary implementation, e.g. Lahkar and Mukherjee

[2019, 2021], Sandholm [2002, 2005, 2007], in the sense that a simple price scheme

in evolutionary dynamics may lead to welfare improvements.7

We assume that agents pay a tax c ∈ R+ to choose action A, and that the cost

function f is continuously differentiable. Observe that if an agent has to pay c to

7Differences from the above mentioned papers are that agents do not perfectly observe the ag-
gregate population state and that there is an infinite set of types of agents.
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choose A, the best response function bθ
G(k, z) can be written as

bθ
G(k, z|c) = argmax

s∈S

∫

α∈A
Fθ

s (α)dGk,z(α)− c1[s=A] ∀z ∈

{

0,
1

k
. . . , 1

}

,

where 1[s=A] is 1 when s = A and 0 otherwise, and bθ
G(k, z|c) = B when there is

a tie. The index function Bθ
G(z|c) is defined the same way as Bθ

G(z). Recall that

Bk,θ(α) is the probability of action A being the best response to the estimate when

an agent with preference θ samples k agents from the aggregate populate state α.

We define a similar probability with tax c as

Bk,θ(α|c) =
k

∑
j=0

(

k

j

)

αj(1 − α)k−jBθ
G

(

j

k

∣

∣

∣

∣

c

)

.

Definition 3. A Bayesian SESI with tax c is a Bayesian strategy σ∗
c : Θ → [0, 1] such

that σ∗
c ≡ {Bk,θ(α(σ∗

c )|c)}θ∈Θ, where recall that α(σ∗
c ) =

∫

Θ
σ∗

c (θ)dλ.

Let σ∗
c be a Bayesian SESI with tax c, and σ∗

0 be the one without a tax. We define

the social welfare of the game and the set of welfare maximizers as below.

SW(σ) =
∫

θ∈Θ
[θ − f (α(σ))] σ(θ)dλ,

C∗ = argmax
c

SW(σ∗
c ).

The social welfare SW(·) is simply the total utility of agents. C∗ is the set of

taxes that maximize the social welfare in the SESI. C∗ always exists (Lemma 4 in

the Appendix). The next theorem shows (i) the uniqueness and convergence result,

and (ii) a condition under which an intervention can improve the social welfare.

Claim (i) shows that a tax c dynamically implements σ∗
c . Thus, if a tax in C∗ is im-

posed on A, the behavior will converge to a state that maximizes the social welfare.

Claim (ii) gives a simple condition for when the social planner should intervene.

This condition only depends on the aggregate population state and does not re-

quire the social planner to inspect the strategy distribution over preferences.

Theorem 3. There is a unique Bayesian SESI σ∗
c for every c ∈ R+. The Bayesian

strategy converges to σ∗
c under the Bayesian dynamic (5) for all sufficiently small ε. If

1 − f (α(σ∗
0 ))− α(σ∗

0 ) f ′(α(σ∗
0 )) < 0, then c∗ > 0 for all c∗ ∈ C∗.
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5 Coordination games

In this section, we consider a class of games that resemble coordination games with

two strict Nash equilibria (NEs). The equilibrium selection problem in coordina-

tion games lies at the heart of evolutionary game theory (see Foster and Young

[1990], Young [1993] and Kandori et al. [1993], for example). We investigate if our

Bayesian dynamic has any equilibrium selection property.

Salant and Cherry [2020] only focus on games with interior NEs because in

these games SESIs differ from NEs. When there exists a corner NE, where every

agent is choosing the same action, the corner NE must be a SESI if the inference

procedure G is unbiased as defined in Salant and Cherry [2020]:

Definition 4. An inference procedure G is unbiased if for any sample (k, z), the expected

value of the estimate Gk,z is equal to the sample mean, that is,

∫ 1

0
αdGk,z(α) = z, for any sample (k, z).

The rationale is that when G is unbiased, if an agent’s sample includes only

failures (z = 0) or successes (z = 1), the agent concentrates his estimate on the

sample mean.8

We assume that f is weakly decreasing and we relax the range of f by assuming

that f (0) > 1 and f (1) < 0. Given these assumptions, both α∗ = 0, α∗∗ = 1 are

strict NEs, and they are also SESIs given unbiased G. Nevertheless, we will show

that the evolutionary dynamic has a sharp equilibrium selection result. To begin,

we define the p-dominance in the spirit of Morris et al. [1995]. To avoid repetition,

we focus our analysis on action B being p-dominant. The analysis for action A

being p-dominant is similar.9

Definition 5. Action B ∈ S is p-dominant in F if bθ(α) = {B} for all θ ∈ Θ and all

α ≤ 1− p. A Bayesian strategy where all agents play the same p-dominant action is called

a p-dominant equilibrium.

