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1 Introduction.

An increasing number of business firms are willing to share their price and quantity data on
their sales of consumer goods and services to a national (or international) statistical office.
These data are often referred to as scanner data.

Some scanner data involves high technology products which are characterized by product
churn; i.e., the rapid introduction of new models and products and the short time that these
new products are sold on the marketplace. This study will look at possible methods that
statistical offices could use for quality adjusting this type of data. Our empirical example will
use data on the sales of laptops in Japan.

A standard method for quality adjustment is the use of hedonic regressions. These hedonic
regressions regress the price of a product (or a transformation of the price) on a time dummy
variable and either on a dummy variable for the product or on the amounts of the price de-
termining characteristics of the product. The first type of model is called a Time Product
Dummy Hedonic regressions while the second type of model is called a Time Product Char-
acteristics Hedonic regression. The theory associated with these two classes of model will be
discussed in sections 2 and 3 below. In particular, we will relate each hedonic regression to an
explicit functional form for the purchaser utility functions.

Section 4 discusses our laptop data for Japan which covers the 24 months in 2021 and 2022.
The empirical hedonic regressions studied in this section are Time Product Characteristics type
regressions. We used characteristics data on 6 separate laptop characteristics in this section.
We will consider both unweighted (or more properly, equally weighted) least squares regression
models with characteristics in this section. This section draws on the theory explained in
section 3. We will also consider the use of a hedonic regression that uses all of the data
in a panel of data and the use of repeated hedonic regressions that use only the data of
two consecutive periods and the results of these separate regressions are chained together to
generate the final index, which is called an Adjacent Period Time Dummy Characteristics
index.

Section 5 draws on the theory explained in section 2; i.e., we consider weighted and unweighted
Time Product Dummy hedonic regressions in this section. We also consider panel regressions
versus a sequence of bilateral regressions that utilize the price and quantity data for two
consecutive periods. The latter type of model can be implemented in real time and is called
an Adjacent Period Time Product Dummy hedonic regression model.

Section 6 considers alternatives to hedonic regression models based on standard index number
theory; i.e., maximum overlap chained Laspeyres, Paasche and Fisher indexes are computed
in this section. We also compute the Predicted Share Similarity linked price indexes which
have only been developed recently. This new methodology will be explained in section 6.

Section 7 lists some tentative conclusions that we draw from this study.

2 Hedonic Regressions and Utility Theory: The Time Product

Dummy Hedonic Regression Model.

The problem of adjusting the prices of similar products due to changes in the quality of the
products should be related to the usefulness or utility of the products to purchasers. Each
product in scope has varying amounts of various characteristics which will determine the
utility of the product to purchasers. A hedonic regression is typically based on regressing a
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product price (or a transformation of the product price) on the amounts of the various price
determining characteristics of the product. An alternative hedonic regression model may be
based on regressing the product prices on product dummy variables; i.e., each product has
its own unique bundle of price determining characteristics which can be represented by a
product dummy variable.*1 Each of these hedonic regression models can be related to specific
functional forms for purchaser utility functions. In this section, we consider the second class
of hedonic regression models and in the following section, we consider the first class of hedonic
regression models that regress product prices on product characteristics.

Assume that there are N products in scope and T time periods. Let pt ≡ [pt1, . . . , ptN ]
and qt ≡ [qt1, . . . , qtN ] denote the (unit value) price and quantity vectors for the products in
scope for time periods t = 1, . . . , T .*2 Initially, we assume that there are no missing prices or
quantities so that all prices and quantities are positive. We assume that each purchaser of the
N products maximizes the following linear function f(q) in each time period:

f(q) = f(q1, q2, . . . , qN ) ≡
∑N

n=1αnqn ≡ α · q (1)

where the αn are positive parameters, which can be interpreted as quality adjustment factors.
Under the assumption of utility maximizing behavior on the part of each purchaser of the
N commodities and assuming that each purchaser in period t faces the same period t price
vector pt,*3 it can be shown that the aggregate period t vector of purchases qt is a solution to
the aggregate period t utility maximization problem, maxq{α · q : pt · q = et; q ≥ 0N} where
et is equal to aggregate period t expenditure on the N products. The first order conditions
for an interior solution, qt, λt to the period t aggregate utility maximization problem are the
following N + 1 equations, where λt is a Lagrange multiplier:

α = λtp
t; (2)

pt · qt = et. (3)

Take the inner product of both sides of equations (2) with the observed period t aggregate
quantity vector qt and solve the resulting equation for λt. Using equation (3), we obtain the
following expression for λt:

λt = α · qt/et > 0. (4)

Define πt as follows:
πt ≡ 1/λt. (5)

Divide both sides of equations (2) by λt and using definition (5), we obtain the basic time

*1 This alternative class of models is more general than the first class so one could ask why should we consider
estimating the characteristics model in place of the time product dummy variable model? Product churn
may be so great that there are not enough degrees of freedom to accurately estimate the product dummy
variables. Consider as a limiting case where every product is a new product in each period. The time
product dummy regression model cannot be estimated in this case. Secondly, a new improved product
loaded with useful characteristics may not cause older products to exit the market immediately due to
incomplete information on the part of purchasers; i.e., consumers may not realize immediately how good
the new product is until some time has passed.

*2 The analysis in this section follows that of Diewert (2022; section 5)[22].
*3 These are strong assumptions but strong assumptions are required in order to relate hedonic regression

models to the utility of the products in scope.
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product dummy estimating equations for period t:*4

ptn = πtαn; t = 1, . . . , T ;n = 1, . . . , N. (6)

The period t aggregate price and quantity levels for this model, P t and Qt, are defined as
follows:

Qt ≡ α · qt; (7)

P t ≡ et/Qt

= πt (8)

where the second equation in (8) follows using (4) and (5). Thus equations (6) have the
following interpretation: the period t price of product n, ptn, is equal to the period t price
level πt times a quality adjustment parameter for product n, αn.*5

At this point, it is necessary to point out that our consumer theory derivation of equations
(6) is not accepted by all economists. Rosen (1974)[47] and Triplett (1987)[52] (2004)[53] have
argued for a more general approach to the derivation of hedonic regression models that is based
on supply conditions as well as on demand conditions. The present approach is obviously
based on only consumer (or purchaser) preferences. This consumer oriented approach was
endorsed by Griliches (1971; 14-15)[29], Muellbauer (1974; 988)[41] and Diewert (2003a)[15]
(2003b)[16]. Of course, the functional form assumptions which justify the present consumer
approach are quite restrictive but, nevertheless, it is useful to imbed hedonic regression models
in a traditional consumer demand setting.

Empirically, equations (6) are unlikely to hold exactly. Following Court (1939)[6], we assume
that the exact model defined by (6) holds only to some degree of approximation and so we
add error terms etn to the right hand sides of equations (6). The unknown parameters, π ≡
[π1, . . . , πT ] and α ≡ [α1, . . . , αN ], can be estimated as solutions to the following (nonlinear)
least squares minimization problem:

minα,π

∑N
n=1

∑T
t=1[ptn − πtαn]2. (9)

However, Diewert (2023)[23] showed that the estimated price levels π∗

t that solve the min-
imization problem (9) had unsatisfactory axiomatic properties. Thus we follow Court and
take logarithms of both sides of the exact equations (6) and add error terms to the resulting
equations. This leads to the following least squares minimization problem:*6

minρ,β

∑N
n=1

∑T
t=1[ln ptn − ρt − βn]2 (10)

where the new parameters ρt and βn are defined as the logarithms of the πt and αn; i.e., define
:

ρt ≡ lnπt; t = 1, . . . , T ; (11)

βn ≡ lnαn; n = 1, . . . , N. (12)

*4 This model dates back to Court (1939; 109-111)[6]. He transformed these equations by taking logarithms
of both sides of equations (6) and adding error terms. Diewert (2003b)[16] (2023)[23] considered the
index number implications of making alternative transformations of the basic equations (6) and endorsed
Court’s transformation in the end.

*5 Note that αn is the marginal utility to a purchaser of a unit of product n for n = 1, . . . , N . It can be
shown that the period t price index πt is equal to c(pt) where c(p) is the unit cost function that is dual
to the utility function f(q); see Diewert (1974)[12].

*6 This model is an adaptation of Summer’s (1973)[50] country product dummy model to the time series
context. See Aizcorbe, Corrado and Doms (2000)[2] for an early application of this model in the time
series context.
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However, the least squares minimization problem defined by (10) does not weight the log price
terms [ln ptn − ρt − βn]2 by their economic importance and so consider the following weighted

least squares minimization problem:*7

minρ,β

∑N
n=1

∑T
t=1stn[ln ptn − ρt − βn]2 (13)

where stn is the expenditure share of product n in period t. The first order necessary conditions
for ρ∗ ≡ [ρ∗1, . . . , ρ

∗

T ] and β∗ ≡ [β∗

1 , . . . , β∗

N ] to solve (13) simplify to the following T equations
(14) and N equations (15):*8

ρ∗t =
∑N

n=1stn[ln ptn − β∗

n]; t = 1, . . . , T ; (14)

β∗

n =
∑T

t=1stn[ln ptn − ρ∗t ]/(
∑T

t=1stn); n = 1, . . . , N. (15)

Solutions to (14) and (15) are not unique: if ρ∗ ≡ [ρ∗1, . . . , ρ
∗

T ] and β∗ ≡ [β∗

1 , . . . , β∗

N ] solve
(14) and (15), then so do [ρ∗1 + λ, . . . , ρ∗T + λ] and [β∗

1 − λ, . . . , β∗

N − λ] for all λ. Thus we can
set ρ∗1 = 0 in equations (15) and drop the first equation in (14) and use linear algebra to find a
unique solution for the resulting equations.*9 Once the solution is found, define the estimated
price levels π∗

t and quality adjustment factors α∗

n as follows:

π∗

t ≡ exp[ρ∗t ]; t = 1, . . . , T ; α∗

n ≡ exp[β∗

n];n = 1, . . . , N. (16)

Note that since we have set ρ∗1 = 0, π∗

1 = 1. The price levels π∗

t defined by (16) are called
the Weighted Time Product Dummy price levels. Note that the resulting price index between
periods t and τ is defined as the ratio of the period t price level to the period τ price level and
is equal to the following expression:

π∗

t /π∗

τ =
∏N

n=1 exp[stn ln(ptn/α∗

n)]/
∏N

n=1 exp[sτn ln(pτn/α∗

n)]; 1 ≤ t, τ ≤ T. (17)

If stn = sτn for n = 1, . . . , N , then π∗

t /π∗

τ will equal a weighted geometric mean of the price
ratios ptn/pτn where the weight for ptn/pτn is the common expenditure share stn = sτn. Thus
π∗

t /π∗

τ will not depend on the α∗

n in this case.

Once the estimates for the πt and αn have been computed, we have two methods for construct-
ing period by period price and quantity levels, P t and Qt for t = 1, . . . , T . The π∗

t estimates
can be used to form the aggregates using equations (18) or the α∗

n estimates can be used to
form the aggregate period t price and quantity levels using equations (19):*10

P t∗ ≡ π∗

t ; Qt∗ ≡ pt · qt/π∗

t ; t = 1, . . . , T ; (18)

Qt∗∗ ≡ α∗ · qt; P t∗∗ ≡ pt · qt/α∗ · qt; t = 1, . . . , T. (19)

*7 Rao (1995)[42] (2004)[43] (2005; 574)[44] was the first to consider this model using expenditure share
weights; see also Diewert (2004)[17]. However, Balk (1980; 70)[5] suggested this class of models much
earlier using somewhat different weights. For the case of 2 periods, see Diewert (2004)[17] (2005a)[18]
and de Haan (2004a)[7].

*8 If information on expenditures or quantities is not available, then the weighted least squares problem
is replaced by the unweighted least squares problem (10). The first order conditions for the simplified
problem (10) are given by (14) and (15) where the shares stn are replaced by the numbers 1/N for all t
and n. In this unweighted case, the price index defined by (17) collapses down to a Jevons index.

*9 Alternatively, one can set up the linear regression model defined by (stn)1/2 ln ptn = (stn)1/2ρt +

(stn)1/2βn + etn for t = 1, . . . , T and n = 1, . . . , N where we set ρ1 = 0 to avoid exact multicollinearity.
This is the procedure we used in our empirical work below. Iterating between equations (14) and (15)
will also generate a solution to these equations and the solution can be normalized so that ρ1 = 0.

*10 Note that the price level P t∗∗ defined in (19) is a quality adjusted unit value index of the type studied
by de Haan (2004b)[8].
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Define the error terms etn ≡ ln ptn − lnπ∗

t − lnα∗

n for t = 1, . . . , T and n = 1, . . . , N . If all
etn = 0, then P t∗ will equal P t∗∗ and Qt∗ will equal Qt∗∗ for t = 1, . . . , T .*11 However, if
the error terms are not all equal to zero, then the statistical agency will have to decide on
pragmatic grounds which option to use to form period t price and quantity levels, (18) or (19).

It is reasonably straightforward to generalize the weighted least squares minimization problem
(13) to the case where there are missing prices and quantities. Assume that there are N
products and T time periods but not all products are purchased (or sold) in all time periods.
For each period t, define the set of products n that are present in period t as S(t) ≡ {n : ptn >
0} for t = 1, 2, . . . , T . It is assumed that these sets are not empty; i.e., at least one product
is purchased in each period. For each product n, define the set of periods t where product n
is present as S∗(n) ≡ {t : ptn > 0}. Again, assume that these sets are not empty; i.e., each
product is sold in at least one time period. The generalization of (13) to the case of missing
products is the following weighted least squares minimization problem:*12

minρ,β

∑T
t=1

∑
n∈S(t)stn[ln ptn −ρt −βn]2 = minρ,β

∑N
n=1

∑
t∈S∗(n)stn[ln ptn −ρt −βn]2. (20)

Note that there are two equivalent ways of writing the least squares minimization problem;
the first way uses the definition for the set of products n present in period t, S(t), while the
second way uses the definition for the set of periods t where product n is present, S∗(n). The
first order necessary conditions for ρ1, . . . , ρT and β1, . . . , βN to solve (20) are the following
counterparts to (14) and (15):*13

∑
n∈S(t)stn[ρ∗t + β∗

n] =
∑

n∈S(t)stn ln ptn; t = 1, . . . , T ; (21)
∑

t∈S∗(n)stn[ρ∗t + β∗

n] =
∑

t∈S∗(n)stn ln ptn; n = 1, . . . , N. (22)

As usual, the solution to (21) and (22) is not unique: if ρ∗ ≡ [ρ∗1, . . . , ρ
∗

T ] and β∗ ≡ [β∗

1 , . . . , β∗

N ]
solve (21) and (22), then so do [ρ∗1 + λ, . . . , ρ∗T + λ] and [β∗

1 − λ, . . . , β∗

N − λ] for all λ. Thus
we can set ρ∗1 = 0 in equations (22), drop the first equation in (21) and use linear algebra to
find a unique solution for the resulting equations.*14

Define the estimated price levels π∗

t and quality adjustment factors α∗

n by definitions (11) and
(12). Substitute these definitions into equations (21) and (22). After some rearrangement,
equations (21) and (22) become the following equations:

π∗

t = exp[
∑

n∈S(t)stn ln(ptn/α∗

n)]; t = 1, . . . , T ; (23)

α∗

n = exp[
∑

t∈S∗(n)stn ln(ptn/π∗

t )/
∑

t∈S∗(n)stn]; n = 1, . . . , N. (24)

Once the estimates for the πt and αn have been computed, we have the usual two methods
for constructing period by period price and quantity levels, P t and Qt for t = 1, . . . , T . The

*11 If all etn = 0, then the unweighted (or more accurately, the equally weighted) least squares minimization
problem defined by (10) will generate the same solution as is generated by the weighted least squares
minimization problem defined by (13). This fact gives rise to the following rule of thumb: if the un-
weighted problem (10) fits the data very well, then it is not necessary to work with the more complicated
weighted problem (13).

