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1. Introduction. 

 

An increasing number of business firms are willing to share their price and quantity data on their sales of 

consumer goods and services to a national (or international) statistical office. These data are often referred 

to as scanner data.  

 

Some scanner data involves high technology products which are characterized by product churn; i.e., the 

rapid introduction of new models and products and the short time that these new products are sold on the 

marketplace. This study will look at possible methods that statistical offices could use for quality adjusting 

this type of data. Our empirical example will use data on the sales of laptops in Japan. 

 

A standard method for quality adjustment is the use of hedonic regressions. These hedonic regressions 

regress the price of a product (or a transformation of the price) on a time dummy variable and on either a 

dummy variable for the product or on the amounts of the price determining characteristics of the product. 

The first type of model is called a Time Product Dummy Hedonic regression while the second type of model 

is called a Time Dummy Characteristics Hedonic regression. The theory associated with these two classes 

of model will be discussed in sections 2 and 3 below. In particular, we will relate each hedonic regression 

to an explicit functional form for purchaser utility functions.  

 

Section 4 discusses our laptop data for Japan which covers the 24 months in 2021 and 2022. The empirical 

hedonic regressions studied in this section are Time Dummy Characteristics type regressions. We used 

characteristics data on eight separate laptop characteristics in this section. We consider both unweighted (or 

more properly, equally weighted) least squares regression models with characteristics in this section. This 

section draws on the theory explained in section 3.  

 

Section 5 draws on the theory explained in section 2; i.e., we consider weighted and unweighted Time 

Product Dummy hedonic regressions in this section. The models in this section use only a single product 

characteristic: the Japanese product code for each laptop sale. We consider a single panel regression versus 

a sequence of bilateral regressions that utilize the price and quantity data for two consecutive periods. The 

latter type of model can be implemented in real time and is called an Adjacent Period Time Product Dummy 

hedonic regression model.  

 

Section 6 considers alternatives to hedonic regression models based on standard index number theory; i.e., 

maximum overlap chained Laspeyres, Paasche and Fisher indexes are computed in this section. We also 

compute the Predicted Share Similarity linked price indexes which have only been developed recently. The 

indexes calculated in this section are also “practical” indexes. 

 

Unfortunately, the various real time indexes that are considered in sections 4-6 can suffer from a chain drift 
problem; i.e., an index for period t which is calculated by chaining together the results of adjacent period 

bilateral indexes is not equal to the corresponding index that directly compares the prices of period 1 to the 

prices of period t. In section 7, drawing on the work of Chessa (2016) (2021) an Expanding Window variant 

of the Implicit Weighted Time Product Dummy index is implemented which solves the chain drift problem 

(but may not be suitable if the products in scope are not close substitutes).     

 

Section 8 lists some tentative conclusions that we can draw from this study. We also discuss the controversy 

between Krsinich (2016) and de Haan, Hendriks and Scholz (2021) on the merits of the Time Product 

Dummy and the Time Dummy Characteristics approaches to hedonic regressions.  
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The possible contributions of the present paper to the quality change literature include the following: 

 

• A number of possible methods for dealing with the problem of quality change in the context of 

constructing price indexes are compared using the same data set. In particular, hedonic regression 

methods are compared to some multilateral index number methods.  

• In section 2, we show that hedonic regression theory can be regarded as a special case of regular 

consumer theory where the preferences of purchasers are estimated. 

• In section 3, we show how alternative assumptions about the functional form for the characteristics 

hedonic surface are related to the functional form for the purchaser’s utility function.  

• At the end of section 6, in the case where each product has its own unique characteristic and there 

are no missing observations in the two periods being compared, we show that hedonic imputation 

leads to the Fisher index using our economic approach to the measurement of quality change.  

• In section 7, we show that the expanding window methodology pioneered by Chessa (2016) (2021) 

leads to indexes which are free from chain drift.  

 

2. Hedonic Regressions and Utility Theory: The Time Product Dummy Hedonic Regression 

Model. 

 

The problem of adjusting the prices of similar products due to changes in the quality of the products should 

be related to the usefulness or utility of the products to purchasers. Each product in scope has varying 

amounts of various characteristics which will determine the utility of the product to purchasers. A hedonic 
regression is typically based on regressing a product price (or a transformation of the product price) on the 

amounts of the various price determining characteristics of the product. An alternative hedonic regression 

model may be based on regressing the product prices on product dummy variables; i.e., each product has 

its own unique bundle of price determining characteristics which can be represented by a product dummy 

variable.1 Each of these hedonic regression models can be related to specific functional forms for purchaser 

utility functions. In this section, we consider the second class of hedonic regression models and in the 

following section, we consider the first class of hedonic regression models that regress product prices on 

product characteristics. 

 

Assume that there are N products in scope and T time periods. Let pt ≡ [pt1,...,ptN] and qt ≡ [qt1,...,qtN] denote 

the (unit value) price and quantity vectors for the products in scope  for time periods t = 1,...,T.2 Initially, 

we assume that there are no missing prices or quantities so that all prices and quantities are positive. We 

assume that each purchaser of the N products maximizes the following linear function f(q) in each time 

period: 

 

 
1 This alternative class of models is more general than the first class so one could ask why should we consider 

estimating the characteristics model in place of the time product dummy variable model? Product churn may be so 

great that there are not enough degrees of freedom to accurately estimate the product dummy variables. Consider as a 

limiting case where every product is a new product in each period. The Time Product Dummy (TPD) regression model 

cannot be estimated in this case. Secondly, a new improved product loaded with useful characteristics may not cause 

older products to exit the market immediately due to incomplete information on the part of purchasers; i.e., consumers 

may not realize immediately how good the new product is until some time has passed. Krsinich (2016) following 

Diewert (2004), explained how the TPD hedonic regression model cannot accurately estimate a quality adjustment 

factor for a new product during the period of its introduction.   
2 The analysis in this section follows that of Diewert (2022; section 5). 



4 

 

(1) f(q) = f(q1,q2,...,qN) ≡ Σn=1
N αnqn ≡ α⋅q 

 

where the αn are positive parameters, which can be interpreted as quality adjustment factors. Under the 

assumption of utility maximizing behavior on the part of each purchaser of the N commodities and assuming 

that each purchaser in period t faces the same period t price vector pt,3 it can be shown that the aggregate 

period t vector of purchases qt is a solution to the aggregate period t utility maximization problem, max q 

{α⋅q : pt⋅q = et ; q ≥ 0N} where et is equal to aggregate period t expenditure on the N products. The first 

order conditions for an interior solution, qt, λt to the period t aggregate utility maximization problem are 

the following N+1 equations, where λt is a Lagrange multiplier: 

 

(2) α = λtpt ; 

(3) pt⋅qt = et. 