8Note that the MLE inference procedure in Example 1 and the TN inference procedure in Exam-
ple 3 are both unbiased, while the OLP inference procedure in Example 2 is not.

9 A symmetric result holds for action A. If A is 1/k-dominant, the sample size ranges from 2
to k, G is unbiased, and f is concave, then the aggregate dynamic (6) converges to α∗∗ = 1 for all
α0 6= 0.
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One can observe that it is an extension of the one in Morris et al. [1995] to

population games, which is also used in Sandholm [2001] and Oyama et al. [2015].

A similar extended definition on compact action sets is used in Tercieux [2006].

Given the game structure, we have an immediate observation:

Observation 2. Action B is p-dominant if and only if f (1 − p) > 1.

We have the following selection result:

Theorem 4. Assume that B is 1/k-dominant for some integer k > 1 and the sample size

l ∈ {2, ..., k}. If f is convex and G is unbiased, for any initial proportion α0 6= 1, the

aggregate population state converges to α∗ = 0 under the aggregate dynamic (6).10

Theorem 4 shows that the evolutionary dynamic almost globally converges to

the 1/k-dominant equilibrium, which generalizes the selection result of Sandholm

[2001] and Oyama et al. [2015] to games with heterogeneous preferences and a

broad class of statistical inferences. In contrast to the equilibrium selection re-

sults in stochastic stability analysis which generally rely on long waiting times, our

convergence result happens within finite periods. The result demonstrates that in

coordination games beyond the consideration of Salant and Cherry [2020], even

though both strict NEs are SESIs in the static setting, statistical decision making

still has important dynamic implications.

6 Discussion

6.1 Application: statistical inference in network games

Our evolutionary dynamics can be applied to diffusion processes in network

games with agents using statistical inference. Following Jackson and Yariv [2007],

we model a large social network of a unit-mass population of agents through the

distribution of the number of neighbors. The fraction of agents with k neighbors is

given by the degree distribution γk, where ∑k∈K γk = 1 for K = {1, . . . , K}. We call

an agent with k neighbors a degree-k agent. Let λk denote the probability measure

10Theorem 1 guarantees the convergence of the Bayesian dynamic (5) to the corresponding
Bayesian SESI for α∗ = 0.
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on the preference set Θ = [0, 1] for degree-k agents. That is, γk =
∫

Θ
dλk.11 The

game is similar to the one in Section 2. Agents choose an action from S = {A, B}.

The utility from B is 0. The utility from A is u(θ, ρ) = θ − f (ρ), where θ is the

agent’s preference, and f (ρ) is the cost of choosing action A when the probability

that a neighbor chooses A is ρ.12 f is continuous on [0, 1].

In each discrete period t ∈ {0, 1, . . .}, a social network is randomly formed ac-

cording to the degree distribution {γk}k∈K, and then the agents receive a revision

opportunity with probability ε.13 Each revising agent observes their neighbors’

actions, estimates the probability ρ using statistical inference, and best-responds

to the estimate. For a revising degree-k agent, let z denote the mean of action A

of their neighbors. An inference procedure G = {Gk,z} assigns a cumulative dis-

tribution function Gk,z to every observation (k, z) such that Gk,ẑ strictly first-order

stochastically dominates Gk,z when ẑ > z.

The pure best response correspondence of agents with preference θ, inference

procedure G, and observation (k, z) is defined as

bθ
G(k, z) = argmax

s∈{A,B}

∫

ρ∈[0,1]
Fθ

s (ρ)dGk,z(ρ) ∀z ∈ {0, 1/k, . . . , 1},

where Fθ
A(ρ) = θ − f (ρ), and Fθ

B(ρ) = 0. Agents choose action B when there is a

tie. Let Bθ
G(z) be an index function that becomes one if action A is the best response

to the estimate for the agents with preference θ and mean z.

Let σk
t (θ) be the fraction of degree-k agents with preference θ choosing action

A in period t. Define the weighted mean of action A as

ρt = ∑
k

k

k̄

∫

Θ
σk

t (θ)dλk, where k̄ = ∑
k

γkk.

ρt is the probability that an agent chooses action A if we randomly choose a link

and pick the agent at either end of the link in period t.

11We assume that the degree distribution does not differ across preferences, but the analysis
should be extended to more general degree distributions using the extended model in Section 6.2.

12The utility function follows one of the utility functions considered in Jackson and Yariv [2007].
The agents gather information from close friends/relatives (to make an estimate), and their payoff
depends on the average play of their neighbors.