*12 If only price information is available, then replace the stn in (20) by 1/N(t) where N(t) is the number
of products that are observed in period t.

*13 The unweighted (i.e., equally weighted) counterpart least squares minimization problem to (20) sets all
stn = 1 for n ∈ S(t). The resulting first order conditions are equations (21) and (22) with the positive
stn replaced with a 1.

*14 The resulting system of T −1+N equations needs to be of full rank in order to obtain a unique solution.
The solution can also be obtained by running a linear regression.
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counterparts to definitions (18) are the following definitions:

P t∗ ≡ π∗

t = exp[
∑

n∈S(t)stn ln(ptn/α∗

n)]; t = 1, . . . , T ; (25)

Qt∗ ≡
∑

n∈S(t)ptnqtn/P t∗ ; t = 1, . . . , T. (26)

Thus P t∗ is a weighted geometric mean of the quality adjusted prices ptn/α∗

n that are present
in period t where the weight for ptn/α∗

n is the corresponding period t expenditure (or sales)
share for product n in period t, stn. The counterparts to definitions (19) are the following
definitions:

Qt∗∗ ≡
∑

n∈S(t)α
∗

nqtn; t = 1, . . . , T ; (27)

P t∗∗ ≡
∑

n∈S(t)ptnqtn/Qt∗∗ t = 1, . . . , T ;

=
∑

n∈S(t)ptnqtn/
∑

n∈S(t)α
∗

nqtn using (27)

=
∑

n∈S(t)ptnqtn/
∑

n∈S(t)α
∗

n(ptn)−1ptnqtn

= [
∑

n∈S(t)stn(ptn/α∗

n)−1]−1

≤ exp[
∑

n∈S(t)stn ln(ptn/α∗

n)]

= P t∗ (28)

where the inequality follows from Schlömilch’s inequality*15; i.e., a weighted harmonic mean of
the quality adjusted prices ptn/α∗

n that are present in period t, P t∗∗ , will always be less than or
equal to the corresponding weighted geometric mean of the prices where both averages use the
same share weights stn when forming the two weighted averages. The inequalities P t∗∗ ≤ P t∗

imply the inequalities Qt∗∗ ≥ Qt∗ for t = 1, . . . , T . The inequalities (28) are due to de Haan
(2004b)[8] (2010)[9] and de Haan and Krsinich (2014)[10] (2018; 763)[11]. The model used
by de Haan and Krsinich is a more general hedonic regression model which includes the time
dummy model used in the present section as a special case.

If the estimated errors e∗tn ≡ ln ptn−ρ∗t −β∗

n that implicitly appear in the weighted least squares
minimization problem turn out to equal 0, then the equations ptn = πtαn for t = 1, . . . , T, n ∈
S(t) hold without error and the hedonic regression provides a good approximation to reality.
Moreover, under these conditions, P t∗ will equal P t∗∗ for all t. If the fit of the model is not
good, then it may be necessary to look at other models such as those to be considered in
subsequent sections.

The solution to the weighted least squares regression problem defined by (20) can be used to
generate imputed prices for the missing products. Thus if product n in period t is missing,
define ptn ≡ π∗

t α∗

n. The corresponding missing quantity is defined as qtn ≡ 0. Some statistical
agencies use hedonic regression models to generate imputed prices for missing prices and then
use these imputed prices in their chosen index number formula.

One perhaps unsatisfactory property of the WTPD price levels π∗

t is the following one: a
product that is available in only one period out of the T periods has no influence on the
aggregate price levels π∗

t .*16 This means that the price of a new product that appears in period
T has no influence on the price levels. The hedonic regression models in the next section that
make use of information on the characteristics of the products do not have this unsatisfactory
property of the weighted time product dummy hedonic regression models studied in this
section.

*15 See Hardy, Littlewood and Pólya (1934; 26)[30].
*16 Diewert (2004)[17] established this property.
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3 The Time Dummy Hedonic Regression Model with

Characteristics Information.

In this section, it is again assumed that there are N products that are available over a window
of T periods. As in the previous sections, we again assume that the quantity aggregator

function for the N products is the linear function, f(q) ≡ α · q =
∑N

n=1 αnqn where qn is the
quantity of product n purchased or sold in the period under consideration and αn is the quality
adjustment factor for product n. What is new is the assumption that the quality adjustment
factors are functions of a vector of K characteristics of the products. Thus it is assumed
that product n has the vector of characteristics zn ≡ [zn1, zn2, . . . , znK ] for n = 1, . . . , N .
We assume that this information on the characteristics of each product has been collected.*17

The new assumption in this section is that the quality adjustment factors αn are functions of
the vector of characteristics zn for each product and the same function, g(z) can be used to
quality adjust each product; i.e., we have the following assumptions:

αn ≡ g(zn) = g(zn1, zn2, . . . , znK); n = 1, . . . , N. (29)

Thus each product n has its own unique mix of characteristics zn but the same function g
can be used to determine the relative utility to purchasers of the products. Define the period
t quantity vector as qt ≡ [qt1, . . . , qtN ] for t = 1, . . . , T . If product n is missing in period t,
then define qtn ≡ 0. Using the above assumptions, the aggregate quantity level Qt for period
t is defined as:

Qt ≡ f(qt) ≡
∑N

n=1αnqtn =
∑N

n=1g(zn)qtn; t = 1, . . . , T. (30)

Using our assumption of (exact) utility maximizing behavior with the linear utility function
defined by (30), equations (6) become the following equations:

ptn = πtg(zn); t = 1, . . . , T ;n ∈ S(t). (31)

The assumption of approximate utility maximizing behavior is more realistic, so error terms
need to be appended to equations (31). We also need to choose a functional form for the
quality adjustment function or hedonic valuation function g(z) = g(z1, . . . , zK). We will not
be able to estimate the parameters for a general valuation function, so we assume that g(z)
is the product of K separate functions of one variable of the form gk(zk); i.e., we assume that
g(z) is defined as follows:

g(z1, . . . , zK) ≡ g1(z1)g2(z2) . . . gK(zK). (32)

For our particular example, each characteristic takes on only a finite number of discrete values
so in the empirical sections of this paper, we will assume that each gk(zk) is a step function
or a “plateaux” function which jumps in value at a finite number of discrete numbers in the
range of each zk. This assumption will eventually lead to a regression model where all of the
independent variables are dummy variables.

*17 Basically, we want to collect information on the most important price determining characteristics of
each product; see Triplett (2004)[53] and Aizcorbe (2014)[1] for many examples of this type of hedonic
regression and references to the applied literature on this topic. Of course, the fact that information on
product characteristics must be collected is a disadvantage of the class of models studied in this section.
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For each characteristic k, we partition the observed sample range of the zk into N(k) discrete
intervals which exactly cover the sample range. Let I(k, j) denote the jth interval for the
variable zk for k = 1, . . . , K and j = 1, . . . , N(k). For each product observation n in period t
(which has price ptn) and for each characteristic k, define the indicator function (or dummy
variable) Dtn,k,j as follows:

Dtn,k,j ≡ 1 if observation n in period t has the amount of characteristic k, znk, that
belongs to the jth interval for characteristic k, I(k, j) where k = 1, . . . , K
and j = 1, . . . , N(k);

≡ 0 if the amount of characteristic k for observation n in period t, znk, does
not belong to the interval I(k, j).

(33)
We use definitions (33) in order to define g(zn) = g(zn1, zn2, . . . , znK) for product n if it is
purchased in period t:*18

g(zn1, zn2, . . . , znK) ≡ (
∑N(1)

j=1 a1jDtn,1,j)(
∑N(2)

j=1 a2jDtn,2,j) . . . (
∑N(K)

j=1 aKjDtn,K,j). (34)

Substitute equations (34) into equations and we obtain the following system of possible esti-
mating equations where the πt and a1j , a2j , . . . , aKj are unknown parameters:

ptn = πt(
∑N(1)

j=1 a1jDtn,1,j)(
∑N(2)

j=1 a2jDtn,2,j) . . .(
∑N(K)

j=1 aKjDtn,K,j);

t = 1, . . . , T ;n ∈ S(t). (35)

We take logarithms of both sides of equations (35) in order to obtain the following system of
estimating equations:*19

ln ptn = lnπt +
∑N(1)

j=1 (ln a1j)Dtn,1,j +
∑N(2)

j=1 (ln a2j)Dtn,2,j + . . . +
∑N(K)

j=1 (ln aKj)Dtn,K,j ;

t = 1, . . . , T ;n ∈ S(t). (36)

Define the following parameters :

ρt ≡ lnπt; t = 1, . . . , T ; b1j ≡ ln a1j ; j = 1, . . . , N(1); b2j ≡ ln a2j ; j = 1, . . . , N(2); . . . ;

bKj ≡ ln aKj ; j = 1, . . . , N(K). (37)

Upon substituting definitions (37) into equations (36) and adding error terms etn, we obtain
the following linear regression model:

ln ptn = ρt +
∑N(1)

j=1 b1jDtn,1,j +
∑N(2)

j=1 b2jDtn,2,j + . . .+
∑N(K)

j=1 bKjDtn,K,j + etn;

t = 1, . . . , T ;n ∈ S(t). (38)

There are a total of T +N(1)+N(2)+ . . .+N(K) unknown parameters in equations (38). The
least squares minimization problem that corresponds to the linear regression model defined
by (38) is the following least squares minimization problem:

minρ,b(1),b(2),...,b(K)

∑T
t=1

∑
n∈S(t){ln ptn − ρt −

∑N(1)
j=1 b1jDtn,1,j −

∑N(2)
j=1 b2jDtn,2,j − . . .

−
∑N(K)

j=1 bKjDtn,K,j}
2 (39)

*18 If product n is purchased in periods t and τ , then the expression on the right hand side of (34) remains
the same.

*19 The hedonic price index which is generated by the model defined by equations (35) is not invariant to
changes in the units of measurement of the characteristics; see Diewert (2023)[23].
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where ρ is the vector [ρ1, ρ2, . . . , ρT ] and b(k) is the vector [bk1, bk2, . . . , bkN(k)] for k =
1, 2, . . . , K. Solutions to the least squares minimization problem will exist but a solution
will not be unique.*20 Using equations (35), it can be seen that components of the vectors
π and a(k) ≡ [ak1, ak2, . . . , akN(k)] for k = 1, 2, . . . , K are multiplied together to give us pre-
dicted values for the ptn. Thus the parameters in any one of these K + 1 vectors can be
arbitrary but at least one component of each of the remaining vectors must be set equal to a
constant. A useful unique solution to (39) is obtained by setting ρ1 = 0 (which corresponds
to π1 = 1) and setting bk1 = 0 for k = 2, . . . ,K (so b11 is not normalized).

Once the normalizations suggested above have been imposed, the linear regression de-
fined by (38) can be run and estimates for the unknown parameters [ρ∗1, ρ

∗

2, . . . , ρ
∗

T ] and
[b∗k1, b

∗

k2, . . . , b
∗

kN(k)] for k = 1, 2, . . . ,K will be available. Use these estimates to define the

logarithms of the quality adjustment factors αn for all products n that were purchased in
period t:*21

β∗

tn ≡
∑N(1)

j=1 b∗1jDtn,1,j +
∑N(2)

j=1 b∗2jDtn,2,j +
∑N(K)

j=1 b∗KjDtn,K,j ; t = 1, . . . , T ;n ∈ S(t). (40)

The corresponding estimated product n quality adjustment factors α∗

tn are obtained by expo-
nentiating the β∗

tn:
α∗

tn ≡ exp[β∗

tn]; t = 1, . . . , T ;n ∈ S(t). (41)

Using the above α∗

tn, we can form a direct estimate for the aggregate quantity or utility
obtained by purchasers during period t:

Qt∗∗ ≡
∑

n∈S(t)α
∗

tnqtn; t = 1, . . . , T. (42)

The corresponding period t price level obtained indirectly, P t∗∗ , is defined by deflating period
t expenditure by period t aggregate quantity:

P t∗∗ ≡
∑

n∈S(t)ptnqtn/Qt∗∗ =
∑

n∈S(t)ptnqtn/
∑

n∈S(t)α
∗

tnqtn; t = 1, . . . , T. (43)

In order to obtain a useful expression for the direct estimate for the period t price level, πt,
look at the first order conditions for minimizing (39) with respect to ρt:

0 =
∑

n∈S(t){ln ptn − ρ∗t −
∑N(1)

j=1 b∗1jDtn,1,j −
∑N(2)

j=1 b∗2jDtn,2,j − . . . −
∑N(K)

j=1 b∗KjDtn,K,j}

t = 2, . . . , T

=
∑

n∈S(t){ln ptn − ρ∗t − β∗

n} (44)

where we used definitions (40) to derive the second equality. Let N(t) be the number of
products purchased in period t for t = 1, . . . , T . Using definitions (37) and (41), equations
(44) imply that the direct estimate of the period t price level π∗

t is equal to:

π∗

t =
∏

n∈S(t)(ptn/α∗

tn)1/N(t) ≡ P t∗ ; t = 2, . . . , T. (45)

Thus the direct estimate for the period t price level P t∗ is equal to the geometric mean of the
period t quality adjusted prices (ptn/α∗

tn) for the products that were purchased in period t.
Note that this price level can be calculated using price information alone whereas the indirect

*20 Thus the X matrix that corresponds to the linear regression model defined by equations (36) will not
have full column rank.