 

Take the inner product of both sides of equations (2) with the observed period t aggregate quantity vector 

qt and solve the resulting equation for λt. Using equation (3), we obtain the following expression for λt: 

 

(4) λt = α⋅qt/et > 0. 

  

Define πt as follows: 

 

(5) πt ≡ 1/λt.  

 

Divide both sides of equations (2) by λt and using definition (5), we obtain the basic time product dummy 
estimating equations for period t:4 

 

(6) ptn = πtαn ;                                                                                                               t = 1,…,T ; n = 1,…,N. 

 

The period t aggregate price and quantity levels for this model, Pt and Qt, are defined as follows: 

 

(7) Qt ≡ α⋅qt ; 

(8) Pt ≡ et/Qt  

          =  πt 

 

where the second equation in (8) follows using (4) and (5). Thus equations (6) have the following 

interpretation: the period t price of product n, ptn, is equal to the period t price level πt times a quality 

adjustment parameter for product n, αn.5 

 
3 These are strong assumptions but strong assumptions are required in order to relate hedonic regression models to the 

utility of the products in scope. 
4 This model dates back to Court (1939; 109-111). He transformed these equations by taking logarithms of both sides 

of equations (6) and adding error terms. Diewert (2003b) (2023) considered the index number implications of making 

alternative transformations of the basic equations (6) and endorsed Court’s transformation in the end. 
5 Note that αn is the marginal utility to a purchaser of a unit of product n for n = 1,…,N. It can be shown that the period 

t price index πt is equal to c(pt) where c(p) is the unit cost function that is dual to the utility function f(q); see Diewert 

(1974) on duality theory. Let p ≡ [p1,…,pN] be a vector of positive prices. The unit cost function that corresponds to 

the linear utility function f(q) = Σn=1
N αnqn is c(p) = min n {pn/αn : n = 1,…,N}. If utility maximizing purchasers buy 
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At this point, it is necessary to point out that our consumer theory derivation of equations (6) is not accepted 

by all economists. Rosen (1974) and Triplett (1987) (2004) have argued for a more general approach to the 

derivation of hedonic regression models that is based on supply conditions as well as on demand conditions. 

The present approach is obviously based on only consumer (or purchaser) preferences. This consumer 

oriented approach was endorsed by Griliches (1971; 14-15), Muellbauer (1974; 988) and Diewert (2003a) 

(2003b). Of course, the functional form assumptions which justify the present consumer approach are quite 

restrictive but, nevertheless, it is useful to imbed hedonic regression models in a traditional consumer 

demand setting. 

     

Empirically, equations (6) are unlikely to hold exactly. Following Court (1939), we assume that the exact 

model defined by (6) holds only to some degree of approximation and so we add error terms etn to the right 

hand sides of equations (6). The unknown parameters, π ≡ [π1,...,πT] and α ≡ [α1,...,αN], can be estimated 

as solutions to the following (nonlinear) least squares minimization problem: 

 

(9) min α, π Σn=1
N Σt=1

T [ptn −πtαn]2 . 

 

However, Diewert (2023) showed that the estimated price levels πt
* that solve the minimization problem 

(9) had unsatisfactory axiomatic properties: for example, the estimated period t price levels πt are not 

invariant to the units of measurement for the products. Thus we follow Court and take logarithms of both 

sides of the exact equations (6) and add error terms to the resulting equations. This leads to the following 

least squares minimization problem:6 

 

(10) min ρ, β Σn=1
N Σt =1

T [lnptn − ρt − βn]2 

 

where the new parameters ρt and βn are defined as the logarithms of the πt and αn; i.e., define : 

 

(11) ρt ≡ lnπt ;                                                                                                                                 t = 1,...,T; 

(12) βn ≡ lnαn ;                                                                                                                              n = 1,...,N. 

 

However, the least squares minimization problem defined by (10) does not weight the log price terms [lnptn 

− ρt − βn]2 by their economic importance and so we consider the following weighted least squares 
minimization problem:7 

(13) min ρ, β Σn=1
N Σt =1

T stn[lnptn − ρt − βn]2 

 

positive amounts of all N products, then it must be the case that p1/α1 = p2/α2 = … = pN/αN and purchasers get the same 

amount of utility from the purchase of one unit of each product.  
6 This model is an adaptation of Summer’s (1973) country product dummy model to the time series context. See 

Aizcorbe, Corrado and Doms (2000) for an early application of this model in the time series context. 
7 Rao (1995) (2004) (2005; 574) was the first to consider this model using expenditure share weights; see also Diewert 

(2004). However, Balk (1980; 70) suggested this class of models much earlier using somewhat different weights. For 

the case of 2 periods, see Diewert (2004) (2005a) and de Haan (2004a). 
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where stn is the expenditure share of product n in period t. The first order necessary conditions for ρ* ≡ 

[ρ1
*,...,ρT

*] and β* ≡ [β1
*,...,βN

*] to solve (13) simplify to the following T equations (14) and N equations 

(15):8 

(14) ρt
* = Σn=1

N stn[lnptn − βn
*] ;                                                                                                       t = 1,...,T; 

(15) βn
* = Σt=1

T stn[lnptn − ρt
*]/(Σt=1

T stn) ;                                                                                       n = 1,...,N. 

Solutions to (14) and (15) are not unique: if ρ* ≡ [ρ1
*,...,ρT

*] and β* ≡ [β1
*,...,βN

*] solve (14) and (15), then 

so do [ρ1
*+λ,...,ρT

*+λ] and [β1
*−λ,...,βN

*−λ] for all λ. Thus we can set ρ1
* = 0 in equations (15) and drop 

the first equation in (14) and use linear algebra to find a unique solution for the resulting equations.9 Once 

the solution is found, define the estimated price levels πt
* and quality adjustment factors αn

* as follows: 

(16) πt
* ≡ exp[ρt

*] ; t = 1,...,T; αn
* ≡ exp[βn

*] ; n = 1,...,N.   

Note that since we have set ρ1
* = 0, π1

* = 1. The price levels πt
* defined by (16) are called the Weighted 

Time Product Dummy price levels.  Note that the resulting price index between periods t and τ is defined as 

the ratio of the period t price level to the period τ price level and is equal to the following expression: 

(17) πt
*/πτ

* =  ∏n=1
N exp[stnln(ptn/αn

*)]/∏n=1
N exp[sτnln(pτn/αn

*)] ;                                                1 ≤ t, τ ≤ T. 

If stn = sτn for n = 1,...,N, then πt
*/πτ

* will equal a weighted geometric mean of the price ratios ptn/pτn where 

the weight for ptn/pτn is the common expenditure share stn = sτn. Thus πt
*/πτ

* will not depend on the αn
* in 

this case.  