13The set of k-degree agents does not differ over time for all k ∈ K, that is, agents have k neighbors
in period t if they have k neighbors in period t − 1.
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Following Jackson and Yariv [2007], we write the mean-field dynamics for σk
t (θ)

as

σk
t (θ) = (1 − ε)σk

t−1(θ) + ε
k

∑
j=0

(

k

j

)

(ρt−1)
j(1 − ρt−1)

k−jBθ
G

(

j

k

)

∀θ ∈ Θ.

See also Section 5.1.3 of Jackson and Zenou [2015] for the mean-field dynamics of

diffusion on networks. In network games, the probability that a neighbor chooses

action A in period t− 1 is ρt−1 instead of the fraction of agents choosing A in period

t − 1. The equation can be viewed as the dynamics of Eq.(5) by replacing αt−1 with

ρt−1. Our evolutionary dynamics can be applied with this slight modification.

Recall that for all z ∈ [0, 1],

∫

Θ
Bθ
G(z)dλk = γk −

∫ Fk,z

0
dλk,

where Fk,z =
∫

α∈A f (α)dGk,z(α), the expected cost of action A when observing a

sample (k, z). Note that the first term in the right-hand side is γk since the fraction

of k-degree agents is γk. Then the dynamics of ρt can be written as

ρt = ∑
k∈K

k

k̄

∫

Θ
σk

t (θ)dλk

= (1 − ε)ρt−1 + ε ∑
k∈K

k

k̄

k

∑
j=0

(

k

j

)

(ρt−1)
j(1 − ρt−1)

k−j
∫

Θ
Bθ
G

(

j

k

)

dλk

= (1 − ε)ρt−1 + ε ∑
k∈K

k

k̄
(γk − Bernk(ρt−1; ΛF,k)), (8)

where ΛF,k = Λk(Fk,z) ≡
∫ Fk,z

0 dλk. Eq.(8) shows that the diffusion process can be

expressed by a dynamic process with one state variable ρt.

Example 7 (k-regular networks). Consider that the network is a k-regular graph,

that is, γk = 1 for some k ≥ 2. Then, k̄ = k, and Eq.(8) is reduced to

ρt = (1 − ε)ρt−1 + ε(1 − Bernk(ρt−1; ΛF,k)).

This is the same as Eq.(7). For k-regular networks, the probability that a neighbor

chooses action A is the same as the fraction of agents choosing A, i.e. ρt = αt.
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The next proposition characterizes a sufficient condition under which action B

spreads in the entire network with agents using statistical inference. In this setting,

action B is said to be p-dominant if Fθ
B(ρ) > Fθ

A(ρ) for all θ ∈ Θ and all ρ ≤ 1 − p.

Note that by definition, ρt = 0 implies that σk
t (θ) = 0 for almost all θ ∈ Θ.

Proposition 2. Assume that B is 1/K-dominant for some integer K > 1. If f is convex,

G is unbiased, and the set of degrees is K ⊆ {2, . . . , K}, then for any initial state ρ0 6= 1

and any degree distribution {γk}k∈K, the state converges to ρ∗ = 0 under the diffusion

process expressed by Eq.(8).

The intuition is similar to that of Theorem 4, and thus we omit the formal

proof. When B is 1/K-dominant and all conditions in the proposition are met,

Bernk(ρt−1; ΛF,k) = γk(1 − ρk
t−1). Then, (γk − Bernk(ρt−1; ΛF,k)) is reduced to

γkρk
t−1 for all k ∈ K. Eq.(8) guarantees that ρt < ρt−1 for any ρt−1 ∈ (0, 1).

6.2 Heterogeneity

So far, we have assumed that all agents adopt the same statistical inference proce-

dure. We relax the assumption and consider heterogeneous inference procedures

and samples sizes in this section. Let G = {G1, . . . ,GM} denote the set of inference

procedures, and K = {1, . . . , K} denote the set of sample sizes. Let λik denote the

probability measure on the preference set Θ = [0, 1] for agents who make an es-

timate by sampling k agents and using inference procedure G i, and let γik denote

the mass of such agents. That is, γik =
∫

Θ
dλik and ∑(G i,k)∈G×K γik = 1.

We extend the notations in Sections 2 and 3 to this setting. G i
k,z denotes the

cumulative distribution assigned by G i for sample (k, z), where recall that k is a

sample size and z is a sample mean. The pure best response correspondence and

the best response index function are written as

bθ
G i(k, z) = argmax

s∈S

∫

α∈A
Fθ

s (α)dG
i
k,z(α) ∀z ∈

{

0,
1

k
. . . , 1

}

,

Bθ,k
G i (z) =







1 if bθ
G i(k, z) = A,

0 if bθ
G i(k, z) = B.

Bθ,k
G i (z) is an index function that becomes one if A is the best response to the esti-

mate for the agents with preference θ, inference procedure G i, sample size k, and
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sample mean z. A SESI proportion αGK for this setting can be characterized as

follows.