*21 If product n is available in multiple periods, the quality adjustment factors remain the same across
periods.
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measure P t∗∗ requires price and quantity information on the purchase of products during
period t.

A problem with the least squares minimization problem defined by (39) is that it does not take
the economic importance of the products into account. Thus, we consider the corresponding
weighted least squares problem defined below:

minρ,b(1),b(2),...,b(K)

∑T
t=1

∑
n∈S(t)stn{ln ptn − ρt −

∑N(1)
j=1 b1jDtn,1,j −

∑N(2)
j=1 b2jDtn,2,j − . . .

−
∑N(K)

j=1 bKjDtn,K,j}
2 (46)

where stn = ptnqtn/
∑

j∈S(t)ptjqtj for t = 1, . . . , T and n ∈ S(t) and we use the same defini-

tions as were used in the unweighted (or more properly, the equally weighted) least squares
minimization problem defined by (39).

The new weighted counterpart to the linear regression model that was defined by equations
(38) is given below:

(stn)1/2 ln ptn = (stn)1/2(ρt +
∑N(1)

j=1 b1jDtn,1,j +
∑N(2)

j=1 b2jDtn,2,j + . . . +
∑N(K)

j=1 bKjDtn,K,j)

+ etn; t = 1, . . . , T ;n ∈ S(t). (47)

In order to identify all of the parameters, make the same normalizations as were made above;
i.e., set ρ1 = 0 and bk1 = 0 for k = 2, . . . , K. Use definitions (40), (41), (42) and (43) to define
new β∗

tn, α∗

tn, Qt∗∗ and P t∗∗ . We rewrite P t∗∗ in a somewhat different manner as follows:

P t∗∗ =
∑

n∈S(t)ptnqtn/
∑

n∈S(t)α
∗

tnqtn t = 1, . . . , T

=
∑

n∈S(t)ptnqtn/
∑

n∈S(t)(α
∗

tn/ptn)ptnqtn

= [
∑

n∈S(t)stn(ptn/α∗

tn)−1]−1. (48)

In order to obtain a useful expression for the direct estimate for the period t price level, πt,
look at the first order conditions for minimizing (46) with respect to ρt:

0 =
∑

n∈S(t)stn{ln ptn − ρ∗t −
∑N(1)

j=1 b∗1jDtn,1,j −
∑N(2)

j=1 b∗2jDtn,2,j − . . . −
∑N(K)

j=1 b∗KjDtn,K,j}

t = 2, . . . , T

=
∑

n∈S(t)stn{ln ptn − ρ∗t − β∗

n} (49)

where we used definitions (40) to derive the second equality. Note that
∑

n∈S(t)stn = 1. Using

definitions (37) and (41), equations (49) imply that the direct estimate of the period t price
level π∗

t is equal to:*22

π∗

t =
∏

n∈S(t)(ptn/α∗

tn)s(t,n) ≡ P t∗ ; t = 2, . . . , T (50)

where s(t, n) = stn. The indirect period t quantity level is defined (as usual) as period t
expenditure divided by P t∗ :

Qt∗ ≡
∑

n∈S(t)ptnqtn/P t∗ ; t = 1, . . . , T. (51)

Note that the direct period t price level defined by (50), P t∗ , is a period t share weighted
geometric mean of the period t quality adjusted prices ptn/α∗

tn while the indirect period t

*22 Our normalizations imply π∗
1

= 1.
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price level P t∗∗ defined by (48) is a period t share weighted harmonic mean of the period t
quality adjusted prices and thus we have the de Haan inequalities:

P t∗∗ ≤ P t∗ and Qt∗∗ ≥ Qt∗ ; t = 1, . . . , T. (52)

We turn to an empirical example where we estimate alternative hedonic regression models and
make use of the above analysis.

4 Laptop Data for Japan and Sample Wide Hedonic Regressions

Using Characteristics.

4.1 The Laptop Data and Some Preliminary Price Indexes.

We obtained data from a private firm that collects price, quantity and characteristic informa-
tion on the monthly sales of laptop computers across Japan. The data are thought to cover
more than 60% of all laptop sales in Japan. We utilized the data for the 24 months in the
years 2021 and 2022 for our regressions and index computations. There were 2639 monthly
price and quantity observations on laptops sold in total over all months. Thus the prices and
quantities are ptn and qtn where ptn is the average monthly (unit value) price for product n
in month t in Yen and qtn is the number of product n units sold. The mean (positive) qtn was
594.7 and the mean (positive) ptn was 117640 yen. Over the 24 months in our sample, 366
distinct products were sold so n = 1, . . . , 366. To save some space, we now set t = 1, 2, . . . , 24.
If product n did not sell in month t, then we set ptn and qtn equal to 0. If each product sold in
each month, we would have 366 × 24 = 8784 positive monthly prices and quantities, ptn and
qtn, but on average, only 30.0% of the products were sold per month since 2639/8784 = 0.300.
Thus there is tremendous product churn in the sales of laptops in Japan, with individual
products quickly entering and then exiting the market for laptops.

The positive prices ptn and quantities qtn are as the variables P and Q. This data also included
the corresponding month of sale and the Japanese Product Code number (JAN) for each entry.
This data also includes information on 6 additional characteristics of the laptop product, which
are discussed below.

CLOCK is the clock speed of the laptop. The mean clock speed was 1.94 and the range of
clock speeds was 1 to 3.4. The larger is the clock speed, the faster the computer can make
computations. There were 23 distinct clock speeds for the laptops in our sample.

MEM is the memory capacity for the laptop. The mean memory size was 8188.9. There were
only 3 memory sizes listed in our sample: 4,096, 8,192 and 16,384.

SIZE is the screen size of the laptop. The mean screen size (in inches) was 14.49. There were
10 distinct screen sizes in our sample: 11.6, 12, 12.5, 13.3, 14, 15.4, 15.6,16, 16.1 and 17.3.

PIX is the number of pixels imbedded in the screen of the laptop. The mean number of pixels
was 24.82. There were only 10 distinct number of pixels in our sample: 10.49, 12.46, 12.96,
20.74, 33.18, 40.96, 51.84, 55.30, 58.98 and 82.94.

HDMI is the presence (HDMI = 1) or absence (HDMI = 0) of a HDMI terminal in the laptop.
If HDMI =1, then it is possible to display digitally recorded images without degradation.

A priori, we expected that purchasers would value higher clock speed, memory capacity, screen
size, the number of pixels and the availability of HDMI in a laptop, leading to increasing esti-
mated coefficients for the dummy variables corresponding to higher values of the characteristic
under consideration.
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BRAND is the name of the manufacturer of the laptop. In the data file, BRAND takes on the
values 1-12 but the second brand is not present in 2021-2022 so we have only 11 brands in our
sample. BRAND is frequently used as an explanatory variable in a hedonic regression as a
proxy for company wide product characteristics that may be missing from the list of explicit
product characteristics that are included in the regression.

In summary, Table A1 in the Data lncludes the following 11 variables in vectors of dimension
2639: OBS (runs from 1 to 2639), TD, JAN, CLOCK, MEM, SIZE, PIX, HDMI, BRAND, Q
and P.

The information in the column vectors TD and JAN were used to generate 24 time dummy vari-
ables, D1, D2, . . . , D24

*23 and 366 product dummy variable vectors, DJ1, DJ2, . . . , DJ366.*
24

In our regressions and calculation of price and quantity indexes, we transformed some of our
units of measurement to make the mean value of the series closer to unity. Thus the ptn

were replaced by ptn/100, 000 so we are measuring prices in units of 100,000 Yen. Similarly
MEM was replaced by MEM/1000, SIZE was replaced by SIZE/10 and PIX was replaced by
PIX/10. The basic descriptive statistics for the above variables (after transformation) are
listed in Table 1 below. The variables P and Q are the 2639 positive prices and quantities ptn

and qtn stacked up into vectors of dimension 2639.

Table 1 Descriptive Statistics for the Variables

Name No. of Obs. Mean Std. Dev Variance Minimum Maximum

JAN 2639 195.75 103.94 10803 1 366
CLOCK 2639 1.9397 0.51807 0.2684 1 3.4
MEM 2639 8.1889 3.4357 11.804 4.096 16.384
SIZE 2639 1.4493 0.13807 0.0191 1.16 1.73
PIX 2639 2.482 1.2891 1.6617 1.049 8.294
HDMI 2639 0.75332 0.43116 0.1859 0 1
BRAND 2639 9.1527 2.2091 4.88 1 12
Q 2639 594.69 735.68 541230 100 5367
P 2639 1.1764 0.49155 0.24162 0.17381 2.8729

It is of interest to calculate the average price of a laptop that was sold in period t, PAt, for
each of the 24 months of data in our sample:

PAt ≡
∑

n∈S(t)ptn/N(t); t = 1, . . . , 24 (53)

where N(t) is the number of laptops sold in period t and S(t) is the set of products sold in
period t.*25

*23 Use IF statements to construct these dummy variables. Using the econometric package SHAZAM,
the first two and last time dummy variable vectors of dimension 2639 were constructed using
the following statements: GENR D1=(TD.EQ.20201); GENR D2=(TD.EQ.20202); . . . ; GENR
D24=(TD.EQ.202112). See White (2004)[55] for information on Shazam.

*24 Again use IF statements to construct the product dummy variables of dimension 2639. Using SHAZAM,
these dummy variables DJ1-DJ366 were constructed using the following statements: DO #=1,366;
GENR DJ#=(JAN.EQ.#) ; ENDO.

*25 Using SHAZAM and the time dummy variables D1-D24, the PAt can be generated by the following
statements: first create a vector of ones of dimension 2639: SMPL 1 2639; GENR ONE=1. The N(t) for
T=1,. . . ,24 can be generated as follows by taking the inner product of the time dummy variables D#
with the vector of ones: DO #=1,24 ; MATRIX N#=ONE’D# ; ENDO . Now generate the sum of the
prices in month # , SUM#, by taking the inner product of the complete price vector of dimension 2639
P with each time dummy variable, D#: DO #=1,24 ; MATRIX PA#=D#’P ; ENDO. Now form PA#
as SUM#/N# for #=1,. . . ,24.
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The average period t price of a laptop, PAt, weights each period t laptop price equally and
thus does not take the economic importance of each type of laptop into account. A more
representative measure of average laptop price in period t is the period t unit value price,
PUV t, defined as follows:

PUV t ≡
∑

n∈S(t)ptnqtn/
∑

n∈S(t)qtn =
∑

n∈S(t)etn/
∑

n∈S(t)qtn t = 1, . . . , 24 (54)

where etn ≡ ptnqtn is expenditure or sales of product n in period t for t = 1, . . . , 24 and
n = 1, . . . , 366.*26

We convert the average prices defined by (53) and (54) into price indexes by dividing each
series by the corresponding series value by the corresponding period 1 entry. Thus define the
period t average price index P t

A and the period t unit value price index P t
UV as follows:

P t
A ≡ PAt/PA1; P t

UV ≡ PUV t/PUV 1; t = 1, . . . , 24. (55)

The time series N(t), PAt, PUV t, P t
A and P t

UV are listed below in Table 2.

Table 2 Average Prices and Unit Values and Average Price and Unit Value Price Indexes

Month t N(t) PAt PUV t P t
A P t

UV

1 146 1.23522 1.28422 1.00000 1.00000
2 134 1.27876 1.28041 1.03525 0.99703
3 147 1.27849 1.29670 1.03503 1.00972
4 133 1.26150 1.28001 1.02127 0.99538
5 110 1.31278 1.30992 1.06279 1.02001
6 95 1.31639 1.28645 1.06571 1.00173
7 103 1.26883 1.26349 1.02721 0.98386
8 94 1.26053 1.25112 1.02049 0.97422
9 83 1.24859 1.22112 1.01082 0.95086
10 78 1.27961 1.27247 1.03594 0.99085
11 71 1.25161 1.21663 1.01327 0.94737
12 72 1.17273 1.12868 0.94941 0.87888
13 124 1.11517 1.08334 0.90281 0.84358
14 136 1.12928 1.08597 0.91423 0.84563
15 150 1.11056 1.08594 0.89907 0.84560
16 135 1.15121 1.09629 0.93198 0.85366
17 105 1.10092 1.03040 0.89127 0.80235
18 109 1.06995 1.01540 0.86620 0.79067
19 107 1.05176 1.02634 0.85147 0.79919
20 101 1.02677 1.01863 0.83124 0.79319
21 100 1.04738 0.99001 0.84793 0.77090
22 91 1.11610 1.09602 0.90356 0.85345
23 96 1.06155 1.08657 0.85940 0.84609
24 119 1.10240 1.12772 0.89247 0.87814

Mean 109.96 1.17700 1.15970 0.95287 0.90302

It can be seen that the equally weighted average price of a laptop, PAt, is on average 1.5%
higher than the average unit value price, PUV t, since 1.1770/1.1597 = 1.01492. This means

*26 Using SHAZAM, the PUV t can be generated as follows. First generate the vector of expenditures
on purchased commodities E by the following statements: SMPL 1 2639 ; GENR E=P*Q. Now inner
product the vectors E and Q with the time dummy variables to obtain the numerators and denominators
for the PUV#: DO #=1,24 ; MATRIX NUM# = E’D# ; MATRIX DEN# = Q’D# ; ENDO. Then
generate the PUV# as NUM#/DEN# for # = 1,24.
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that on average, laptop models that have low sales have higher prices than high volume models.
However, there are substantial fluctuations in average prices so that at times, PAt > PUV t,
which happens when t = 1. When we convert the average prices PAt and PUV t into the price
indexes P t

A and P t
UV , it turns out that the mean of the P t

A is 0.95287 which is substantially
higher than the mean of the P t

UV which is 0.90302. However, the two index number series end
up fairly close to each other at month 24: P 24

A = 0.89247 while P 24
UV = 0.87814. We regard

the unit value price index series, P t
UV , as being more accurate than the average price series,

P t
A.

Note that the number of separate models sold in month t, N(t), ranges from a low of 71 in
month 11 to a high of 147 in month 3. If each model sold in every month, then N(t) would
equal 366 for each month.

4.2 A Hedonic Regression with Clock Speed as the Only Characteristic.

Of course, the price indexes P t
A and P t

UV make no adjustments for changes in the average
quality of laptops over time. Thus we now consider hedonic regression models of the type
defined by equations (38) in the previous section. We start our analysis by regressing the
price vector P on the time dummy variables D1, . . . , D24 and dummy variables for the clock
speed of each laptop that was sold during the sample period.