 

Once the estimates for the πt and αn have been computed, we have two methods for constructing period by 

period price and quantity levels, Pt and Qt for t = 1,...,T. The πt
* estimates can be used to form the aggregates 

using equations (18) or the αn
* estimates can be used to form the aggregate period t price and quantity levels 

using equations (19):10 

 

(18)  Pt*  ≡ πt
* ;    Qt*  ≡ pt⋅qt/πt

* ;                                                                                                      t = 1,...,T; 

(19) Qt** ≡ α*⋅qt ; Pt** ≡ pt⋅qt/α*⋅qt ;                                                                                                   t =1,...,T. 

 

Define the error terms etn ≡ lnptn − lnπt
* − lnαn

* for t = 1,...,T and n = 1,...,N. If all etn = 0, then Pt* will equal 

Pt** and Qt* will equal Qt** for t = 1,...,T.11 However, if the error terms are not all equal to zero, then the 

 
8 If information on expenditures or quantities is not available, then the weighted least squares problem is replaced by 

the unweighted least squares problem (10). The first order conditions for the simplified problem (10) are given by (14) 

and (15) where the shares stn are replaced by the numbers 1/N for all t and n. In this unweighted case, the price index 

defined by (17) collapses down to a Jevons index.  
9 Alternatively, one can set up the linear regression model defined by (stn)1/2lnptn = (stn)1/2ρt + (stn)1/2βn + etn for t = 

1,...,T and n = 1,...,N where we set ρ1 = 0 to avoid exact multicollinearity. This is the procedure we used in our 

empirical work below. Iterating between equations (14) and (15) will also generate a solution to these equations and 

the solution can be normalized so that ρ1 = 0. 
10 Note that the price level Pt** defined in (19) is a quality adjusted unit value index of the type studied by de Haan 

(2004b).  
11 If all etn = 0, then the unweighted (or more accurately, the equally weighted) least squares minimization problem 

defined by (10) will generate the same solution as is generated by the weighted least squares minimization problem 
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statistical agency will have to decide on pragmatic grounds which option to use to form period t price and 

quantity levels: (18) or (19). 

 

It is reasonably straightforward to generalize the weighted least squares minimization problem (13) to the 

case where there are missing prices and quantities. Assume that there are N products and T time periods but 

not all products are purchased (or sold) in all time periods. For each period t, define the set of products n 

that are present in period t as S(t) ≡ {n: ptn > 0} for t = 1,2,...,T. It is assumed that these sets are not empty; 

i.e., at least one product is purchased in each period. For each product n, define the set of periods t where 

product n is present as S*(n) ≡ {t: ptn > 0}. Again, assume that these sets are not empty; i.e., each product is 

sold in at least one time period. The generalization of (13) to the case of missing products is the following 

weighted least squares minimization problem:12 

 

(20) min ρ,β Σt=1
T Σn∈S(t) stn[lnptn − ρt − βn]2 = min ρ,β Σn=1

N Σt∈S*(n) stn[lnptn − ρt − βn]2. 

 

Note that there are two equivalent ways of writing the least squares minimization problem; the first way 

uses the definition for the set of products n present in period t, S(t), while the second way uses the definition 

for the set of periods t where product n is present, S*(n). The first order necessary conditions for ρ1,...,ρT 

and β1,...,βN to solve (20) are the following counterparts to (14) and (15):13 

 

(21) Σn∈S(t) stn[ρt
* + βn

*] = Σn∈S(t) stnlnptn ;                                                                                          t = 1,...,T; 

(22) Σt∈S*(n) stn[ρt
* + βn

*] = Σt∈S*(n) stnlnptn ;                                                                                      n = 1,...,N. 

 

As usual, the solution to (21) and (22) is not unique: if ρ* ≡ [ρ1
*,...,ρT

*] and β* ≡ [β1
*,...,βN

*] solve (21) and 

(22), then so do [ρ1
*+λ,...,ρT

*+λ] and [β1
*−λ,...,βN

*−λ] for all λ. Thus we can set ρ1
* = 0 in equations (22), 

drop the first equation in (21) and use linear algebra to find a unique solution for the resulting equations.14 

Define the estimated price levels πt
* and quality adjustment factors αn

* by definitions (11) and (12). 

Substitute these definitions into equations (21) and (22). After some rearrangement, equations (21) and (22) 

become the following equations: 

 

(23) πt
*  = exp[Σn∈S(t) stnln(ptn/αn

*)] ;                                                                                                 t = 1,...,T; 

(24) αn
* = exp[Σt∈S*(n) stnln(ptn/πt

*)/Σt∈S*(n) stn] ;                                                                               n = 1,...,N. 

 

Once the estimates for the πt and αn have been computed, we have the usual two methods for constructing 

period by period price and quantity levels, Pt and Qt for t = 1,...,T. The counterparts to definitions (18) are 

the following definitions: 

 

(25) Pt* ≡ πt
* = exp[Σn∈S(t) stnln(ptn/αn

*)]  ;                                                                                       t = 1,...,T; 

(26) Qt* ≡ Σn∈S(t) ptnqtn/Pt* ;                                                                                                               t = 1,...,T. 

 

defined by (13). This fact gives rise to the following rule of thumb: if the unweighted problem (10) fits the data very 

well, then it is not necessary to work with the more complicated weighted problem (13).   
12 If only price information is available, then replace the stn in (20) by 1/N(t) where N(t) is the number of products that 

are purchased in period t.  
13 The unweighted (i.e., equally weighted) counterpart least squares minimization problem to (20) sets all stn = 1 for 

n∈S(t). The resulting first order conditions are equations (21) and (22) with the positive stn replaced with a 1. 
14 The resulting system of T − 1 + N equations needs to be of full rank in order to obtain a unique solution. The solution 

can also be obtained by running a linear regression. 
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Thus Pt* is a weighted geometric mean of the quality adjusted prices ptn/αn
* that are present in period t where 

the weight for ptn/αn
* is the corresponding period t expenditure (or sales) share for product n in period t, stn. 

The counterparts to definitions (19) are the following definitions: 

 

(27) Qt** ≡ Σn∈S(t) αn
*qtn ;                                                                                                                   t = 1,...,T; 

(28) Pt** ≡ Σn∈S(t) ptnqtn/Qt**                                                                                                                t = 1,...,T; 

              = Σn∈S(t) ptnqtn/Σn∈S(t) αn
*qtn                                                                                                  using (27) 

              = Σn∈S(t) ptnqtn/Σn∈S(t) αn
*(ptn)−1ptnqtn  

              = [Σn∈S(t) stn(ptn/αn
*)−1]−1  

              ≤ exp[Σn∈S(t) stnln(ptn/αn
*)]  

              = Pt* 

 

where the inequality follows from Schlömilch’s inequality15; i.e., a weighted harmonic mean of the quality 

adjusted prices ptn/αn
* that are present in period t, Pt**, will always be less than or equal to the corresponding 

weighted geometric mean of the prices where both averages use the same share weights stn when forming 

the two weighted averages. The inequalities Pt** ≤  Pt* imply the inequalities Qt** ≥ Qt* for t = 1,...,T. The 

inequalities (28) are due to de Haan (2004b) (2010) and de Haan and Krsinich (2014) (2018; 763). The 

model used by de Haan and Krsinich is a more general hedonic regression model which includes the time 

dummy model used in the present section as a special case. 