αGK = ∑
(G i,k)∈G×K

∫

θ∈Θ

k

∑
j=0

(

k

j

)

α
j
GK(1 − αGK)

k−jBθ,k
G i

(

j

k

)

dλik. (9)

Let Fi
k,z denote the expected cost f under G i

k,z, that is, Fi
k,z =

∫

α∈A f (α)dG i
k,z(α).

Observe that

∫

θ∈Θ
Bθ,k
G i (z)dλik =

∫

θ∈Θ
1

[

∫

α∈A
Fθ

A(α)dG
i
k,z(α) > 0

]

dλik = γik − Λik(Fi
k,z),

where Λik(x) =
∫ x

0 dλik. Eq.(9) is written as follows.

αGK = ∑
(G i,k)∈G×K

k

∑
j=0

(

k

j

)

α
j
GK(1 − αGK)

k−j(γik − Λik(Fi
k,j/k)).

Recall the Bernstein polynomial in Eq.(3). αGK can be rewritten as follows.14

1 − αGK = ∑
(G i,k)∈G×K

Bernk(αGK; Λik
F,k), (10)

where Λik
F,k is a function such that Λik

F,k(z) = Λik(Fi
k,z). A Bayesian SESI for this

setting is defined as follows.

Definition 6. A Bayesian SESI is a Bayesian strategy σ∗ : Θ → [0, 1] such that

σ∗ = BGK(α(σ∗)) ≡

{

k

∑
j=0

(

k

j

)

α(σ∗)j(1 − α(σ∗))k−jBθ,k
G i

(

j

k

)

}

θ∈Θ,G i∈G,k∈K

,

where α(σ∗) = ∑(G i,k)∈G×K

∫

Θ
σ∗(θ)dλik. Note that α(σ∗) must be a SESI proportion.

14Eq.(10) is slightly different from Eq.(8) in Salant and Cherry [2020] since we allow the pref-
erence distribution to be different among agents who adopt different inference procedures or
sample sizes. If we assume the common preference distribution λ, i.e. λ(θ) = λik(θ)/γik for all
(G i, k) ∈ G × K, then we will have a similar expression to theirs.
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The aggregate and Bayesian dynamics can be written as

αt = (1 − ε)αt−1 + ε

(

1 − ∑
G i,k∈G×K

Bernk(αt−1; Λik
F,k)

)

, (11)

σt = (1 − ε)σt−1 + εBGK(αt−1). (12)

Theorems 1 and 2 can be extended to this setting. Our convergence results are

robust with respect to the heterogeneity of inference procedures, sample sizes,

and preference distributions (associated with each pair of inference procedure and

sample size).

Theorem 5. For any set of inference procedures G, any set of sample sizes K, and any set of

preference distributions {λik}, the Bayesian strategy σ converges to σ∗ under the Bayesian

dynamic (12) if and only if the aggregate population state α converges to α∗ = α(σ∗) under

the aggregate dynamic (11).

Theorem 6. For any set of inference procedures G, any set of sample sizes K, any set

of preference distributions {λik}, and all sufficiently small ε > 0, the Bayesian strategy

converges to some Bayesian SESI under the Bayesian dynamic (12).

7 Conclusion

We propose a novel evolutionary model incorporating statistical inference, show

global convergence to SESIs, and apply the analysis to several important settings.

We conclude by listing several future research directions. A major limitation of

this study is the assumption of two actions. It will be interesting to consider multi-

action games. For network games, it has been reported that the message-passing

method describes diffusion on networks more accurately (Gleeson and Porter 2018,

Kobayashi and Onaga 2021). Adopting the message passing method with agents

using statistical inference may produce some new insights to the diffusion of be-

havior on networks.
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Appendix: Proofs

Proof of Lemma 1. Let α∗ denote a SESI proportion. Note that
∫

Θ
Bk,θ(α∗)dλ = α∗

by definition of the SESI proportion. Suppose σ0 ∈ Σ with α(σ0) = α∗. Eq.(7)

implies that the aggregate population state in period 1 is that α1 = (1 − ε)α∗ +

ε(1 − Bernk(α
∗; ΛF,k)) = α∗. Thus, it is stationary. The Bayesian strategy in period

1 is computed using Eq.(5),

σ1 = (1 − ε)σ0 + εBk(α∗).

This implies that σt = (1 − ε)tσ0 + (1 − (1 − ε)t)Bk(α∗) for all t ∈ {1, 2, . . .}. The

claim follows.

Observation 3. ‖σ − σ̂‖ ≥ |α(σ)− α(σ̂)|, for all σ, σ̂ ∈ R
Θ.