The clock speeds range from 1.0 to 3.4 in increments of 0.1. Thus there are 25 possible clock
speeds. Vectors of dummy variables of dimension 2639, DC1, DC2, . . . , DC25, were generated
using IF statements applied to the CLOCK variable.*27 The number of observations in each
cell of clock speeds were as follows: 53, 280, 69, 18, 85, 51, 225, 0, 486, 104, 165, 201, 63,
186, 151, 31, 305, 12, 124, 10, 2, 10, 0, 4, 4. Thus DC8 and DC23 were vectors of zeros and
there were no products that have clock speeds equal to 1.7 or 3.2. Also, several cells had
very few members. Thus we reduced the number of cell speed categories from 25 to 7. We
attempted to get approximately the same number of observations in each category except the
highest cell speed category. New Groups 1 to 7 aggregated old groups 1-3, 4-8, 8-9, 10-12,
13-15, 16-18 and 19-25 respectively. Thus the new dummy variable vector DC1 equals the
sum of the old vectors DC1 + DC2 + DC3, the new DC2 equals the sum of the old vectors
DC4 + DC5 + DC6 + DC7 + DC8 and so on.

Our first hedonic regression sets the dependent variable vector equal to the logarithms of the
product price vector P (which we denote by lnP ) and the vectors in the matrix of independent
variables are the time dummy variable vectors D2, D3, . . . , D24 and the new 7 clock speed
dummy variable vectors DC1, DC2, . . . , DC7. The number of products that are in each of the
7 new clock speed cells are 402, 379, 486, 470, 400, 348 and 154. Thus we have the following
linear regression that is a special case of the class of models defined by (38) in the previous
section:

lnP =
∑24

t=2ρtDt +
∑7

j=1bCjDCj + e (56)

where e is an error vector of dimension 2639.

We estimated the unknown parameters, ρ∗2, ρ
∗

3, . . . , ρ
∗

24, b
∗

C1, . . . , b
∗

C7 in the linear regression
model defined by (51) using ordinary least squares (the OLS command in Shazam). The log
of the likelihood function was −1401.58 and the R2 between the observed price vector and
the predicted price vector was only 0.2984. If increased clock speed is valuable to purchasers,
we would expect the estimated b∗Cj coefficients to increase as j increases. For this regression,

*27 Using SHAZAM, DC1, DC2, . . . , DC25 can be generated using the commands GENR
DCL1=(CLOCK.EQ.1.0), GENR DCL2=(CLOCK.EQ.1.1), . . . , GENR DCL25=(CLOCK.EQ.3.4).
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the estimates for b∗C1, . . . , b
∗

C7 were −0.4213, 0.0669, 0.1498,−0.0050, 0.2606, 0.3253 and 0.4535.
These coefficients increase monotonically except for b∗C4, so overall, it seems that purchasers
do value increased clock speed.*28

The estimated ρ∗t are the logarithms of the price levels P t∗ for t = 2, 3, . . . , 24 but we will not
list the estimated price levels until we have entered all 6 of our characteristics listed in the
data into the regression.

Once the estimates for the bCj are available, we can calculate the logarithms of the appropriate
quality adjustment factor α∗

tn that can be used to determine the quality of product n in month
t. Denote the logarithm of α∗

tn by β∗

tn for t = 1, . . . , 24 and n ∈ S(t). Denote the vector of
estimated quality adjustment factors (of dimension 2639) by β∗. It turns out that β∗ can be
calculated as follows:

β∗ =
∑7

j=1b
∗

CjDCj . (57)

It is convenient to have a constant term in a linear regression: if this is the case, then the error
terms must sum to zero across all observations. We can introduce a constant term into our
regression model defined by (56) as follows. First define ONE as a vector of ones of dimension
2639. Consider the following linear regression model:

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj + e (58)

where e is an error vector of dimension 2639. Thus we have added a vector of ones as an
independent variable in the new regression defined by (58) and dropped the first clock speed
dummy variable vector DC1 as an explanatory variable. Denote the ordinary least squares
estimates for the parameters in (58) by ρ∗∗2 , ρ∗∗3 , . . . , ρ∗∗24, b

∗∗

0 , b∗∗C2, . . . , b
∗∗

C7. It turns out that
ρ∗∗t = ρ∗t for t = 2, 3, . . . , 24 and the following vector equation also holds:

b∗0ONE +
∑7

j=2b
∗

CjDCj =
∑7

j=1b
∗

CjDCj . (59)

Thus the vector of log quality adjustment factors for the positive observed prices in the sample,
β∗ defined by (57), is also equal to the following expression:

β∗ = b∗0ONE +
∑7

j=2b
∗

CjDCj . (60)

In the models which follow, we will add additional characteristics to the hedonic regression
model defined by (60) rather than adding addition explanatory variables to the model defined
by (56).

4.3 A Hedonic Regression that Added Memory Capacity as an Additional Charac-

teristic.

We add memory capacity as another price determining characteristic of a laptop. There
were only 3 sizes of memory capacity (the variable MEM in the Data): 4096, 8192 and
16384. Construct dummy variable vectors of dimension 2639 for each value of MEM.*29

Denote these vectors as DM1, DM2 and DM3. The new log price time dummy characteristic
hedonic regression is the following counterpart to (58):

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj + e. (61)

*28 Of course, these coefficients will change as we add other characteristics to the regression.
*29 Using SHAZAM, the commands to create these dummy variable vectors D are: GENR

DM1=(MEM.EQ.4096) ; GENR DM2=(MEM.EQ.8192) and GENR DM3=(MEM.EQ.16384). The
number of products in each of these 3 cells are 620, 1710 and 309.
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The log of the likelihood function was −648.937, a gain of 752.64 log likelihood points for
adding 2 new memory size parameters. The R2 between the observed price vector and the
predicted price vector was 0.6034. If increased memory capacity is valuable to purchasers, we
would expect the estimated b∗Mj coefficients to increase as j increases. For this regression, the
estimates for b∗M2 and b∗M3 were .5493 and 0.9789. This regression indicates that purchasers
do value increased memory capacity and are willing to pay a higher price for a laptop with
greater memory capacity, other characteristics being held constant.

4.4 A Hedonic Regression that Added Screen Size as an Additional Characteristic.

There were 10 different screen sizes (in units of 10 inches) in our sample of laptop observations.
This variable is lncluded as SIZE in the Data. The 10 screen sizes in our sample were: 1.16,
1.2, 1.25, 1.33, 1.4, 1.54, 1.56, 1.6, 1.61 and 1.73. The usual commands were used to generate
10 dummy variables for this characteristic. However, for the screen sizes 1.2, 1.56 and 1.61,
we had only 12, 14 and 35 observations in our sample for these three sizes. Thus we combined
the dummy variable for size 1.2 with the dummy variable for 1.16,*30 combined the dummy
variable for size 1.56 with size 1.54 and combined the dummy variables for sizes 1.6 and 1.61.
Denote the resulting 7 dummy variables of dimension 2639 by DS1, DS2, . . . , DS7. The number
of observations in each of the 7 screen size cells was 98, 154, 810, 257, 1106, 114, 100.

The new log price time dummy characteristic hedonic regression is the following counterpart
to (61):

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj +
∑7

j=2bSjDSj + e. (62)

The log of the likelihood function was −202.270, a gain of 446.667 log likelihood points for
adding 6 new screen size parameters. The R2 between the observed price vector and the
predicted price vector was 0.7173. If increased screen size is valuable to purchasers, we would
expect the estimated b∗Sj coefficients to increase as j increases. For this regression, the esti-
mates for b∗S2-b

∗

S7 were 0.73371, 0.59447, 0.22923, 0.34524, 0.74190 and 0.68987. This regression
indicates that purchasers prefer small and large screen sizes over intermediate screen sizes for
laptops.

4.5 A Hedonic Regression that Added Pixels as an Additional Characteristic.

There were 10 different numbers of pixels in our sample of laptop observations. A larger
number of pixels per unit of screen size will lead to clearer images on the screen and this may
be utility increasing for purchasers. The pixel variable is lncluded as PIX in the Data. There
were 10 different PIX sizes in our sample. The 10 sizes (in transformed units of measurement)
were: 1.049, 1.246, 1.296, 2.074, 3.318, 4.096, 5.184, 5.530, 5.898 and 8.294. The number of
observations having these pixel sizes were as follows: 324, 4, 2, 1769, 5, 400, 14, 3, 79 and
39. The usual commands were used to generate the 10 pixel dummy variables, DP1-DP10.
However, the number of observations in pixel groups 2, 3, 5, 7 and 8 were 14 or less so these
groups of observations need to be combined with other categories. We ended up with 5 pixel
groups: the new group 1 combined groups 1, 2 and 3; old group 4 became the new group 2,
old groups 5 and 6 were combined to give us the new group 3, old groups 7, 8 and 9 were
combined to be the new group 4 and the old group 10 became the new group 5.*31 Denote

*30 GENR DS1=(SIZE.GE.1.16).AND.(SIZE.LE.1.20) is the SHAZAM command to construct the combined
dummy variable.

*31 The SHAZAM commands that generated the new groups were as follows: GENR
DPI1=DPI1+DPI2+DPI3; GENR DPI2=DPI4; GENR DPI3=DPI5+DPI6; GENR
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the new pixel dummy variable vectors as DP1-DP5. The number of observations in each of
these new pixel cells was 330, 1769, 405, 96, 39.

The new log price time dummy characteristic hedonic regression is the following counterpart
to (62):

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj +
∑7

j=2bSjDSj

+
∑5

j=2bPjDPj + e. (63)

The log of the likelihood function for the hedonic regression defined by (63) was −71.1313,
a gain of 131.139 log likelihood points for adding 4 new pixel number parameters. The
R2 between the observed price vector and the predicted price vector was 0.7440. If an
increased number of pixels is valuable to purchasers, we would expect the estimated b∗Pj

coefficients to increase as j increases. For this regression, the estimates for b∗P2-b
∗

P5 were
0.19750, 0.21889, 0.56884 and 0.69244. Thus the coefficients for the pixel dummy variables
increase monotonically, indicating that purchasers are willing to pay more for an increase in
screen clarity.

4.6 A Hedonic Regression that Added HDMI as an Additional Characteristic.

The dummy variable that indicates the presence of HDMI in the laptop has already been
generated and is lncluded in the Data as the column vector HDMI. Denote this column vector
as DH2 in the following hedonic regression which adds DH2 to the other regressor columns in
(63):

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj +
∑7

j=2bSjDSj

+
∑5

j=2bPjDPj + bH2DH2 + e. (64)

The log of the likelihood function for the hedonic regression defined by (64) was 49.499, a
gain of 120.631 log likelihood points for adding 1 new HDMI parameter. The R2 between the
observed price vector and the predicted price vector was 0.7764 which is a material increase
over the R2 of the previous model which was equal to 0.7440. If having HDMI capability
in the laptop is valuable to purchasers, we would expect the estimated b∗H2 coefficient to be
positive. Our estimated coefficient b∗H2 was equal to 0.36041 which is a positive number and
hence, the presence of HDMI in the laptop increases utility.

4.7 A Hedonic Regression that Added Brand as an Additional Characteristic.

As indicated above in section 4.1, there are 11 brands in our sample. In the Data the variable
BRAND takes on values from 1 to 12 but there are no brands that correspond to the number
2 in our sample for the 24 months in the years 2021 and 2022. Here are the numbers of
observations in each of the 12 BRAND categories: 4, 0, 3,101, 6, 235, 107, 389, 489, 439,
327, 479. We calculated the sample wide average price for each brand and re-ordered the
brands according to their average prices with the lowest average price brands listed first and
the highest average brand listed last. After re-ordering (and dropping old brand 2), the new
brand ordering from 1-11 consists of the following initial brands: 7, 6, 5, 9, 1, 12, 8, 4, 11,
10, 3. The number of observations in each new BRAND category are as follows: 107, 235, 66,
489, 4, 479, 389, 101, 327, 439, 3. Construct the 11 vectors of dummy variables for the 11 new
brand categories and denote these vectors of dimension 2639 by DB1-DB11.

DPI4=DPI7+DPI8+DPI9; GENR DPI5=DPI10.
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Add the column vectors DB2-DB11 to the other regressor columns in (64) in order to obtain
the following hedonic regression model:

lnP =
∑24

t=2ρtDt + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj +
∑7

j=2bSjDSj

+
∑5

j=2bPjDPj + bH2DH2 +
∑11

j=2bBjDBj + e. (65)

The log of the likelihood function for the hedonic regression defined by (65) was 754.295, a
gain of 704.796 log likelihood points for adding 10 new brand parameters. The R2 between the
observed price vector and the predicted price vector was 0.8631 which is a very big increase
over the R2 of the previous model which was equal to 0.7764. The estimated brand coef-
ficients b∗B2-b

∗

B11 are as follows: −0.1014, 0.1366, 0.0975, 0.1201, 0.5048, 0.4136, 0.1469, 0.4743,
0.2880, 0.6401. Thus there is a general tendency for the marginal utility of a more expensive
brand to be higher than the marginal utility of a cheaper brand.

The estimated coefficients on the time dummy variables in this regression are ρ∗2, ρ
∗

3, . . . , ρ
∗

24.
Define ρ∗1 ≡ 0 and the estimated period t price levels π∗

t ≡ exp[ρ∗t ] for t = 1, 2, . . . , 24. Define
the month t Time Dummy Characteristics Price Index, P t

TDC ≡ π∗

t for t = 1, . . . , 24. This
index is listed in Table 4 in the following subsection.

The same definitions can be applied to the results of the hedonic regressions defined in sections
4.2-4.6; i.e., use the estimated ρ∗t generated by these 5 hedonic regressions to define the
corresponding (incomplete) Time Dummy Characteristics Price Indexes, which we will denote
by P t

C , P t
CM , P t

CMS , P t
CMSP and P t

CMSPH for the hedonic regression models defined in sections
4.2, 4.3, 4.4, 4.5 and 4.6 respectively. These indexes are also listed in Table 4 below.

4.8 The Weighted Time Dummy Characteristics Hedonic Regression Model.

The price indexes defined in sections 4.2-4.7 can be constructed by using information on
product prices and the amounts of the various characteristics of each product. If in addition,
information on quantities sold or purchased during each month in scope is available, then
Weighted Time Dummy Characteristics price indexes can be constructed using the algebra
around equations (46)-(52) in section 3 above.