  

If the estimated errors etn
* ≡ lnptn − ρt

* − βn
* that implicitly appear in the weighted least squares minimization 

problem turn out to equal 0, then the equations ptn = πtαn for t = 1,...,T, n∈S(t) hold without error and the 

hedonic regression provides a good approximation to reality. Moreover, under these conditions, Pt* will 

equal Pt** for all t. If the fit of the model is not good, then it may be necessary to look at other methods for 

quality adjustment. 

  

The solution to the weighted least squares regression problem defined by (20) can be used to generate 

imputed prices for the missing products. Thus if product n in period t is missing, define ptn ≡ πt
*αn

*. The 

corresponding missing quantity is defined as qtn ≡ 0. Some statistical agencies use hedonic regression 

models to generate imputed prices for missing prices and then use these imputed prices in their chosen 

index number formula.  

 

One unsatisfactory property of the WTPD price levels πt
* is the following one:  a product that is available 

in only one period out of the T periods has no influence on the aggregate price levels πt
*.16 This means that 

the price of a new product that appears in period T has no influence on the price levels. The hedonic 

regression models in the next section that make use of information on the characteristics of the products do 

not have this unsatisfactory property of the weighted time product dummy hedonic regression models 

studied in this section. 

 

3. The Time Dummy Hedonic Regression Model with Characteristics Information. 

 

 
15 See Hardy, Littlewood and Pólya (1934; 26). 
16 Diewert (2004) established this property. 
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In this section, it is again assumed that there are N products that are available over a window of T periods. 

As in the previous sections, we again assume that the quantity aggregator function for the N products is the 

linear function, f(q) ≡ α⋅q = Σn=1
N αnqn where qn is the quantity of product n purchased or sold in the period 

under consideration and αn is the quality adjustment factor for product n. What is new is the assumption 

that the quality adjustment factors are functions of a vector of K characteristics of the products. Thus it is 

assumed that product n has the vector of characteristics zn ≡ [zn1,zn2,...,znK] for n = 1,...,N. We assume that 

this information on the characteristics of each product has been collected.17 The new assumption in this 

section is that the quality adjustment factors αn are functions of the vector of characteristics zn for each 

product and the same function, g(z) can be used to quality adjust each product; i.e., we have the following 

assumptions: 

 

(29) αn ≡ g(zn) = g(zn1,zn2,...,znK) ;                                                                                                  n = 1,...,N. 

 

Thus each product n has its own unique mix of characteristics zn but the same function g can be used to 

determine the relative utility to purchasers of the products. Define the period t quantity vector as qt = 

[qt1,...,qtN] for t = 1,...,T. If product n is missing in period t, then define qtn ≡ 0. Using the above assumptions, 

the aggregate quantity level Qt for period t is defined as: 

 

(30) Qt ≡ f(qt) ≡ Σn=1
N αnqtn = Σn=1

N g(zn)qtn ;                                                                                  t = 1,...,T. 

 

Using our assumption of (exact) utility maximizing behavior with the linear utility function defined by (30), 

equations (6) become the following equations: 

 

(31) ptn = πtg(zn) ;                                                                                                                 t = 1,...,T; n∈S(t). 

 

The assumption of approximate utility maximizing behavior is more realistic, so error terms need to be 

appended to equations (31). We also need to choose a functional form for the quality adjustment function 

or hedonic valuation function g(z) = g(z1,...,zK). We will not be able to estimate the parameters for a general 

valuation function, so we assume that g(z) is the product of K separate functions of one variable of the form 

gk(zk); i.e., we assume that g(z) is defined as follows:  

 

(32) g(z1,...,zK) ≡ g1(z1)g2(z2)…gK(zK).  

 

This is the assumption of multiplicative separability. The assumption that g(z1,…,zK) is additively separable 

in its characteristics is g(z1,...,zK) ≡ g1(z1) + g2(z2) +…+ gK(zK). Many other assumptions about the functional 

form for g are possible. If all zk > 0, one could assume that lng(z1,...,zK) is equal to γ0 + Σk=1
K γklnzk + 

½Σi=1
KΣk=1

K γiklnzilnzk where γik = γki for all i and k (translog functional form). Or one may try to estimate a 

general nonparametric approximation to g(z1,...,zK). The problem with assuming very general functional 

forms for g(z) is that there will not be enough degrees of freedom to estimate all of the parameters that 

describe the general functional form. Thus typically investigators using the characteristics approach to the 

estimation of hedonic regressions assume that lng(z1,...,zK) is equal to γ0 + Σk=1
K γklnzk, which is a first order 

Taylor series approximation (in logs) to a general g.       

 
17 Basically, we want to collect information on the most important price determining characteristics of each product; 

see Triplett (2004) and Aizcorbe (2014) for many examples of this type of hedonic regression and references to the 

applied literature on this topic. Of course, the fact that information on product characteristics must be collected is a 

disadvantage of the class of models studied in this section.   
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For our particular example, each characteristic takes on only a finite number of discrete values so in the 

empirical sections of this paper, we will assume that each gk(zk) is a step function or a “plateaux” function 

which jumps in value at a finite number of discrete numbers in the range of each zk. This assumption will 

eventually lead to a regression model where all of the independent variables are dummy variables.18 

 

For each characteristic k, we partition the observed sample range of the zk into N(k) discrete intervals which 

exactly cover the sample range. Let I(k,j) denote the jth interval for the variable zk for k = 1,…,K and j = 

1,…,N(k). For each product observation n in period t (which has price ptn) and for each characteristic k, 

define the indicator function (or dummy variable) Dtn,k,j as follows: 

 

(33) Dtn,k,j ≡ 1 if observation n in period t has the amount of characteristic k, znk, that belongs to the jth 

                       interval for characteristic k, I(k,j) where k = 1,…,K and j = 1,…,N(k); 

                 ≡ 0 if the amount of characteristic k for observation n in period t, znk, does not belong to the  

                       interval I(k,j). 

 

We use definitions (33) in order to define g(zn) = g(zn1,zn2,…,znK) for product n if it is purchased in period 

t:19 

 

(34) g(zn1,zn2,…,znK) ≡ (Σj=1
N(1) a1jDtn,1,j)(Σj=1

N(2) a2jDtn,2,j) … (Σj=1
N(K) aKjDtn,K,j). 