Proof. Recall that α(σ) =
∫

Θ
σ(θ)dλ, and that ‖σ‖ =

∫

Θ
|σ(θ)|dλ for all σ ∈ R

Θ.

Because |w − x|+ |y − z| ≥ |w + y − (x + z)| for all w, x, y, z ≥ 0, we have

‖σ − σ̂‖ =
∫

Θ
|σ(θ)− σ̂(θ)| dλ ≥

∣

∣

∣

∣

∫

Θ
σ(θ)dλ −

∫

Θ
σ̂(θ)dλ

∣

∣

∣

∣

= |α(σ)− α(σ̂)|.

The next lemma shows that the Bayesian best response correspondence Bk(·)

is Lipschitz continuous with respect to the L1 norm. This lemma together with

Observation 3 is used in the proof of Theorem 1.

Lemma 3. Bk(·) is Lipschitz continuous on A, that is, there exists K > 0 such that

‖Bk(α)− Bk(β)‖ < K|α − β| for all α, β ∈ A.

Proof of Lemma 3. Fix α, β ∈ A. Observe that

‖Bk(α)− Bk(β)‖ =
∫

Θ
|Bk,θ(α)− Bk,θ(β)|dλ

=
∫

Θ

∣

∣

∣

∣

∣

k

∑
j=0

(

k

j

)

(αj(1 − α)k−j − βj(1 − β)k−j)Bθ
G

(

j

k

)

∣

∣

∣

∣

∣

dλ.

Recall that Bθ
G(j/k) ∈ {0, 1}, i.e. bounded by 1. Note also that there exists some

26



K̂ > 0 such that

|αj(1 − α)k−j − βj(1 − β)k−j)| ≤ K̂|α − β| ∀α, β ∈ A = [0, 1].

This is because a function g(x) = xj(1 − x)k−j is a polynomial function on the

closed interval [0, 1] and thus is Lipschitz continuous. We can bound the norm as

follows.

‖Bk(α)− Bk(β)‖ ≤
∫

Θ

k

∑
j=0

(

k

j

)

K̂|α − β|dλ < K|α − β|,

where K > K̂ ∑
k
j=0 (

k
j).

Proof of Theorem 1. We first prove the ’only if’ part. Fix η > 0. Suppose that the

Bayesian strategy converges to σ∗ under the Bayesian best response dynamic (5).

Let σ0 be the Bayesian strategy in period 0. There exists some T > 0 such that

‖ σt − σ∗ ‖< η for all t > T. Then, η >‖ σt − σ∗ ‖≥ |α(σt)− α∗| for all t > T, by

Observation 3.

Next, we prove the ’if’ part. Suppose that the aggregate population state converges

to α∗. Let σ∗ = Bk(α∗). We show that the Bayesian strategy converges to σ∗. Fix

η > 0. It suffices to show that there exists T > 0 such that ‖ σt − σ∗ ‖< η for all

t > T.

By Lemma 3, Bk is Lipschitz continuous. Let K denote the Lipschitz constant for

Bk. Choose τ1 such that ‖Bk(αt)− Bk(α∗)‖ < K|αt − α∗| < η/2 for all t > τ1. Since

the aggregate population state converges to α∗, such τ1 exists. Choose τ2 such that

(1 − ε)t ‖ σ − σ̂ ‖< η/2 for all σ, σ̂ ∈ Σ and all t > τ2. Since ‖σ − σ̂‖ is bounded,

such τ2 exists.

Fix T > τ1 + τ2. Recall Eq.(5), that is, σt = (1 − ε)σt−1 + εBk(αt−1). Observe

that for all t > T,

‖σt − σ∗‖ = ‖(1 − ε)σt−1 + εBk(αt−1)− σ∗‖

= ‖(1 − ε)2σt−2 + ε(1 − ε)Bk(αt−2) + εBk(αt−1)− σ∗‖

=

∥

∥

∥

∥

∥

(1 − ε)τ2σt−τ2 +
τ2

∑
j=1

ε(1 − ε)j−1Bk(αt−j)− σ∗

∥

∥

∥

∥

∥
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Let j∗ = argmax1≤j≤τ2
‖Bk(αt−j)− σ∗‖, and define Bk ≡ Bk

t−j∗ . Since t − τ2 > τ1,

‖Bk − σ∗‖ < η/2. Then,

‖σt − σ∗‖ ≤ (1 − ε)τ2‖σt−τ2 − σ∗‖+ (1 − (1 − ε)τ2)‖Bk − σ∗‖

<
η

2
+

η

2
= η.

This proves the ’if’ part.

The proofs of Lemma 2 and Theorem 2 rely on the discrete time version of

Lyapunov stability theorem below. A discrete-time dynamic process is autonomous

if for all s, t ∈ {1, 2, . . .}, xs+1 = xt+1 if xs = xt. In words, an autonomous process

has no time-dependent variable. The aggregate dynamic characterized by Eq.(7) is

autonomous.