Recall that the expenditure share that corresponds to purchased product n in month t is
defined as stn = ptnqtn/

∑
j∈S(t)ptjqtj for t = 1, . . . , 24 and n ∈ S(t). To obtain the weighted

counterpart to the hedonic regression model defined by (64) above, we just form a share vector
of dimension 2639 that corresponds to the ln ptn that appear in (64) and then form a new
vector of dimension 2639 that consists of the positive square roots of each stn. Call this vector
of square roots SS. Now multiply both sides of (64) by SS to obtain a new linear regression
model which again provides estimates for the unknown parameters that appear in (64). The
R2 for this new weighted regression model turned out to be 0.8915 which is substantially
higher than the R2 for the counterpart unweighted model which was 0.8631.

The parameter estimates for this weighted hedonic regression model are listed in Table 3 below.
This is our preferred regression from all of the regression models that have been presented
thus far.

There are 53 parameters in this regression model that are estimated with 2586 degrees of
freedom for the error terms. It can be seen that the clock speed parameters b∗Cj are only weakly
increasing with respect to j; the memory capacity parameters b∗M2 and b∗M3 are monotonically
increasing; the screen size parameters b∗Sj exhibit a U shaped pattern; the pixel parameters

b∗Pj are monotonically increasing (except for b∗P5); the HDMI parameter b∗H2 is positive which
indicates that the availability of HDMI is valued by purchasers and the brand parameters b∗Bj

are weakly increasing so that the higher price brands are weakly preferred by purchasers.
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Table 3 Parameter Estimates for the Weighted Time Dummy Characteristics Hedonic Regression

Coef Estimate Std. Error T Stat Coef Estimate Std. Error T Stat

b∗0 −1.1981 0.03714 −32.260 b∗C5
0.2919 0.01477 19.760

ρ∗
2 0.0156 0.01791 0.870 b∗C6

0.2495 0.01661 15.020
ρ∗
3 0.0299 0.01797 1.662 b∗C7

0.3400 0.01798 18.910
ρ∗
4 0.0321 0.01805 1.776 b∗M2

0.2393 0.01017 23.540
ρ∗
5 0.0224 0.01803 1.245 b∗M3

0.5720 0.01687 33.900
ρ∗
6 0.0079 0.01809 0.439 b∗S2

0.3568 0.03430 10.400
ρ∗
7 −0.0200 0.01813 −1.104 b∗S3

0.4556 0.03246 14.040
ρ∗
8 −0.0235 0.01818 −1.296 b∗S4

0.2590 0.03266 7.929
ρ∗
9 −0.0336 0.01823 −1.841 b∗S5

0.3045 0.03150 9.665
ρ∗
10 −0.0260 0.01824 −1.427 b∗S6

0.4730 0.04071 11.620
ρ∗
11 −0.0540 0.01827 −2.958 b∗S7

0.5134 0.03508 14.640
ρ∗
12 −0.0884 0.01831 −4.829 b∗P2

0.1488 0.01320 11.270
ρ∗
13 −0.0986 0.01833 −5.383 b∗P3

0.4560 0.03566 12.790
ρ∗
14 −0.1042 0.01834 −5.679 b∗P4

0.7055 0.04659 15.140
ρ∗
15 −0.0954 0.01845 −5.167 b∗P5

0.5220 0.03061 17.050
ρ∗
16 −0.0765 0.01850 −4.136 b∗H2

0.2996 0.02048 14.630
ρ∗
17 −0.0870 0.01859 −4.680 b∗B2

−0.2059 0.02512 −8.197
ρ∗
18 −0.0974 0.01863 −5.229 b∗B3

0.0021 0.03626 0.057
ρ∗
19 −0.0937 0.01873 −5.003 b∗B4

−0.0575 0.02363 −2.435
ρ∗
20 −0.1110 0.01871 −5.932 b∗B5

−0.0618 0.14650 −0.422
ρ∗
21 −0.1233 0.01870 −6.593 b∗B6

0.3191 0.02316 13.780
ρ∗
22 −0.1174 0.01871 −6.276 b∗B7

0.2144 0.02375 9.027
ρ∗
23 −0.1028 0.01877 −5.477 b∗B8

0.0306 0.02984 1.025
ρ∗
24 −0.0823 0.01872 −4.394 b∗B9

0.3261 0.02414 13.510
b∗C2

0.1565 0.01219 12.840 b∗B10
0.1684 0.03378 4.985

b∗C3
0.2821 0.01447 19.490 b∗B11

0.5110 0.15800 3.235
b∗C4

0.2301 0.01399 16.450

The estimated coefficients on the time dummy variables in this regression are ρ∗2, ρ
∗

3, . . . , ρ
∗

24.
Define ρ∗1 ≡ 0 and the estimated period t price levels π∗

t ≡ exp[ρ∗t ] for t = 1, 2, . . . , 24.
Define the month t Weighted Time Dummy Characteristics Price Index, P t

WTDC ≡ π∗

t for
t = 1, . . . , 24. This index is listed in Table 4 (and plotted in Chart 1 below) and it is our
a priori preferred index thus far. The corresponding unweighted (or equally weighted) Time
Dummy Characteristics Price Index P t

TDC is also listed in Table 4 along with the unweighted
Time Dummy Characteristics Indexes that are based on the regression models explained in
sections 4.2-4.6. (P t

C , P t
CM , P t

CMS , P t
CMSP and P t

CMSPH). For comparison purposes, we also
list the simple average laptop price indexes P t

A and P t
UV defined by definitions (55) in section

4.1.

The results in Table 4 and Chart 1 are not very plausible. Our preferred hedonic index,
P t

WTDC , ends up at 0.92101 when t = 24 which is well above the simple average price indexes
P t

A and P t
UV for t = 24 (which ended up at 0.89247 and 0.87814). It seems unlikely that

a quality adjusted price index for laptops could end up higher than a simple average price
index for laptops. The above results also show that missing characteristics can greatly affect

the resulting hedonic price index : as we added characteristics to the regression, the resulting
indexes changed significantly.

Although the weighted and unweighted time product characteristic indexes end up fairly close
to each other in month 24 (0.92102 for the weighted index and 0.91645 for the unweighted
hedonic index), there are substantial month to month differences between the two indexes.
Moreover the mean of the weighted indexes P t

WTDC (0.94744) is substantially below the mean
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Table 4 Weighted and Unweighted Time Product Dummy Price Indexes

Month t P t
WTDC P t

TDC P t
CMSPH P t

CMSP P t
CMS P t

CM P t
C P t

A P t
UV

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.01571 1.03561 1.02620 1.02367 1.03230 1.01802 1.04123 1.03525 0.99703
3 1.03031 1.04665 1.03749 1.03260 1.03625 1.04575 1.09513 1.03503 1.00972
4 1.03257 1.03888 1.01851 1.01209 1.01869 1.03329 1.07238 1.02127 0.99538
5 1.02270 1.08280 1.08117 1.08253 1.08039 1.09031 1.15033 1.06279 1.02001
6 1.00797 1.07931 1.08333 1.08702 1.08707 1.10019 1.16008 1.06571 1.00173
7 0.98019 1.02240 1.02998 1.03049 1.03178 1.02851 1.09930 1.02721 0.98386
8 0.97673 1.02372 1.03536 1.03810 1.03602 1.03931 1.10055 1.02049 0.97422
9 0.96699 1.00763 1.01763 1.02219 1.02510 1.02037 1.08231 1.01082 0.95086
10 0.97431 1.02289 1.03329 1.03757 1.03760 1.03905 1.12498 1.03594 0.99085
11 0.94739 0.99707 1.00181 1.00575 1.00859 1.02131 1.11137 1.01327 0.94737
12 0.91540 0.94035 0.93111 0.93514 0.93850 0.94626 1.02127 0.94941 0.87888
13 0.90607 0.96932 0.91955 0.91411 0.91098 0.87076 0.95127 0.90281 0.84358
14 0.90108 0.95629 0.90833 0.90348 0.90146 0.86859 0.96108 0.91423 0.84563
15 0.90905 0.94247 0.89198 0.88531 0.88158 0.85448 0.93678 0.89907 0.84560
16 0.92634 0.95733 0.91131 0.89907 0.89222 0.86409 0.96173 0.93198 0.85366
17 0.91669 0.95014 0.89575 0.87694 0.87007 0.83104 0.90118 0.89127 0.80235
18 0.90717 0.94491 0.87540 0.85854 0.85243 0.80523 0.87761 0.86620 0.79067
19 0.91053 0.94595 0.86200 0.83793 0.82751 0.77520 0.82961 0.85147 0.79919
20 0.89493 0.92595 0.84228 0.82701 0.80855 0.75867 0.81446 0.83124 0.79319
21 0.88399 0.92104 0.84667 0.83211 0.81405 0.76625 0.82925 0.84793 0.77090
22 0.88920 0.92314 0.88356 0.86600 0.84461 0.80207 0.87828 0.90356 0.85345
23 0.90231 0.93081 0.88640 0.86528 0.84447 0.78950 0.83986 0.85940 0.84609
24 0.92102 0.91645 0.86613 0.85195 0.82916 0.77719 0.85181 0.89247 0.87814

Mean 0.94744 0.98255 0.95355 0.94687 0.94206 0.92273 0.98716 0.95287 0.90302

of the unweighted indexes P t
TDC (0.98255). Our conclusion here is that weighting for laptops

matters and the weighted index should be produced by statistical agencies if price and quantity
information is available.
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4.9 Direct and Indirect Weighted Time Dummy Characteristics Price Indexes.

In this section, we will illustrate the relationship between direct and indirect price levels that
can be derived from the hedonic regression described in section 4.8. We will use the results
around equations (42)-(52) in section 3.

In section 4.8, we defined the estimated direct monthly price levels, π∗

t , by exponentiating the
estimated coefficients ρ∗t . Define the month t direct price level P t∗ as follows:

P t∗ ≡ π∗

t = P t
WTDC ; t = 1, . . . , 24. (66)

Because π∗

1 = 1, the directly estimated monthly price levels P t∗ also equal the corresponding
Weighted Time Dummy Characteristics price indexes, P t

WTDC , which are listed in Table 4
above.

Define month t total expenditures (or sales) of laptops in our sample, et, as follows:

et ≡
∑

n∈S(t)ptnqtn; t = 1, . . . , 24. (67)

The (indirectly) estimated aggregate quantity level for month t, Qt∗ , is defined by deflating
month t expenditures et by P t∗ :

Qt∗ ≡ et/P t∗ ; t = 1, . . . , 24. (68)

P t∗ , et and Qt∗ are listed in Table 5 below.

We now show how the parameter estimates listed in Table 4 above can be used to form monthly
direct aggregate quantity indexes Qt∗∗ for each month t. First, form the vector of dimension
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2639 of logarithms of the product quality adjustment parameters β∗ as follows:

β∗ ≡ b∗0ONE +
∑7

j=2b
∗

CjDCj +
∑3

j=2b
∗

MjDMj +
∑7

j=2b
∗

SjDSj +
∑5

j=2b
∗

PjDPj

+ b∗H2DH2 +
∑11

j=2b
∗

BjDBj . (69)

Denote the component of β∗ that corresponds to product n sold in month t by β∗

tn for t =
1, . . . , 24 and n ∈ S(t). Define the quality adjustment parameter for purchased product n in
period t, α∗

tn, by exponentiating β∗

tn:

α∗

tn ≡ exp[β∗

tn]; t = 1, . . . , 24;n ∈ S(t). (70)

Using the above quality adjustment parameters α∗

tn, we can form a month t direct estimate

for the aggregate quantity or utility obtained by purchasers during period t:

Qt∗∗ ≡
∑

n∈S(t)α
∗

tnqtn; t = 1, . . . , 24. (71)

The corresponding month t indirect price level, P t∗∗ , is defined by deflating month t expendi-
ture et by the month t aggregate quantity Qt∗∗ :

P t∗∗ ≡ et/Qt∗∗ =
∑

n∈S(t)ptnqtn/
∑

n∈S(t)α
∗

tnqtn; t = 1, . . . , 24. (72)

The price and quantity level series, P t∗∗ and Qt∗∗ , are listed in Table 5 below. It can be
seen P t∗ , P t∗∗ , Qt∗ and Qt∗∗ satisfy the de Haan inequalities (52); i.e., these series satisfy the
following inequalities:

P t∗∗ ≤ P t∗ and Qt∗∗ ≥ Qt∗ ; t = 1, . . . , 24. (73)

If the R2 for the weighted hedonic regression defined in section 4.8 were equal to 1, then the
direct and indirectly defined monthly price and quantity levels would coincide; i.e., we would
have P t∗∗ = P t∗ and Qt∗∗ = Qt∗ for t = 1, . . . , 24.

The indirectly defined price level series, P t∗∗ , can be turned into the Weighted Time Dummy

Characteristics Price Index series, P t
IWTDC , by dividing the P t∗∗ by P 1∗∗ :

P t
IWTDC ≡ P t∗∗/P 1∗∗ ; t = 1, . . . , 24. (74)

The series P t
IWTDC is also listed in Table 5.

It can be seen that the direct and indirectly defined Weighted Time Dummy Characteristic
Price Indexes, P t

WTDC and P t
IWTDC , are fairly close to each other but both indexes seem

to end up implausibly high; see Chart 2. Thus in the following section, we will implement
adjacent period hedonic regressions using the same 6 characteristics.
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Table 5 Direct and Indirect Weighted Time Dummy Characteristics Price and Quantity Levels

Month t Qt∗ Qt∗∗ et P t∗(P t
WTDC) P t∗∗ P t

IWTDC

1 140388 142306 140388 1.00000 0.98653 1.00000
2 115958 117271 117780 1.01571 1.00434 1.01806
3 140351 141842 144604 1.03031 1.01948 1.03340
4 128314 129847 132494 1.03257 1.02039 1.03433
5 125022 126026 127860 1.02270 1.01455 1.02841
6 114803 115637 115717 1.00797 1.00069 1.01436
7 125235 126134 122755 0.98019 0.97321 0.98650
8 87567 88148 85529 0.97673 0.97028 0.98354
9 76291 76718 73773 0.96699 0.96161 0.97474
10 66703 67084 64990 0.97431 0.96879 0.98202
11 47313 47594 44824 0.94739 0.94181 0.95468
12 50869 51213 46566 0.91540 0.90925 0.92167
13 85751 86402 77696 0.90607 0.89924 0.91152
14 84089 84823 75771 0.90108 0.89329 0.90549
15 134545 135966 122309 0.90905 0.89955 0.91184
16 71296 72011 66044 0.92634 0.91713 0.92966
17 42172 42550 38659 0.91669 0.90855 0.92096
18 35359 35711 32077 0.90717 0.89822 0.91048
19 35549 35853 32369 0.91053 0.90282 0.91515
20 35699 35957 31948 0.89493 0.88851 0.90065
21 36822 37186 32550 0.88399 0.87535 0.88730
22 39437 39776 35067 0.88920 0.88161 0.89366
23 47104 47636 42502 0.90231 0.89222 0.90441
24 73319 74114 67528 0.92102 0.91114 0.92358

Mean 80832 81575 77992 0.94744 0.93911 0.95193
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5 Adjacent Period Characteristics Hedonic Regression Models.