 

Let P be the vector of all observed prices of the products in scope over the T periods. Substitute equations 

(34) into equations and we obtain the following system of possible estimating equations where the πt and 

a1j, a2j, …, aKj are unknown parameters: 

 

(35) ptn = πt(Σj=1
N(1) a1jDtn,1,j)(Σj=1

N(2) a2jDtn,2,j) … (Σj=1
N(K) aKjDtn,K,j) ;                                   t = 1,...,T; n∈S(t). 

 

Take logarithms of both sides of equations (35) in order to obtain the following system of estimating 

equations:20 

 

(36) lnptn = lnπt + Σj=1
N(1) (lna1j)Dtn,1,j + Σj=1

N(2) (lna2j)Dtn,2,j + … + Σj=1
N(K) (lnaKj)Dtn,K,j ;    t = 1,...,T; n∈S(t). 

 

Define the following parameters: 

 

(37) ρt ≡ lnπt ; t = 1,…,T; b1j ≡ lna1j ; j = 1,…,N(1); b2j ≡ lna2j ; j = 1,…,N(2); …; bKj ≡ lnaKj ; j = 1,…,N(K). 

 

Upon substituting definitions (37) into equations (36) and adding error terms etn, we obtain the following 

linear regression model: 

 
18 Instead of assuming that the gk(zk) are step functions, one could assume that they are linear, quadratic or cubic spline 

functions of one variable. Our step function model is identical to Krsinich’s (2016; 380) Main Effects Model which 

is a special case of her Fully Interacted Time Dummy Hedonic Model. Using the notation in (38) above, her fully 

interacted model would partition the characteristics space into N(1)×N(2)×…×N(K) distinct cells and assign a 

parameter for each of these many cells. Of course, in any practical example, most of these cells would be empty; i.e., 

there would be no product that had the characteristics represented by any given finely defined cell.   
19 If product n is purchased in periods t and τ, then the expression on the right hand side of (34) remains the same.   
20 The hedonic price index which is generated by the model defined by equations (35) is not invariant to changes in 

the units of measurement of the characteristics; see Diewert (2023).  
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(38) lnptn = Σt=1
T lnρt + Σj=1

N(1) b1jDtn,1,j + Σj=1
N(2) b2jDtn,2,j + … + Σj=1

N(K) bKjDtn,K,j + etn;      t = 1,...,T; n∈S(t). 

 

There are a total of T + N(1) + N(2) + … + N(K) unknown parameters in equations (38). The least squares 

minimization problem that corresponds to the linear regression model defined by (38) is the following least 

squares minimization problem: 

 

(39) min ρ, b(1), b(2), …, b(K) Σt=1
T Σn∈S(t) {lnptn −  ρt − Σj=1

N(1) b1jDtn,1,j − Σj=1
N(2) b2jDtn,2,j − … − Σj=1

N(K) bKjDtn,K,j}2 

 

where ρ is the vector [ρ1, ρ2, …, ρT] and b(k) is the vector [bk1, bk2, …, bkN(k)] for k = 1,2….,K. Solutions 

to the least squares minimization problem will exist but a solution will not be unique.21 Using equations 

(35), it can be seen that components of the vectors π and a(k) ≡ [ak1, ak2, …, akN(k)] for k = 1,2,…,K are 

multiplied together to give us predicted values for the ptn. Thus the parameters in any one of these K+1 

vectors can be arbitrary but at least one component of each of the remaining vectors must be set equal to a 

constant. A useful unique solution to (39) is obtained by setting ρ1 = 0 (which corresponds to π1 = 1) and 

setting bk1 = 0 (which implies ak1 = 1) for k = 2,…,K (so b11 is not normalized). 

 

However, in our empirical work, we used a slightly different parameterization for g(z) which treated each 

characteristic in a symmetric fashion. We replaced assumptions (35) with the following assumptions: 

 

(40) ptn = πta0(Σj=1
N(1) a1jDtn,1,j)(Σj=1

N(2) a2jDtn,2,j) … (Σj=1
N(K) aKjDtn,K,j) ;                                   t = 1,...,T; n∈S(t). 

  

The new restrictions on the parameters are as follows: π1 = 1; ak1 = 1 for k = 1,…,K. This new 

parameterization of g(z) does not affect the πt but in addition to treating the characteristics in a symmetric 

fashion, it allows the estimation of a constant term, a0, in the regression model. Define b0 ≡ lna0 and take 

logarithms of both sides of (40) and we obtain the following linear regression model:   

 

(41) lnptn = ρt + b0 + Σj=2
N(1) b1jDtn,1,j + Σj=2

N(2) b2jDtn,2,j + … + Σj=2
N(K) bKjDtn,K,j + etn;    t = 1,...,T; n∈S(t). 

 

The restrictions that bk1 ≡ lnak1 = 0 for k = 1,…,K have been imposed in equations (41). An additional 

restriction that is required to obtain a unique solution to the counterpart to the least squares regression 

problem defined by (39) is ρ1 = 0. The linear regression defined by (41) (with ρ1 = 0) can be run and 

estimates for the unknown parameters [ρ2
*, …, ρT

*], b0
* and [bk2

*, …, bkN(k)
*] for k = 1,2….,K will be 

available. Use these estimates to define the logarithms of the quality adjustment factors αn for all products 

n that were purchased in period t:22 

 

(42) βtn
* ≡ b0

* + Σj=2
N(1) b1j

*
 Dtn,1,j + Σj=2

N(2) b2j
*

 Dtn,2,j + … + Σj=2
N(K) bKj

*
 Dtn,K,j ;                   t = 1,...,T; n∈S(t). 

 

The corresponding estimated product n quality adjustment factors αtn
* are obtained by exponentiating the 

βtn
*: 

 

(43) αtn
* ≡ exp[βtn

*] ;                                                                                                              t = 1,...,T; n∈S(t). 

 
21 Thus the X matrix that corresponds to the linear regression model defined by equations (36) will not have full 

column rank. 
22 If product n is available in multiple periods, the quality adjustment factors remain the same across periods. 
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Using the above αtn
*, we can form a direct estimate for the aggregate quantity or utility obtained by 

purchasers during period t: 

 

(44) Qt** ≡ Σn∈S(t) αtn
*qtn ;                                                                                                                   t = 1,...,T. 

 

The corresponding period t price level obtained indirectly, Pt**, is defined by deflating period t expenditure 

by period t aggregate quantity: 

 

(45) Pt** ≡ Σn∈S(t) ptnqtn/Qt** = Σn∈S(t) ptnqtn/Σn∈S(t) αtn
*qtn ;                                                                   t = 1,…,T. 