Theorem 7 (Lyapunov Stability Theorem). Consider an autonomous process αt =

h(αt−1), where h is Lipschitz continuous in D ∈ R and 0 ∈ D. Suppose h(0) = 0,

i.e., 0 is a steady state (all this can be extended for an steady state different from 0). Let

V : R → R be a continuous function such that V(0) = 0; V(α) > 0, for α ∈ D − {0};

lim|α|→∞ V(α) = ∞; and V(h(α))−V(α) < 0 for any α ∈ D\{0}, then limt→∞ αt = 0

for any initial point α0 ∈ D.15

Proof. See Kalman and Bertram [1960], Khalil [1996] and Bof et al. [2017]. The

above statement follows the version of Bof et al. [2017].

Proof of Lemma 2. Let D = (α, α). Define V(α) = |α − α∗|. We show that V(α)

serves as the Lyapunov function on D. Assume that αt ∈ D with αt < α∗. Observe

that

|αt+1 − α∗| = |(1 − ε)αt + ε(1 − Bernk(αt; ΛF,k))− α∗|

= |(1 − ε)(αt − α∗) + ε(Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k))| .

For the second equality, we use that α∗ = 1 − Bernk(α
∗; ΛF,k).

15The condition that lim|α|→∞ V(α) = ∞ is irrelevant to our analysis. This ensures that for any

c > 0, there exists Br = {α ∈ D : |α| ≤ r} such that Br ⊃ Vc ≡ {α ∈ D : V(α) ≤ c}. In our model,
Br = {α : α ≤ 1} (or Br = {α : α ≤ c} for Theorem 3) always includes such Vc. We leave this
condition in the statement to precisely describe the theorem.
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First, consider that Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k) ≥ 0. Recall that KB(k) is a

Lipschitz constant for Bernk(α; ΛF,k). Fix ε < ε ≤ 1/KB(k). If (1 − ε)(α∗ − αt) ≥

ε(Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k)), then it is obvious that |αt+1 − α∗| < |αt − α∗|.

If (1 − ε)(α∗ − αt) < ε(Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k)), then observe that

|αt+1 − α∗| = |(1 − ε)(αt − α∗) + ε(Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k))|

= ε(Bernk(α
∗; ΛF,k)− Bernk(αt; ΛF,k))− (1 − ε)(α∗ − αt)

<
1

KB(k)
(KB(k)(α

∗ − αt))− (1 − ε)(α∗ − αt)

< |αt − α∗|.

Note that ε < ε ≤ α − α∗. This upper-bound guarantees that αt+1 ∈ (α, α) even if

αt+1 > α∗. The same applies to the discussion to follow.

Second, consider that Bernk(α
∗; ΛF,k) − Bernk(αt; ΛF,k) < 0. We can rewrite

|αt+1 − α∗| and bound it as follows.

|αt+1 − α∗| = (1 − ε)(α∗ − αt) + ε (Bernk(αt; ΛF,k)− Bernk(α
∗; ΛF,k))

< |αt − α∗|.

In the inequality, we use that Bernk(αt; ΛF,k) < 1− αt and Bernk(α
∗; ΛF,k) = 1− α∗.

We can prove the case that αt > α∗ similarly. This implies that V(αt+1) −

V(αt) < 0 for all αt 6= α∗. Observe also that V(α) = 0 if α = α∗, V(α) > 0

otherwise. Then, by the Lyapunov stability theorem, we can conclude that the

aggregate population state (starting with some point in D) converges to α∗.

Proof of Theorem 2. If the initial state is a SESI proportion, then Lemma 1 implies

the claim. Choose αt that is not a SESI proportion. If 1 − αt > Bernk(αt; ΛF,k), then

there must exist some SESI α∗ > αt. To see this, observe that (1− α) is continuously

decreasing and reaches 0 at α = 1, and Bernk(α; ΛF,k) is continuous and bounded

by [0, 1]. The two curves must intersect at some point to the right of αt (by an

appeal to the Brouwer’s fixed point theorem). Choose the smallest SESI α∗ > αt.