There are two problems with our “best” directly defined weighted hedonic price index using
characteristics, P t

WTDC , which was defined in the previous section:

• It is not a real time index; i.e., it is a retrospective index that is calculated using the
data covering two years;*32

• It does not allow for gradual taste change on the part of purchasers.

These difficulties can be avoided if we restrict the number of months T to be equal to 2. This
restriction leads to adjacent period hedonic regressions.*33 Thus we can use the analytical
framework presented in section 3 and simply apply it to the case where T = 2.

To start the adjacent period methodology, we use the price data for products n that were sold
in months 1 and 2. We also use data on the 6 characteristics of the products that were used in
section 4.7 above. The counterpart regression to the unweighted time dummy characteristic
hedonic regression defined by (65) in section 4.7 becomes the following regression model:

lnP = ρ2D2 + b0ONE +
∑7

j=2bCjDCj +
∑3

j=2bMjDMj +
∑7

j=2bSjDSj

+
∑5

j=2bPjDPj + bH2DH2 +
∑11

j=2bBjDBj + e (75)

where ln P is now the vector of log prices for the products which were sold only in months 1
and 2. Similarly, the vectors of independent variables on the right hand side of (75) are not
of dimension 2639 but only of dimension equal to the number of products that were sold in
months 1 and 2. Note that there is only a single time dummy variable D2 on the right hand
side of (75) and the nt component of D2 takes on the value 1 for the products sold in month 2
and the value 0 for the products sold in month 1. The definitions for the other characteristic
dummy variables on the right hand side of (75) are similar to our earlier panel wide definitions
but now these characteristic dummy variables are only defined for products that were sold in
months 1 and 2.*34

*32 This difficulty can be overcome by using rolling window hedonic regressions. See Diewert and Fox (2022;
360-361)[24] for a discussion of the issues surrounding linking the results from a new panel of data with
the results from a previous panel.

*33 For references to the history of this approach to hedonic regressions, see the many references in Diewert
(2022)[22] (2023)[23].

*34 However, some complications occurred when implementing the above operations. When the data were
restricted to 2 adjacent periods instead of the entire 2 years of data, some of the characteristic dummy
variable vectors became zero vectors. To deal with this problem, some of our characteristic dummy
variable vectors were aggregated together. Thus the clock speed dummy variables for groups 6 and 7
were aggregated together to form a new group 6. The terms

∑
7

j=2
bCjDCj on the right hand side of (75)

were replaced by the terms
∑

6

j=2
bCjDCj . The screen size dummy variables for groups 1 and 2 were

aggregated together as were the dummy variables for groups 6 and 7. Thus the terms
∑

7

j=2
bSjDSj on

the right hand side of (75) were replaced by the terms
∑

5

j=2
bSjDSj . Groups 4 and 5 for the pixel groups

were aggregated together so that the terms
∑

5

j=2
bPjDPj were replaced by

∑
4

j=2
bPjDPj . Brands 5 and

11 had only sales of 4 and 3 units respectively over the two years in our sample so these brands were
aggregated together with Brand 3, another low sales brand. Thus the terms

∑
11

j=2
bBjDBj on the right

hand side of (75) were replaced by the terms
∑

9

j=2
bBjDBj . Finally, even after making these reductions

in the number of characteristic dummy variables, it turned out that occasionally, one or more of the
consolidated characteristic dummy variable vectors in the 23 bilateral hedonic regressions was equal to
a vector of zeros. These vectors were dropped from the applicable adjacent period regression.
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Define P 1∗ ≡ 1 as the month 1 index level. Define ρ∗2 as the estimated month 2 time dummy
coefficient for the bilateral regression defined by (75)*35 and define π∗

2 as the exponential of
ρ∗2; i.e., define π∗

2 ≡ exp[ρ∗2]. Define the month 2 direct price level as P 2∗ ≡ π∗

2 .

Next, we restricted the definition of lnP to the products that were sold only in months 2
and 3. The new adjacent period hedonic regression was similar to the one defined by (75)
except the time dummy term ρ2D2 on the right hand side of (75) was replaced with the term
ρ3D3 where D3 takes on the value 1 for the products sold in month 3 and the value 0 for the
products sold in month 2. Once ρ∗3 was estimated, we defined π∗

3 ≡ exp[ρ∗3] and the period 3
price level as P 3∗ ≡ π∗

3P 2∗ .

The above procedure was continued until we reached the final bilateral regression that used
only the log product prices for products that were sold in months 23 and 24. The final
bilateral hedonic regression gave us an estimate for ρ∗24. Once ρ∗24 was estimated, we defined
π∗

24 ≡ exp[ρ∗24] and the period 24 price level was defined as P 24∗ ≡ π∗

24P
23∗ . The Adjacent

Period Time Dummy (Unweighted) Characteristics Price Index for month t, P t
ATDC , was

defined as follows:
P t

ATDC ≡ P t∗/P 1∗ ; t = 1, . . . , 24. (76)

The price index defined by (76) is not satisfactory because it does not take into account
the economic importance of each product. The economic importance of product n sold in
period t can be taken into account in the 23 bilateral regressions of the form given by (75)
by multiplying the log price ln ptn that appears in any of these bilateral hedonic regressions

by the square root of the corresponding expenditure share s
1/2
tn . The term s

1/2
tn is also applied

to the corresponding components of the various dummy variable vectors that appear on the
right hand sides of the estimating equations of the form given by (75). With the application of
these multiplicative factors on both sides of the various estimating equations, we again obtain
estimates for the logarithms of the various bilateral time dummy coefficients ρ∗2, ρ

∗

3, . . . , ρ
∗

24.
Once these new estimates have been obtained, we took the exponentials of them to obtain
the sequence of price levels π∗

t for t = 2, 3, . . . , 24. Now follow the same steps as were made
in the paragraphs above definitions (76) in order to define the Weighted Adjacent Period

Time Dummy Characteristics Price Index for month t, P t
WATDC , for t = 1, 2, . . . , 24. This

index along with its unweighted (or equally weighted) counterpart index, P t
ATDC , are listed

in Table 6 below. For comparison purposes, Table 6 also lists the single regression weighted
and unweighted Time Dummy Characteristics price indexes, P t

WTDC and P t
TDC , as well as

the simple average and unit value price indexes, P t
A and P t

UV .*36 See Chart 3 for plots of the
indexes listed in Table 6.

*35 Taking into account the reduction in the number of cells for the various characteristics, (75) became:

ln P = ρ2D2 + b0ONE +
∑

6

j=2
bCjDCj +

∑
3

j=2
bMjDMj +

∑
4

j=2
bSjDSj +

∑
4

j=2
bPjDPj + bH2DH2 +

∑
9

j=2
bBjDBj + e.

*36 These latter four indexes were listed in Table 4.

26



Table 6 Sample Wide and Adjacent Period Weighted and Unweighted Characteristics
Price Indexes

Month t P t
WATDC P t

ATDC P t
WTDC P t

TDC P t
A P t

UV

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.01597 1.03434 1.01571 1.03561 1.03525 0.99703
3 1.02612 1.03214 1.03031 1.04665 1.03503 1.00972
4 1.02732 1.02268 1.03257 1.03888 1.02127 0.99538
5 1.01684 1.05650 1.02270 1.08280 1.06279 1.02001
6 1.00363 1.04757 1.00797 1.07931 1.06571 1.00173
7 0.98301 0.99975 0.98019 1.02240 1.02721 0.98386
8 0.97090 0.99619 0.97673 1.02372 1.02049 0.97422
9 0.96368 0.97454 0.96699 1.00763 1.01082 0.95086
10 0.96133 0.98820 0.97431 1.02289 1.03594 0.99085
11 0.94000 0.96227 0.94739 0.99707 1.01327 0.94737
12 0.90779 0.91460 0.91540 0.94035 0.94941 0.87888
13 0.89365 0.93709 0.90607 0.96932 0.90281 0.84358
14 0.88269 0.92254 0.90108 0.95629 0.91423 0.84563
15 0.87733 0.90649 0.90905 0.94247 0.89907 0.84560
16 0.88593 0.91854 0.92634 0.95733 0.93198 0.85366
17 0.87962 0.90962 0.91669 0.95014 0.89127 0.80235
18 0.86894 0.90062 0.90717 0.94491 0.86620 0.79067
19 0.86163 0.89505 0.91053 0.94595 0.85147 0.79919
20 0.84450 0.87334 0.89493 0.92595 0.83124 0.79319
21 0.83613 0.87088 0.88399 0.92104 0.84793 0.77090
22 0.82692 0.86431 0.88920 0.92314 0.90356 0.85345
23 0.81487 0.86516 0.90231 0.93081 0.85940 0.84609
24 0.81055 0.85353 0.92102 0.91645 0.89247 0.87814

Mean 0.92081 0.94775 0.94744 0.98255 0.95287 0.90302
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It can be seen that the adjacent period equally weighted characteristics index P t
ATDC finishes

above its weighted counterpart P t
WATDC for t = 24 and on average, P t

ATDC is 2.7 percentage
points above the average for P t

WATDC . Since this equally weighted index gives too much
weight to unrepresentative products, we prefer the Weighted Adjacent Period Time Dummy
Characteristics Index P t

WATDC . Although P t
WATDC index finishes substantially below the

month 24 Unit Value Price Index P 24
UV , we note that the average of the P t

WATDC is 0.92081,
which is substantially higher than the average of the Unit Value Price Index P t

UV . Thus it
seems that the quality adjustment provided by the quality adjusted indexes exhibited thus far
is incomplete.

Here are some of the advantages and disadvantages of the Weighted Adjacent Period Time
Dummy Characteristics indexes P t

WATDC over the (sample wide) Weighted Time Dummy
Characteristics indexes P t

WTDC :

• The adjacent period indexes fit the data much better since each bilateral regression esti-
mates a new set of quality adjustment parameters whereas the panel regression approach
fixes the quality adjustment parameters over the entire window of observations.

• If the number of characteristics is large relative to the number of observations in a bilat-
eral regression, the estimates for the quality adjustment parameters could be unreliable
which could lead to unreliable estimates for the price levels.

• The adjacent period methodology that allows the quality adjustment parameters to
change every month means that purchasers may not have stable consistent preferences
over time and some economists may object to this fact.

The results presented in sections 4 and 5 of this paper indicate that missing characteristics
can have a material effect on the price index. A model that includes all possible product
characteristics*37 is the Time Product Dummy model presented in section 2. Thus in the
following section, we will consider weighted and unweighted time product dummy hedonic
regression models.

6 Time Product Dummy Regression Models.

The Weighted Time Product Dummy least squares minimization problem was defined by
(20). To obtain a unique solution to this problem, we added the normalization ρ1 = 0. The
corresponding equally weighted Unweighted Time Product Dummy least squares minimization
problem is defined by (20) with all expenditure shares stn set equal to 1.

In order to set up the unweighted regression problem for our particular application, we make
use of the vectors of time dummy variables, D1, . . . , D24, which were defined in section 4.1
above. This section also defined the 366 product dummy variable vectors of dimension 2639,
DJ1, . . . , DJ366. Define the vector of the logarithms of observed laptop prices as lnP as
was done in previous sections. Then the (sample wide) unweighted Time Product Dummy
regression model can be expressed as the following estimating equation for the log price levels
ρ2, ρ3, . . . , ρ24 and the 366 product log quality adjustment factors β1, β2, . . . , β366:

lnP =
∑24

t=2ρtDt +
∑366

k=1βkDJk + et. (77)

*37 There may be external environmental factors (that change over time) which affect the utility to purchasers
of the products in scope. Also, the “newness” or “oldness” of a product may affect purchaser utility. A
fashion product is a product whose utility falls due to the length of time the product has been available
in the marketplace. A proven or reliable product is a product whose utility rises as the length of time it
has been available for purchase. It is possible to measure this effect using a hedonic regression approach
but we do not include the “newness” of a product as a price determining characteristic in this study.
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The R2 for the above regression turned out to be 0.9836. We set ρ∗t equal to one. The
estimated ρ∗t were exponentiated and the sequence of the π∗

t ≡ exp[ρ∗t ] are the Time Product

Dummy Price Indexes P t
TPD which are listed in Table 7 below.

To obtain the Weighted Time Product Dummy Price Indexes, multiply the vectors on both
sides of (77) (excluding the error vector e) by the vector of positive square roots of the month
by month expenditure shares stn on the products which were purchased in each period. The
resulting linear regression in the same parameters ρ2, ρ3, . . . , ρ24 and β1, β2, . . . , β366 was run
and the R2 for this weighted time product dummy regression turned to be 0.9840. Again, set ρ∗t
equal to one. The estimated ρ∗t were exponentiated and the new sequence of the π∗

t ≡ exp[ρ∗t ]
are the Weighted Time Product Dummy Price Indexes P t

WTPD which are listed in Table 7
below.

As in the previous section, we can calculate adjacent period time product dummy regressions.

To start the adjacent period methodology, we use the price data for products n that were sold
in months 1 and 2. Define S(1, 2) as the set of products that were purchased in months 1
and 2. The counterpart regression to the unweighted time product dummy hedonic regression
defined by (77) that links the prices of months 1 and 2 is the following regression model:

lnP ∗ = ρ2D
∗

2 +
∑366

k=1βkD∗

Jk + et

= ρ2D
∗

2 +
∑

k∈S(1,2)βkD∗

Jk + et (78)

where the new log price vector lnP ∗, the new month 2 time dummy vector D∗

2 and the new
product dummy vectors D∗

J1, . . . , D
∗

J366 are only defined for products n that were actually sold
in periods 1 and 2. The first vector equation in (78) cannot be implemented using standard
econometric packages because due to rapid product turnover, most of the product dummy
variable vectors D∗

Jk will be vectors of zeros. Thus the second line in (78) sums over the
nonzero product dummy vectors.*38

In any case, 23 unweighted bilateral time product dummy variable regressions were run and
the estimated ρ∗t were converted into π∗

t and the π∗

t were chained into the Adjacent Period
Time Product Dummy Price Indexes P t

ATPD for t = 2, 3, . . . , 24. These indexes are listed in
Table 7 below.*39

As usual, to obtain Weighted Adjacent Period Time Product Dummy Price Indexes, P t
WAPD

we took the 23 bilateral regressions that were used to form the unweighted indexes and multi-
plied the dependent and independent variables in each of these regressions by the square root
of the appropriate expenditure share.