                                                                                                                   

In order to obtain a useful expression for the direct estimate for the period t price level, πt, look at the first 

order conditions for minimizing the sum of squared errors with respect to ρt: 

 

(46) 0 = Σn∈S(t) {lnptn −  ρt
* − b0

*+ Σj=1
N(1) b1j

*
 Dtn,1,j − Σj=1

N(2) b2j
*

 Dtn,2,j − … − Σj=1
N(K) bKj

*
 Dtn,K.j}     t = 2,…,T 

          = Σn∈S(t) {lnptn −  ρt
* − βn

*}  

 

where we used definitions (42) to derive the second equality. Let N(t) be the number of products purchased 

in period t for t = 1,…,T. Using definitions (37) and (42), equations (46) imply that the direct estimate of 

the period t price level πt
* is equal to: 

 

(47) πt
* = Πn∈S(t)(ptn/αtn

*)1/N(t) ≡ Pt* ;                                                                                                    t = 2,…,T. 

 

Thus the direct estimate for the period t price level Pt* is equal to the geometric mean of the period t quality 

adjusted prices (ptn/αtn
*) for the products that were purchased in period t. Note that this price level can be 

calculated using price information alone whereas the indirect measure Pt** requires price and quantity 

information on the purchase of products during period t.  

 

A problem with the least squares minimization problem defined by (41) is that it does not take the economic 

importance of the products into account. Thus, we consider the corresponding weighted least squares 

problem defined below: 

 

(48) min ρ, b’s Σt=1
T Σn∈S(t) stn{lnptn −  ρt  −  b0 − Σj=2

N(1) b1jDtn,1,j − Σj=2
N(2) b2jDtn,2,j − … − Σ2=1

N(K) bKjDtn,K,j}2 

 

where stn = ptnqtn/Σj∈S(t) ptjqtj for t = 1,…,T and n∈S(t) and we use the same definitions as were used in the 

unweighted (or more properly, the equally weighted) least squares minimization problem defined below 

(39).  

 

The new weighted counterpart estimating equations to the linear regression model that was defined by 

equations (41) is given below: 

 

(49) (stn)1/2lnptn = (stn)1/2(ρt + b0 + Σj=2
N(1) b1jDtn,1,j + Σj=2

N(2) b2jDtn,2,j + … + Σj=2
N(K) bKjDtn,K,j) + etn;  

                                                                                                                                             t = 1,...,T; n∈S(t). 

 

Use definitions (42)-(45) to define new βtn
*, αtn

*, Qt** and Pt**. We rewrite Pt** in a somewhat different 

manner as follows: 
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(50) Pt** = Σn∈S(t) ptnqtn/Σn∈S(t) αtn
*qtn                                                                                                  t = 1,…,T  

              =  Σn∈S(t) ptnqtn/Σn∈S(t) (αtn
*/ptn)ptnqtn 

              = [Σn∈S(t) stn(ptn/αtn
*)−1]−1.  

 

In order to obtain a useful expression for the direct estimate for the period t price level, πt, look at the first 

order conditions for minimizing the new weighted least squares problem (48) with respect to ρt: 

 

(51) 0 = Σn∈S(t) stn{lnptn −  ρt
* − b0

* + Σj=2
N(1) b1j

*
 Dtn,1,j − Σj=2

N(2) b2j
*

 Dtn,2,j − … − Σj=2
N(K) bKj

*
 Dtn,K,j}   

          = Σn∈S(t) stn {lnptn −  ρt
* − βn

*} ;                                                                                              t = 2,…,T 

  

where we used definitions (42) to derive the second equality. Note that Σn∈S(t) stn = 1. Using definitions (37) 

and (43), equations (51) imply that the direct estimate of the period t price level πt
* is equal to:23 

 

(52) πt
* = Πn∈S(t)(ptn/αtn

*)s(t,n) ≡ Pt* ;                                                                                                    t = 2,…,T 

 

where s(t,n) = stn. The indirect period t quantity level is defined (as usual) as period t expenditure divided 

by Pt*: 

 

(53) Qt* ≡ Σn∈S(t) ptnqtn/Pt* ;                                                                                                                 t = 1,…,T. 

                                                                                                           

Note that the direct period t price level defined by (52), Pt*, is a period t share weighted geometric mean of 

the period t quality adjusted prices ptn/αtn
* while the indirect period t price level Pt** defined by (50) is a 

period t share weighted harmonic mean of the period t quality adjusted prices and thus we have the de Haan 

inequalities: Pt** ≤ Pt* and Qt** ≥ Qt* for t = 1,…,T. 

                                                                                                       

We turn to an empirical example where we estimate alternative hedonic regression models and make use of 

the above analysis. 

 

4. Laptop Data for Japan and Hedonic Regressions Using Characteristics. 

 

We obtained data from a private firm that collects price, quantity and characteristic information on the 

monthly sales of laptop computers across Japan. The data are thought to cover more than 60% of all laptop 

sales in Japan. We utilized the data for the 24 months in the years 2021 and 2022 for our regressions and 

index computations. There were 2639 monthly price and quantity observations on laptops sold in total over 

all months. Thus the prices and quantities are ptn and qtn where ptn is the average monthly (unit value) price 

for product n in month t in Yen and qtn is the number of product n units sold. The mean (positive) qtn was 

594.7 and the mean (positive) ptn was 117640 yen. Over the 24 months in our sample, 366 distinct products 

were sold so n = 1,…,366. To save some space, we now set t = 1,2,…,24. If product n did not sell in month 

t, then we set ptn and qtn equal to 0. If each product sold in each month, we would have 366 x 24 = 8784 

positive monthly prices and quantities, ptn and qtn, but on average, only 30.0% of the products were sold per 

month since 2639/8784 = 0.300. Thus there is tremendous product churn in the sales of laptops in Japan, 

with individual products quickly entering and then exiting the market for laptops. 

 

 

23 Our normalizations imply π1
* = 1. 
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The positive prices ptn and quantities qtn are listed in Appendix B as the variables P and Q. This Appendix 

also lists the corresponding month of sale and the Japanese Product Code number (JAN) for each entry. 

This table also lists information on 9 additional characteristics of the laptop product, which are discussed 

below. 

 

NEW is the number of months that the product has been available (or more precisely, sold) in Japan. NEW 

= 1 means the product was a new one. NEW ranges from 1 to 38 months in our sample. We did not use this 

characteristic in this paper. 

 

CLOCK is the clock speed of the laptop. The mean clock speed was 1.94 and the range of clock speeds was 

1 to 3.4. The larger is the clock speed, the faster the computer can make computations. There were 23 

distinct clock speeds for the laptops in our sample. 

 

MEM is the memory capacity for the laptop. The mean memory size was 8188.9. There were only 3 memory 

sizes in our sample: 4,096, 8,192 and 16,384.  

 

SIZE is the screen size of the laptop. The mean screen size (in inches) was 14.49. There were 10 distinct 

screen sizes in our sample: 11.6, 12, 12.5, 13.3, 14, 15.4, 15.6,16, 16.1 and 17.3. 

 

PIX is the number of pixels imbedded in the screen of the laptop. The mean number of pixels was 24.82. 