Then, 1 − α > Bernk(α; ΛF,k) for all α ∈ (αt, α∗). Since Bernk(α; ΛF,k) crosses 1 − α

from below (at α∗), there exists some α > α∗ such that 1 − α < Bernk(α; ΛF,k) for

all α ∈ (α∗, α). Lemma 2 together with Theorem 1 proves the claim. We can prove

similarly for the case that 1 − αt < Bernk(αt; ΛF,k).
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In the above discussion, we implicitly assume an interior SESI proportion, that

is, α∗ ∈ (0, 1). We can prove the case that α∗ ∈ {0, 1} in a similar way. For example,

suppose that α∗ = 1 and 1 − α > Bernk(α; ΛF,k) for all α ∈ (α, 1) for some α. Let

V(α) = 1 − α. Then, V(αt+1) − V(αt) < 0 for all αt ∈ (α, 1). To see this, recall

that Eq.(7) implies that αt > αt−1 if 1 − αt−1 > Bernk(αt−1; ΛF,k). The Lyapunov

stability theorem implies that the aggregate dynamic starting from (α, 1] converges

to α∗ = 1 for any ε ∈ (0, 1).

Proof of Proposition 1. Fix an inference procedure G, a sample size k, and a prefer-

ence distribution. Rewrite Eq.(4) as αk,G = 1 − Bernk(αk,G ; ΛF,k). Define g(α) ≡

1 − Bernk(α; ΛF,k) . Function g(·) is continuous on [0, 1] and maps [0, 1] to itself.

Brouwer’s fixed point theorem implies that there exists α∗ = 1 − Bernk(α
∗; ΛF,k).

Thus a SESI exists. It is unique since the Bernstein polynomial is weakly increas-

ing in α. That is, α < 1 − Bernk(α; ΛF,k) if α < α∗, and α > 1 − Bernk(α; ΛF,k) if

α > α∗.

Lemma 4 below shows the existence of C∗ defined in Section 4.2.

Lemma 4. C∗ 6= ∅.

Proof of Lemma 4. For all c ≥ 1, bθ
G(k, z|c) = B for all θ, k, z. Thus, SW(σ∗

c ) =

SW(σ∗
1 ) for all c > 1. Without loss of generality, we restrict attention to c ∈ [0, 1].

We show that SW(σ∗
c ) is continuous on [0, 1]. Suppose some c ∈ [0, 1) and a

small ∆ > 0 with c + ∆ ≤ 1. Let θj be the preference for which

∫

α∈A
F

θj

A (α)dGk,j/k(α)− c = 0.

That is, agents with θj are indifferent between A and B when they sample j of

action A. If c increases by ∆, then the best response to the estimate for agents with

preference θ ∈ (θj, θj + ∆] will change from A to B. This is because Fθ
A(α) is linear

in θ. The absolute continuity of λ implies that

lim
∆→0

λ([θj, θj + ∆]) = 0 ∀j ∈ {0, . . . , k}.

In words, the set of agents whose best response to the estimate is affected by

the ∆ increase in c has measure zero in the limit of small ∆. This implies that
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lim∆→0 |σ
∗
c+∆ − σ∗

c | = 0, which further implies that lim∆→0 α(σ∗
c+∆) = α(σ∗

c ). Thus,

lim∆→0 SW(σ∗
c+∆) = σ∗

c .

Similarly, we can show that lim∆→0 SW(σ∗
c−∆) = σ∗

c for c ∈ (0, 1]. Thus, SW(σ∗
c )

is continuous on [0, 1], and the claim follows.

Proof of Theorem 3. Observe that a game with tax c is equivalent to a game in Sec-

tion 2 where the payoff function is defined as Fθ
A(α) = θ − f (α)− c and Fθ

B(α) = 0.

Then, the uniqueness and convergence results are immediate from Corollary 1.

For the last claim, let ∆c denote the decrease in α when a tax c is imposed, or

∆c = α(σ∗
0 )− α(σ∗

c ). Note that ∆c is non-negative due to that Bθ
G(j/k|c) is weakly

decreasing in c for all j ∈ {0, . . . , k} and θ ∈ Θ. Since payoffs are continuous in c

and the preference measure λ is absolutely continuous, we can make ∆c arbitrarily

small by choosing an appropriately small c > 0. Observe that

SW(σ∗
c )− SW(σ∗

0 ) =
∫

θ∈Θ
θ(Bk,θ(α(σ∗

c )|c)− Bk,θ(α(σ∗
0 )))dλ

− [(α(σ∗
0 )− ∆c) f (α(σ∗

0 )− ∆c)− α(σ∗
0 ) f (α(σ∗

0 ))] .

Note that
∫

θ∈Θ
(Bk,θ(α(σ∗

c )|c)− Bk,θ(α(σ∗
0 )))dλ = −∆c. Since θ ≤ 1, the difference

in the social welfare can be bounded as follows.

SW(σ∗
c )− SW(σ∗

0 ) >− ∆c − [(α(σ∗
0 )− ∆c) f (α(σ∗

0 )− ∆c)− α(σ∗
0 ) f (α(σ∗

0 ))] .