Table 7 lists the Adjacent Period Weighted and Unweighted Time Product Dummy price
indexes, P t

WATPD and P t
ATPD, as well as the simple average and unit value price indexes, P t

A

and P t
UV . Chart 4 plots the indexes listed in Table 7.

*38 It turned out to be somewhat difficult to go from line 1 in (78) to line 2 in (78). However, it is possible
to construct programs that overcome these difficulties.

*39 The R2 for the 23 bilateral Time Product Dummy regressions were as follows: 0.9993, 0.9985, 0.9979,
0.9988, 0.9991, 0.9988, 0.9991, 0.9976, 0.9987, 0.9980, 0.9980, 0.9985, 0.9974, 0.9980, 0.9989, 0.9993,
0.9987, 0.9989, 0.9980, 0.9986, 0.9990, 0.9988 and 0.9970. Needless to say, these regression fits are very
good.
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Table 7 Sample Wide and Adjacent Period Weighted and Unweighted Time Product
Dummy Price Indexes

Month t P t
WATPD P t

ATPD P t
WTPD P t

TPD P t
A P t

UV

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.99358 0.98781 0.98828 0.98257 1.03525 0.99703
3 0.98526 0.98084 0.98205 0.97768 1.03503 1.00972
4 0.98456 0.96681 0.98006 0.96541 1.02127 0.99538
5 0.97476 0.94903 0.96878 0.95302 1.06279 1.02001
6 0.96444 0.93115 0.95087 0.93711 1.06571 1.00173
7 0.94422 0.90729 0.92250 0.90572 1.02721 0.98386
8 0.93034 0.88649 0.91801 0.88931 1.02049 0.97422
9 0.91971 0.86908 0.90983 0.87676 1.01082 0.95086
10 0.91611 0.86254 0.90323 0.87407 1.03594 0.99085
11 0.89088 0.83488 0.87881 0.85326 1.01327 0.94737
12 0.85948 0.80071 0.85129 0.82468 0.94941 0.87888
13 0.82589 0.77569 0.83276 0.80777 0.90281 0.84358
14 0.81473 0.76387 0.82554 0.79541 0.91423 0.84563
15 0.79577 0.74871 0.81431 0.77924 0.89907 0.84560
16 0.79492 0.74716 0.82328 0.77927 0.93198 0.85366
17 0.78726 0.73419 0.82048 0.77078 0.89127 0.80235
18 0.77805 0.72286 0.81037 0.75921 0.86620 0.79067
19 0.76665 0.70844 0.80906 0.75392 0.85147 0.79919
20 0.75214 0.69445 0.79830 0.74549 0.83124 0.79319
21 0.74318 0.68464 0.78818 0.73698 0.84793 0.77090
22 0.73369 0.67542 0.78460 0.73339 0.90356 0.85345
23 0.71498 0.66085 0.76781 0.72413 0.85940 0.84609
24 0.69385 0.64587 0.74478 0.70698 0.89247 0.87814

Mean 0.85685 0.81411 0.86972 0.83884 0.95287 0.90302

30



There are large differences between the weighted and unweighted Time Product Dummy price
indexes with the unweighted indexes generating lower rates of laptop inflation. As usual,
we prefer the weighted estimates over their unweighted counterparts due to the unrepresen-
tative nature of the unweighted indexes. Finally, we prefer the Adjacent Period Weighted
Time Product Dummy Indexes P t

WATPD over their single regression counterpart indexes, the
Weighted Time Product Dummy Indexes P t

WTPD for two reasons: (i) the regressions which
generate the P t

WATPD fit the data much better than the single regression which generated the
P t

WTPD and (ii) the P t
WATPD appear to be a bit smoother than the P t

WTPD. P t
WATPD is our

preferred index thus far.

Our preferred index, the Adjacent Period Weighted Time Product Dummy Index P t
WATPD,

is a chained index and thus, it is subject to possible chain drift.*40 In order to reduce or
eliminate possible chain drift, in the following section we will calculate Predicted Share Price
Similarity linked indexes as well as some traditional indexes.

7 Similarity Linked Price Indexes for Laptops.

The indexes defined in the previous sections that made use of 23 adjacent period regressions
were chained indexes; i.e., the index constructed for month t compared the prices for month
t with the prices for month t− 1. However, it is not the case that all bilateral comparisons of
prices between two months are equally accurate: if the relative prices for matched products
in months r and t are very similar, then the Laspeyres and Paasche price indexes will be very
close to each other and hence it is likely that the “true” price comparison between these two
periods (using the economic approach to index number theory*41) will be very close to the
bilateral Fisher index that compares prices between the two periods under consideration. In
particular, if the two price vectors are exactly proportional, then we would like the price index
between these two months to be equal to the factor of proportionality (even if the associated
quantity vectors are not proportional) and the direct Fisher price index between these two
periods satisfies this proportionality test. This test suggests that a more accurate set of price
indexes could be constructed if a bilateral comparison of prices was made between the two
months that have the most similar relative price structures.*42 The Predicted Share method
of linking months with the most similar structure of relative prices will be explained under
the assumption that it is necessary to construct a price index P t in real time.*43

As a preliminary step, the price and quantity data that are lncluded in the data need to be
reorganized into 24 price and quantity vectors of dimension 366, pt ≡ [pt

1, p
t
2, . . . , p

t
366] and

qt ≡ [qt
1, q

t
2, . . . , q

t
366], for t = 1, . . . , 24. If product k is not purchased during month t, then

we set pt
k = qt

k = 0. For months r and t, define the set of products k that are present in both
months as S(r, t). The matched model Laspeyres and Paasche indexes, PL(r, t) and PP (r, t),

*40 Chain drift typically results from prices and quantities that exhibit large temporary fluctuations; see
Szulc (1983)[51] and Hill (1988)[39]. But the laptop price data seem to move quite smoothly so a priori,
we did not think that chain drift would be a problem for this data set.

*41 See Diewert (1976)[13] for the relationship of the Fisher index to the economic approach to index number
theory.

*42 In the context of making comparisons of prices across countries, the method of linking countries with
the most similar structure of relative prices has been pursued by Hill (1997)[31] (1999a)[32] (1999b)[33]
(2009)[36], Hill and Timmer (2006)[38], Diewert (2009)[20] (2013)[21] (2023)[23] and Hill, Rao, Shankar
and Hajargasht (2017)[37]. Hill (2001)[34] (2004)[35] also pursued this similarity of relative prices ap-
proach in the time series context.

*43 This method is explained more fully in Diewert (2023)[23].
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that relate the prices of month t to month r are defined as follows:

PL(r, t) ≡
∑

k∈S(r,t)p
t
kqr

k/
∑

k∈S(r,t)p
r
kqr

k; 1 ≤ r, t ≤ 24; (79)

PP (r, t) ≡
∑

k∈S(r,t)p
t
kqt

k/
∑

k∈S(r,t)p
r
kqt

k; 1 ≤ r, t ≤ 24. (80)

Note that the prices of the matched models for month t are in the numerators of definitions (79)
and (80) and the corresponding prices of the matched models for month r in the denominators
of definitions (79) and (80). The matched model Fisher index that relates the prices of month
t to the prices of month r is defined as the geometric mean of PL(r, t) and PP (r, t):*44

PF (r, t) ≡ [PL(r, t)PP (r, t)]1/2; 1 ≤ r, t ≤ 24. (81)

The components st
k of the 24 vectors of month t expenditure shares on the 366 products,

st ≡ [st
1, s

t
2, . . . , s

t
366], are defined as follows:

st
k ≡ pt

kqt
k/pt · qt; t = 1, . . . , 24; k = 1, . . . , 366 (82)

where the inner product of the vectors pt and qt is defined as pt · qt ≡
∑366

k=1 pt
kqt

k.

The choice of a measure of relative price similarity plays a key role in the similarity linking
methodology. Various measures of the similarity or dissimilarity of relative price structures
have been proposed by Allen and Diewert (1981)[3], Kravis, Heston and Summers (1982; 104-
106)[40], Hill (1997)[31] (2009)[36], Sergeev (2001)[48] (2009)[49], Hill and Timmer (2006)[38],
Aten and Heston (2009)[4] and Diewert (2009)[20] (2023)[23]. A problem with most measures
of relative price similarity is that they are not well defined if some products are missing.
The following Predicted Share measure of relative price dissimilarity, ∆(pr,pt, qr, qt), is well
defined even if some product prices in the two periods being compared are equal to zero:*45

∆(pr,pt, qr, qt) ≡
∑366

k=1[s
t
k−(pr

kqt
k/pr ·qt)]2+

∑366
k=1[s

r
k−(pt

kqr
k/pt ·qr)]2; 1 ≤ r, t ≤ 24. (83)

We require that pr ·qt > 0 for r = 1, . . . , 24 and t = 1, . . . , 24 in order for ∆(pr,pt, qr, qt) to be
well defined for any pair of periods, r and t. Since the two summations on the right hand side
of (83) are sums of squared terms, we see that ∆(pr,pt, qr, qt) ≥ 0. If ∆(pr,pt, qr, qt) = 0,
then the price vectors for months r and t are proportional. The closer ∆(pr,pt, qr, qt) is to 0,
the closer prices are to being proportional between the two months. If prices are proportional
for the two months, then any acceptable price index between the two months should equal
the proportionality factor. If pt = λpr for some positive factor of proportionality λ, then the
matched model Fisher index PF (r, t) defined by (81) will equal λ. Another very important
property of the measure of relative price similarity defined by (83) is that the Predicted
Share measure penalizes a lack of product matching across the two months r and t. Thus if
the matched prices for months r and t are equal but there are some products that are only
available in one of the two periods under consideration, then ∆(pr,pt, qr, qt) will be greater
than 0.

The 24 by 24 matrix of Predicted Share measures of relative price similarity for our laptop
data, ∆(pr,pt, qr, qt), are listed in Table 8.

*44 Note that there are 576 = 24 × 24 matched model bilateral Fisher (1922)[28] indexes PF (r, t).
*45 See Diewert (2023)[23] for the axiomatic properties of this measure.
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Table 8 Predicted Share Measures of Relative Price Similarity for 24 Months

r ∆(r, 1) ∆(r, 2) ∆(r, 3) ∆(r, 4) ∆(r, 5) ∆(r, 6) ∆(r, 7) ∆(r, 8)

1 0.0000 0.0103 0.0088 0.0170 0.0312 0.0492 0.0514 0.0506
2 0.0103 0.0000 0.0007 0.0092 0.0146 0.0257 0.0268 0.0325
3 0.0088 0.0007 0.0000 0.0046 0.0057 0.0119 0.0163 0.0168
4 0.0170 0.0092 0.0046 0.0000 0.0116 0.0149 0.0210 0.0196
5 0.0312 0.0146 0.0057 0.0116 0.0000 0.0005 0.0079 0.0030
6 0.0492 0.0257 0.0119 0.0149 0.0005 0.0000 0.0075 0.0027
7 0.0514 0.0268 0.0163 0.0210 0.0079 0.0075 0.0000 0.0045
8 0.0506 0.0325 0.0168 0.0196 0.0030 0.0027 0.0045 0.0000
9 0.0719 0.0410 0.0229 0.0267 0.0074 0.0066 0.0044 0.0002
10 0.0643 0.0448 0.0236 0.0268 0.0071 0.0059 0.0057 0.0013
11 0.0876 0.0546 0.0319 0.0414 0.0173 0.0164 0.0067 0.0007
12 0.1009 0.0554 0.0340 0.0459 0.0215 0.0207 0.0075 0.0012
13 0.1396 0.0832 0.0497 0.0500 0.0285 0.0276 0.0240 0.0160
14 0.1412 0.0935 0.0568 0.0545 0.0347 0.0335 0.0320 0.0220
15 0.1487 0.1013 0.0620 0.0566 0.0405 0.0397 0.0368 0.0266
16 0.1784 0.1158 0.0799 0.0767 0.0511 0.0483 0.0457 0.0345
17 0.2995 0.2356 0.1480 0.1292 0.0929 0.0865 0.0926 0.0758
18 0.3798 0.2993 0.1719 0.1442 0.0852 0.0768 0.0829 0.0667
19 0.3937 0.3428 0.2843 0.2545 0.1547 0.1549 0.1583 0.1381
20 0.6077 0.5073 0.3255 0.2534 0.1732 0.1664 0.1724 0.1525
21 0.5892 0.5008 0.2837 0.2233 0.1554 0.1473 0.1849 0.1659
22 0.8498 0.6705 0.4450 0.3799 0.2317 0.2216 0.2461 0.2465
23 0.8646 0.6571 0.4914 0.4568 0.3629 0.3730 0.4268 0.4061
24 1.0132 0.8555 0.6126 0.4593 0.3182 0.3071 0.3539 0.2608

r ∆(r, 9) ∆(r, 10) ∆(r, 11) ∆(r, 12) ∆(r, 13) ∆(r, 14) ∆(r, 15) ∆(r, 16)

1 0.0719 0.0643 0.0876 0.1009 0.1396 0.1412 0.1487 0.1784
2 0.0410 0.0448 0.0546 0.0554 0.0832 0.0935 0.1013 0.1158
3 0.0229 0.0236 0.0319 0.0340 0.0497 0.0568 0.0620 0.0799
4 0.0267 0.0268 0.0414 0.0459 0.0500 0.0545 0.0566 0.0767
5 0.0074 0.0071 0.0173 0.0215 0.0285 0.0347 0.0405 0.0511
6 0.0066 0.0059 0.0164 0.0207 0.0276 0.0335 0.0397 0.0483
7 0.0044 0.0057 0.0067 0.0075 0.0240 0.0320 0.0368 0.0457
8 0.0002 0.0013 0.0007 0.0012 0.0160 0.0220 0.0266 0.0345
9 0.0000 0.0009 0.0002 0.0005 0.0144 0.0240 0.0295 0.0374
10 0.0009 0.0000 0.0007 0.0039 0.0174 0.0230 0.0289 0.0367
11 0.0002 0.0007 0.0000 0.0002 0.0133 0.0185 0.0239 0.0320
12 0.0005 0.0039 0.0002 0.0000 0.0132 0.0181 0.0237 0.0342
13 0.0144 0.0174 0.0133 0.0132 0.0000 0.0035 0.0032 0.0057
14 0.0240 0.0230 0.0185 0.0181 0.0035 0.0000 0.0006 0.0031
15 0.0295 0.0289 0.0239 0.0237 0.0032 0.0006 0.0000 0.0003
16 0.0374 0.0367 0.0320 0.0342 0.0057 0.0031 0.0003 0.0000
17 0.0763 0.0775 0.0744 0.0860 0.0184 0.0111 0.0039 0.0014
18 0.0687 0.0665 0.0682 0.0821 0.0230 0.0170 0.0072 0.0035
19 0.1392 0.1409 0.1344 0.1429 0.0355 0.0248 0.0112 0.0044
20 0.1532 0.1543 0.1571 0.1850 0.0380 0.0254 0.0101 0.0045
21 0.1657 0.1677 0.1711 0.1964 0.0443 0.0299 0.0148 0.0064
22 0.2442 0.2463 0.2457 0.2896 0.0842 0.0656 0.0486 0.0407
23 0.4061 0.4102 0.4165 0.4628 0.1022 0.0767 0.0550 0.0434
24 0.2626 0.2612 0.2816 0.3249 0.0937 0.0762 0.0567 0.0458