There were only 10 distinct number of pixels in our sample: 10.49, 12.46, 12.96, 20.74, 33.18, 40.96, 51.84, 

55.30, 58.98 and 82.94. 

 

HDMI  is the presence (HDMI = 1) or absence (HDMI = 0) of a HDMI terminal in the laptop. If HDMI =1, 

then it is possible to display digitally recorded images without degradation. 

 

WEIGHT is the weight of the laptop in kilograms. Laptop weights ranged from 0.747 to 2.9 kilos. 

 

A priori, we expected that purchasers would value higher clock speed, memory capacity, screen size, the 

number of pixels and the availability of HDMI in a laptop, leading to increasing estimated coefficients for 

the dummy variables corresponding to higher values of the characteristic under consideration. We expected 

that purchasers would value a lighter laptop over a heavier one.  

 

CPU is the type of Central Processing Unit that the laptop used. There were 12 types of CPU in our sample.  

 

BRAND is the name of the manufacturer of the laptop. In the data file, BRAND takes on the values 1-12 

but the second brand is not present in 2021-2022 so we have only 11 brands in our sample. BRAND is 

frequently used as an explanatory variable in a hedonic regression as a proxy for company wide product 

characteristics that may be missing from the list of explicit product characteristics that are included in the 

regression.  

 

Table B1 in Appendix B lists the above variables in columns of dimension 2639. 

 

The information in the column vectors TD and JAN were used to generate 24 time dummy variables, D1, 

D2, …, D24 and 366 product dummy variable vectors, DJ1, DJ2, …, DJ366. 
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In our regressions and calculation of price and quantity indexes, we transformed some of our units of 

measurement to make the mean value of the series closer to unity. Thus the ptn were replaced by ptn/100,000 

so we are measuring prices in units of 100,000 Yen. Similarly MEM was replaced by MEM/1000, SIZE 

was replaced by SIZE/10 and PIX was replaced by PIX/10. The basic descriptive statistics for the above 

variables (after transformation) are listed in Table 1 below. The variables P and Q are the 2639 positive 

prices and quantities ptn and qtn stacked up into vectors of dimension 2639.  

 

Table 1: Descriptive Statistics for the Variables 

Variable Mean Std. Dev Variance Minimum Maximum 

JAN 195.75  103.94  10803.00  1.000  366 

NEW 9.638  5.965  35.580  1.000  38 

CLOCK 1.940  0.518  0.268  1.000  3.4 

MEM 8.189  3.436  11.804  4.096  16.384  

SIZE 1.449  0.138  0.019  1.160  1.730  

PIX 2.482  1.289  1.662  1.049  8.294  

HDMI 0.753  0.431  0.186  0.000  1.000  

CPU 4.186  2.777  7.710  1.000  10 

BRAND 9.153  2.209  4.880  1.000  12 

WEIGHT 1.648  0.523  0.273  0.747 2.900  

Q 595  736  541230  100  5367  

P 1.176  0.492  0.242  0.174  2.873  

Number of observations=2639       

 

It is of interest to calculate the average price of a laptop that was sold in period t, PAt, for each of the 24 

months of data in our sample: 

 

(54) PAt ≡ Σn∈S(t) ptn/N(t) ;                                                                                                                t = 1,…,24 

 

where N(t) is the number of laptops sold in period t and S(t) is the set of products sold in period t.  

  

The average period t price of a laptop, PAt, weights each period t laptop price equally and thus does not 

take the economic importance of each type of laptop into account. A more representative measure of average 

laptop price in period t is the period t unit value price, PUVt, defined as follows: 

 

(55) PUVt ≡ Σn∈S(t) ptnqtn/Σn∈S(t) qtn = Σn∈S(t) etn/Σn∈S(t) qtn                                                                t = 1,…,24 

 

where etn ≡ ptnqtn is expenditure or sales of product n in period t for t = 1,…,24 and n = 1,…,366. 

    

We convert the average prices defined by (54) and (55) into price indexes by dividing each series by the 

corresponding series value by the corresponding period 1 entry. Thus define the period t average price index 

PA
t and the period t unit value price index PUV

t as follows: 

 

(56) PA
t ≡ PAt/PA1 ; PUV

t ≡ PUVt/PUV1 ;                                                                                        t = 1,…,24. 
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The time series N(t), PAt, PUVt, PA
t and PUV

t are listed below in Table 2. 

 

Table 2: Average Prices and Unit Values and Average Price and Unit Value Price Indexes 

Month t N(t) PAt PUVt PA
t PUV

t 

1 146 1.23522 1.28422 1.000  1.000  

2 134 1.27876 1.28041 1.035  0.997  

3 147 1.27849 1.2967 1.035  1.010  

4 133 1.2615 1.28001 1.021  0.995  

5 110 1.31278 1.30992 1.063  1.020  

6 95 1.31639 1.28645 1.066  1.002  

7 103 1.26883 1.26349 1.027  0.984  

8 94 1.26053 1.25112 1.020  0.974  

9 83 1.24859 1.22112 1.011  0.951  

10 78 1.27961 1.27247 1.036  0.991  

11 71 1.25161 1.21663 1.013  0.947  

12 72 1.17273 1.12868 0.949  0.879  

13 124 1.11517 1.08334 0.903  0.844  

14 136 1.12928 1.08597 0.914  0.846  

15 150 1.11056 1.08594 0.899  0.846  

16 135 1.15121 1.09629 0.932  0.854  

17 105 1.10092 1.0304 0.891  0.802  

18 109 1.06995 1.0154 0.866  0.791  

19 107 1.05176 1.02634 0.851  0.799  

20 101 1.02677 1.01863 0.831  0.793  

21 100 1.04738 0.99001 0.848  0.771  

22 91 1.1161 1.09602 0.904  0.853  

23 96 1.06155 1.08657 0.859  0.846  

24 119 1.1024 1.12772 0.892  0.878  

Mean 109.96 1.177 1.1597 0.953  0.903  

 

It can be seen that the equally weighted average price of a laptop, PAt, is on average 1.5% higher than the 

average unit value price, PUVt, since 1.1770/1.1597 = 1.01492. This means that on average, laptop models 

that have low sales have higher prices than high volume models. However, there are substantial fluctuations 

in average prices so that at times, PAt > PUVt, which happens when t = 1. When we convert the average 

prices PAt and PUVt into the price indexes PA
t and PUV

t, it turns out that the mean of the PA
t is 0.95287 

which is substantially higher than the mean of the PUV
t which is 0.90302. However, the two index number 

series end up fairly close to each other at month 24: PA
24 = 0.89247 while PUV

24 = 0.87814. We regard the 

unit value price index series, PUV
t, as being more accurate than the average price series, PA

t. 

 

Note that the number of separate models sold in month t, N(t), ranges from a low of 71 in month 11 to a 

high of 147 in month 3. If each model sold in every month, then N(t) would equal 366 for each month. 