Let H(α) = α f (α). For all sufficiently small ∆c, we can approximate the lower

bound as

SW(σ∗
c )− SW(σ∗

0 ) >− ∆c

[

1 −
H(α(σ∗

0 ))− H(α(σ∗
0 )− ∆c)

∆c

]

≈− ∆c

[

1 − f (α(σ∗
0 ))− α(σ∗

0 ) f ′(α(σ∗
0 ))
]

.

Thus, if 1 − f (α(σ∗
0 ))− α(σ∗

0 ) f ′(α(σ∗
0 )) < 0, then at least some small positive tax

can increase the welfare.

Proof of Observation 2. If f (1 − p) > 1, for all α ≤ 1 − p, f (α) ≥ f (1 − p) > 1.

Hence, for all α ≤ 1 − p, 0 > θ − f (α) for all θ ∈ Θ. If B is p-dominant, then for

all θ ∈ Θ and all α ≤ 1 − p, θ − f (α) < 0, which implies that f (α) > 1 for all

α ≤ 1 − p. Hence, f (1 − p) > 1.
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Proof of Theorem 4. We prove the theorem in three steps:

Step 1: Since G is unbiased, for any sample (l, z), Gl,z is a mean preserving spread

of GMLE
l,z , where GMLE

l,z denotes the estimate derived from the maximum likelihood

estimation method. Given that − f is nondecreasing and concave,

Fl,z = −
∫

α∈A
− f (α)dGl,z(α) ≥ −

∫

α∈A
− f (α)dGMLE

l,z (α) = FMLE
l,z .

Step 2: Since G is unbiased, Fl,1 = FMLE
l,1 = f (1) < 0, implying that Λ(Fl,1) = 0.

By Step 1 and Observation 2, since B is 1/k-dominant, we have Fl,j/l ≥ FMLE
l,j/l =

f (j/l) ≥ f (1 − 1/l) ≥ f (1 − 1/k) > 1 for j ≤ l − 1, implying that Λ(Fl,j/l) = 1.

Hence, Bernl(α; ΛF,l) = ∑
l−1
j=0 (

l
j)α

j(1 − α)l−j = 1 − αl. This implies that 1 − α <

1 − αl = Bernl(α; ΛF,l) for all α ∈ (0, 1).

Step 3: There is no SESI proportion other than α ∈ {0, 1} since 1 − α <

Bernl(α; ΛF,l) for all α ∈ (0, 1). The observation in Step 2 also implies that αt < αt−1

for all αt−1 ∈ (0, 1). Theorem 2 guarantees that αt converges to α∗ = 0.

We omit the formal proofs of Theorems 5 and 6 to avoid redundancy. They are

similar to those of Theorems 1 and 2. We only offer a sketch of proofs instead. For

Theorem 5, we can show that BGK(·) is Lipschitz continuous in a similar way we

do for Bk(·) in Lemma 3. Then we can prove the theorem by replacing Bk(·) with

BGK(·) in the proof of Theorem 1.

For Theorem 6, we briefly prove Lemma 5 below, which is analogous to Lemma

2. Then, Theorem 6 can be proved similarly to Theorem 2. Note that Obser-

vation 1 applies to Bernk(α; Λik
F,k) for all inference procedures G i ∈ G and sam-

ple sizes k ∈ K. Let KB(k,i) be a Lipschitz constant for Bernk(α; Λik
F,k), and let

K = maxG i,k∈G×K KB(k,i).

Lemma 5. Let α∗ be a SESI proportion. Fix an open interval (α, α) that satisfies the

three conditions: i) α∗ ∈ (α, α), ii) 1 − α > ∑(G i,k)∈G×K Bernk(α; Λik
F,k) for all α ∈

(α, α∗), and iii) 1 − α < ∑(G i,k)∈G×K Bernk(α; Λik
F,k) for all α ∈ (α∗, α). The aggregate

population state starting with some α ∈ (α, α) converges to α∗ for any ε ∈ (0, ε), where

ε = min{1/K, α∗ − α, α − α∗}.

Proof of Lemma 5. Let D = (α, α), and V(α) = |α − α∗|. It suffices to show that
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|αt+1 − α∗| < |αt − α∗|. Assume that αt ∈ D with αt < α∗. Observe that

|αt+1 − α∗| =

∣

∣

∣

∣

∣

(1 − ε)(αt − α∗) + ε ∑
G i,k∈G×K

[

Bernk(α
∗; Λik

F,k)− Bernk(αt; Λik
F,k)
]

∣

∣

∣

∣

∣

.

We can prove the claim similarly to Lemma 2. To see this, replace Bernk(α
∗; ΛF,k)

with ∑G i,k∈G×K Bernk(α
∗; Λik

F,k), and Bernk(αt; ΛF,k) with ∑G i,k∈G×K Bernk(αt; Λik
F,k)

in the proof of Lemma 2.
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