33



r ∆(r, 17) ∆(r, 18) ∆(r, 19) ∆(r, 20) ∆(r, 21) ∆(r, 22) ∆(r, 23) ∆(r, 24)

1 0.2995 0.3798 0.3937 0.6077 0.5892 0.8498 0.8646 1.0132
2 0.2356 0.2993 0.3428 0.5073 0.5008 0.6705 0.6571 0.8555
3 0.1480 0.1719 0.2843 0.3255 0.2837 0.4450 0.4914 0.6126
4 0.1292 0.1442 0.2545 0.2534 0.2233 0.3799 0.4568 0.4593
5 0.0929 0.0852 0.1547 0.1732 0.1554 0.2317 0.3629 0.3182
6 0.0865 0.0768 0.1549 0.1664 0.1473 0.2216 0.3730 0.3071
7 0.0926 0.0829 0.1583 0.1724 0.1849 0.2461 0.4268 0.3539
8 0.0758 0.0667 0.1381 0.1525 0.1659 0.2465 0.4061 0.2608
9 0.0763 0.0687 0.1392 0.1532 0.1657 0.2442 0.4061 0.2626
10 0.0775 0.0665 0.1409 0.1543 0.1677 0.2463 0.4102 0.2612
11 0.0744 0.0682 0.1344 0.1571 0.1711 0.2457 0.4165 0.2816
12 0.0860 0.0821 0.1429 0.1850 0.1964 0.2896 0.4628 0.3249
13 0.0184 0.0230 0.0355 0.0380 0.0443 0.0842 0.1022 0.0937
14 0.0111 0.0170 0.0248 0.0254 0.0299 0.0656 0.0767 0.0762
15 0.0039 0.0072 0.0112 0.0101 0.0148 0.0486 0.0550 0.0567
16 0.0014 0.0035 0.0044 0.0045 0.0064 0.0407 0.0434 0.0458
17 0.0000 0.0020 0.0025 0.0025 0.0036 0.0391 0.0412 0.0438
18 0.0020 0.0000 0.0012 0.0031 0.0019 0.0359 0.0358 0.0396
19 0.0025 0.0012 0.0000 0.0006 0.0010 0.0349 0.0332 0.0367
20 0.0025 0.0031 0.0006 0.0000 0.0006 0.0341 0.0336 0.0370
21 0.0036 0.0019 0.0010 0.0006 0.0000 0.0330 0.0313 0.0356
22 0.0391 0.0359 0.0349 0.0341 0.0330 0.0000 0.0009 0.0043
23 0.0412 0.0358 0.0332 0.0336 0.0313 0.0009 0.0000 0.0013
24 0.0438 0.0396 0.0367 0.0370 0.0356 0.0043 0.0013 0.0000

Table 8 can be used to construct the relative price similarity linked Predicted Share Price
index, P t

S , for t = 1, . . . , 24. We set P 1
S = 1. When comparing the prices of month 2 to the

prices of previous months, there is only one possible comparison in our window of data so that
we must compare p2 to p1. We use the matched model Fisher index PF (1, 2) defined by (81)
to define the similarity linked month 2 index. Thus P 2

S ≡ PF (1, 2). Now look at the column
in Table 8 that has the heading ∆(r, 3). Look at the first 2 entries in this column. We have
∆(1, 3) = 0.0088 and ∆(2, 3) = 0.0007. Since ∆(2, 3) is smaller than ∆(1, 3), we link month
3 to month 2 using the matched model Fisher index PF (2, 3). Thus P 3

S ≡ P 2
SPF (2, 3). Now

look at the column in Table 8 that has the heading ∆(r, 4). Look at the first 3 entries in this
column. We have ∆(1, 4) = 0.0170,∆(2, 4) = 0.0092 and ∆(3, 4) = 0.0046. Since ∆(3, 4) is
the smallest of these 3 measures, we link month 4 to month 3 using the matched model Fisher
index PF (3, 4). Thus P 4

S ≡ P 3
SPF (3, 4). This procedure can be continued until we look down

the column that has the heading ∆(r, 24). The smallest measure of relative price similarity in
the first 23 rows of this column is the entry for row 23 which has measure 0.0013. Thus we
link month 24 to month 23 using the matched model Fisher index PF (23, 24) which leads to
the following definition for P 24

S ≡ P 23
S PF (23, 24).*46

The relative price Predicted Share Similarity Linked indexes P t
S are listed in Table 9 below. We

also list the chained maximum overlap Laspeyres, Paasche and Fisher indexes, P t
LCH , P t

PCH

and P t
FCH in Table 9. Finally, for comparison purposes, Table 9 lists our “best” hedonic price

index from the previous sections, the Weighted Adjacent Period Time Product Dummy Index,
P t

WATPD, as well as the average laptop price index P t
A and the Unit Value price index P t

UV .

*46 The entire set of bilateral matched model Fisher links is as follows: 2-1; 3-2; 4-3; 5-3∗; 6-5; 7-6; 8-6∗;
9-8; 10-9; 11-9∗; 12-11; 13-12; 14-13; 15-14; 16-15; 17-16; 18-17; 19-18; 20-19; 21-20; 22-21; 23-22; 24-23.
Note that there are only 3 bilateral links that are not chain links. Thus the similarity linked indexes for
our data are likely to be close to the corresponding chained maximum overlap Fisher index
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See Chart 5 for plots of the indexes listed in Table 9.

Table 9 The Predicted Share Similarity Linked Price Index and Other Comparison Price Indexes

Month t P t
S P t

FCH P t
LCH P t

PCH P t
WATPD P t

A P t
UV

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.99299 0.99299 0.99499 0.99099 0.99358 1.03525 0.99703
3 0.98452 0.98452 0.98509 0.98395 0.98526 1.03503 1.00972
4 0.98264 0.98264 0.98278 0.98250 0.98456 1.02127 0.99538
5 0.97885 0.97249 0.97035 0.97463 0.97476 1.06279 1.02001
6 0.96824 0.96195 0.95918 0.96472 0.96444 1.06571 1.00173
7 0.94753 0.94137 0.93918 0.94357 0.94422 1.02721 0.98386
8 0.93457 0.92689 0.92393 0.92986 0.93034 1.02049 0.97422
9 0.92543 0.91782 0.91232 0.92335 0.91971 1.01082 0.95086
10 0.92600 0.91838 0.90527 0.93168 0.91611 1.03594 0.99085
11 0.89409 0.88924 0.87157 0.90727 0.89088 1.01327 0.94737
12 0.86152 0.85685 0.84120 0.87279 0.85948 0.94941 0.87888
13 0.82820 0.82371 0.81147 0.83614 0.82589 0.90281 0.84358
14 0.81744 0.81301 0.80318 0.82295 0.81473 0.91423 0.84563
15 0.79826 0.79394 0.78350 0.80451 0.79577 0.89907 0.84560
16 0.79677 0.79245 0.78126 0.80379 0.79492 0.93198 0.85366
17 0.78900 0.78472 0.77346 0.79615 0.78726 0.89127 0.80235
18 0.77988 0.77565 0.76547 0.78596 0.77805 0.86620 0.79067
19 0.76847 0.76431 0.75526 0.77346 0.76665 0.85147 0.79919
20 0.75289 0.74881 0.74032 0.75740 0.75214 0.83124 0.79319
21 0.74342 0.73939 0.73261 0.74623 0.74318 0.84793 0.77090
22 0.73398 0.73000 0.72431 0.73573 0.73369 0.90356 0.85345
23 0.71536 0.71148 0.70730 0.71569 0.71498 0.85940 0.84609
24 0.69347 0.68971 0.68948 0.68993 0.69385 0.89247 0.87814

Mean 0.85890 0.85468 0.84806 0.86139 0.85685 0.95287 0.90302

It can be seen that the relative price similarity linked indexes P t
S , the Fisher chained maximum

overlap indexes P t
FCH and the Adjacent Period Weighted Time Product Dummy price indexes

P t
WATPD are all extremely close to each other for our laptop data set. These three indexes

seem to be “best” for our particular application. It can also be seen that the chained Laspeyres
and Paasche indexes, P t

LCH and P t
PCH , are very close to our “best” indexes.
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The chained Fisher indexes have the advantage that no complex hedonic regression method-
ology is required to implement these indexes. They are also relatively easy to explain to the
public. However, in many applications where products go on sale or they are strongly seasonal
products, chained Fisher indexes may be subject to some chain drift and so the use of the
similarity linked indexes is recommended in this case. The disadvantages of the similarity
linked indexes are that the programming required to produce these indexes is more complex
and the indexes will be difficult to explain to the public.

The Adjacent Period Weighted Time Product Dummy indexes performed well in this appli-
cation. But in other applications where the products are not close substitutes, this method
can be biased because it basically assumes linear preferences for purchasers of the group of
products in scope.*47 Also if there is price bouncing behavior, this method will be subject to
possible chain drift.

8 Conclusion.

The following tentative conclusions emerge from our study of laptop prices in Japan:

• If quantity or expenditure weights are available in addition to price information, then
it is important to use these weights in the calculation of a weighted by economic im-
portance price index.

• Hedonic regressions that use amounts of product characteristics as independent variables
in the regressions are not recommended for two reasons: (i) it is expensive to collect
information on characteristics and (ii) it is likely that some important price determining
characteristics are not included in the list of characteristics.*48

*47 See Diewert and Fox (2022)[24] on this point.
*48 There is at least one important exception to this “rule”. Property price indexes must use property
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• The Adjacent Period Weighted Time Product Dummy index is a preferred index pro-
vided that: (i) prices and quantities do not fluctuate violently from period to period
due to product sales or strong seasonality and (ii) the products in scope are thought to
be close substitutes.

• The Predicted Share Similarity Linked index is also a preferred index that should be
satisfactory even if there are product sales or strong seasonality or if the products in
scope are not close substitutes. The disadvantages of this method are the complexity
of the computations and the difficulty of explaining the method to the public.

• In our particular application, our two preferred indexes were virtually identical. The
chained maximum overlap Fisher indexes were also extremely close to our two preferred
indexes and the chained maximum overlap Laspeyres and Paasche indexes were very
close to our preferred indexes. However, we do not expect these close approximations
to occur in other applications.

Data Appendix

The data can be obtained on request by emailing one of the authors.
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[30] Hardy, G.H., J.E. Littlewood and G. Pólya (1934), Inequalities, Cambridge: Cambridge
University Press.

[31] Hill, R.J. (1997), “A Taxonomy of Multilateral Methods for Making International Com-
parisons of Prices and Quantities”, Review of Income and Wealth 43(1), 49-69.

[32] Hill, R.J. (1999a), “Comparing Price Levels across Countries Using Minimum Spanning
Trees”, The Review of Economics and Statistics 81, 135-142.

[33] Hill, R.J. (1999b), “International Comparisons using Spanning Trees”, pp. 109-120 in
International and Interarea Comparisons of Income, Output and Prices, A. Heston and
R.E. Lipsey (eds.), Studies in Income and Wealth Volume 61, NBER, Chicago: The
University of Chicago Press.

[34] Hill, R.J. (2001), “Measuring Inflation and Growth Using Spanning Trees”, International

Economic Review 42, 167-185.
[35] Hill, R.J. (2004), “Constructing Price Indexes Across Space and Time: The Case of the

European Union”, American Economic Review 94, 1379-1410.
[36] Hill, R.J. (2009), “Comparing Per Capita Income Levels Across Countries Using Spanning

Trees: Robustness, Prior Restrictions, Hybrids and Hierarchies”, pp. 217-244 in Purchas-

ing Power Parities of Currencies: Recent Advances in Methods and Applications, D.S.
Prasada Rao (ed.), Cheltenham UK: Edward Elgar.

[37] Hill, R.J., D.S. Prasada Rao, S. Shankar and R. Hajargasht (2017), “Spatial Chaining
as a Way of Improving International Comparisons of Prices and Real Incomes”, paper
presented at the Meeting on the International Comparisons of Income, Prices and Pro-
duction, Princeton University, May 25-26.

[38] Hill, R.J. and M.P. Timmer (2006), “Standard Errors as Weights in Multilateral Price
Indexes”, Journal of Business and Economic Statistics 24:3, 366-377.

[39] Hill, T.P. (1988), “Recent Developments in Index Number Theory and Practice”, OECD

Economic Studies 10, 123-148.
[40] Kravis, I.B., A. Heston and R. Summers (1982), World Product and Income: International

Comparisons of Real Gross Product, Statistical Office of the United Nations and the World
Bank, Baltimore: The Johns Hopkins University Press.

[41] Muellbauer, J. (1974), “Household Production Theory, Quality and the .Hedonic Tech-
nique”, American Economic Review 64:6, 977-994.

[42] Rao, D.S. Prasada (1995), “On the Equivalence of the Generalized Country-Product-
Dummy (CPD) Method and the Rao-System for Multilateral Comparisons”, Working
Paper No. 5, Centre for International Comparisons, University of Pennsylvania, Philadel-
phia.

[43] Rao, D.S. Prasada (2004), “The Country-Product-Dummy Method: A Stochastic Ap-
proach to the Computation of Purchasing Power parities in the ICP”, paper presented at
the SSHRC Conference on Index Numbers and Productivity Measurement, June 30-July
3, 2004, Vancouver, Canada.

[44] Rao, D.S. Prasada (2005), “On the Equivalence of the Weighted Country Product Dummy
(CPD) Method and the Rao System for Multilateral Price Comparisons”, Review of In-

come and Wealth 51:4, 571-580.
[45] Rao, D.S. Prasada and G. Hajargasht (2016), “Stochastic Approach to Computation of

Purchasing Power Parities in the International Comparison Program”, Journal of Econo-

metrics 191:2, 414-425.
[46] Rao, D.S. Prasada and M.P Timmer (2003), “Purchasing Power Parities for Industry
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