 

Of course, the price indexes PA
t and PUV

t make no adjustments for changes in the average quality of laptops 

over time. Thus we now consider hedonic regression models of the type defined by equations (41) in the 

previous section. Initially, we consider various characteristics regressions that use the data for all 24 months 
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in our panel. The resulting indexes are not real time “practical” indexes that could be produced by a national 

statistical office since typically Consumer Price Indexes cannot be revised. However, these panel data 

regressions are useful in that they will indicate how important it is to include a particular characteristic in 

the hedonic regression. Moreover, these panel type regressions are not subject to chain drift over the sample 

period. 

 

Appendix A describes how these Time Dummy Characteristics Regressions were constructed in some detail. 

Our final Time Dummy Characteristics Hedonic regression of the type defined by equations (41) used all 

of the above characteristics except “newness”. Our final model can be rewritten in vector notation as 

follows: 

 

(57) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCj DCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + Σj=2
5 bPjDPj + bH2DH2  

                + Σj=2
11 bBjDBj + Σj=2

10 bUjDUj + Σj=2
7 bWjDWj + e 

 

where lnP is a vector of log prices of dimension 2639, the Dt are vectors of time dummy variables, ONE is 

a vector of ones of dimension 2639, the DCj, DMj, DSj, DPj, DH2, DBj, DUj and DWj are vectors of dummy 

variables for the step functions for the clock speed, memory size, screen size, number of pixels, the 

availability of HDMI, brand, type of computer chip and the laptop weight variables. 

 

The R2 between the observed price vector and the predicted price vector was 0.8926. The estimated 

coefficients on the time dummy variables in this regression are ρ2
*, ρ3

*, …, ρ24
*. Define ρ1

* ≡ 0 and the 

estimated period t price levels πt
* ≡ exp[ρt

*] for t = 1,2,…,24. Define the month t Time Dummy 
Characteristics Price Index, PTDC

t ≡ πt
* for t = 1,…,24. This index is listed in Table A2 of Appendix A and 

is plotted on Chart 1 below. 

 

Recall that the expenditure share that corresponds to purchased product n in month t was defined as stn = 

ptnqtn/Σj∈S(t) ptjqtj for t = 1,…,24 and n∈S(t). To obtain the weighted counterpart to the hedonic regression 

model defined by (57) above, form a share vector of dimension 2639 that corresponds to the lnptn that 

appear in the vector lnP and then form a new vector of dimension 2639 that consists of the positive square 

roots of each stn. Call this vector of square roots SS. Now multiply both sides of  (57) by SS to obtain a new 

linear regression model which again provides estimates for the unknown parameters that appear in (57). 

The R2 for this new weighted regression model turned out to be 0.9152 which is substantially higher than 

the R2 for the counterpart unweighted model which was 0.8926. The parameter estimates for this weighted 

hedonic regression model are listed in Table A1 of Appendix A.  

 

The estimated coefficients on the time dummy variables in this regression are ρ2
*, ρ3

*, …, ρ24
*. Define ρ1

* 

≡ 0 and define the estimated period t price levels πt
* ≡ exp[ρt

*] for t = 1,2,…,24. Define the month t Weighted 
Time Dummy Characteristics Price Index, PWTDC

t ≡ πt
* for t = 1,…,24. This index is listed in Table A2 in 

Appendix A and plotted in Chart 1 below and it is our preferred index thus far. The corresponding 

unweighted (or equally weighted) Time Dummy Characteristics Price Index PTDC
t is also listed in Table A2 

along with the simple average laptop price indexes PA
t and PUV

t defined by definitions (55) above. 
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Chart 1. Time Product Dummy and Average Price Indexes. 

 

The results in Table A2 and Chart 1 are not very plausible. Our preferred hedonic index, PWTDC
t, ends up at 

0.9229 when t = 24 which is well above the simple average price indexes PA
t and PUV

t for t = 24 (which 

ended up at 0.8925 and 0.8781). It seems unlikely that a quality adjusted price index for laptops could end 

up higher than a simple average price index for laptops. Note that the equally weighted hedonic price index 

PTDC
t, ended up even higher at 0.93462 when t = 24, which shows that weighting matters. We also note that 

missing characteristics can greatly affect the resulting hedonic price: as we added characteristics to the 

various hedonic regressions, the resulting indexes changed significantly.  

 

Although the weighted and unweighted time product characteristic indexes end up reasonably close to each 

other in month 24, there are substantial month to month differences between the two indexes. Moreover the 

mean of the weighted indexes PWTDC
t (0.9436) is substantially below the mean of the unweighted indexes 

PTDC
t (0.9842). Our conclusion here is that weighting for laptops matters and the weighted index should be 

produced by statistical agencies if price and quantity information is available.  

 

It can be seen that our theoretically preferred index, PWTDC
t, is the smoothest of the four indexes plotted on 

Chart 1 but in the latter half of the sample period, it lies well above the Unit Value price index, PUV
t, which 

does not make any quality adjustments. Thus PWTDC
t does not seem to be a plausible quality adjusted price 

index; i.e., it is unlikely that the quality of laptop computers declined over the two years.   

 

There are two additional problems with our “best” directly defined weighted hedonic price index using 

characteristics, PWTDC
t: 

 

• It is not a real time index; i.e., it is a retrospective index that is calculated using the data covering 

two years;24 

• It does not allow for gradual taste change on the part of purchasers.  

 
24 This difficulty can be overcome by using rolling window hedonic regressions. See de Haan (2015),  Krsinich (2016) 

and Diewert and Fox (2022; 360-361) for discussions of the issues surrounding linking the results from a new panel 

of data with the results from a previous panel.   
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These difficulties can be avoided if we restrict the number of months T to be equal to 2. This restriction 

leads to adjacent period hedonic regressions.25 Thus we can use the analytical framework presented in 

section 3 and simply apply it to the case where T = 2.  

 

To start the adjacent period methodology, we use the price data for products n that were sold in months 1 

and 2. We also use data on the 8 characteristics of the products that were used in the last regression described 

above. The counterpart regression (linking month 1 to month 2) to the unweighted time dummy 

characteristic hedonic regression defined by (57) above is the following regression model: 

 

(58) lnP = ρ2D2 + b0ONE + Σj=2
7 bCj DCj + Σj=2

3 bMjDMj + Σj=2
7 bSjDSj + Σj=2

5 bPjDPj + bH2DH2  

                + Σj=2
11 bBjDBj + Σj=2

10 bUjDUj + Σj=2
7 bWjDWj + e 

 

where lnP is now the vector of log prices for the products which were sold only in months 1 and 2. Similarly, 

the vectors of independent variables on the right hand side of (58) are not of dimension 2639 but only of 

dimension equal to the number of products that were sold in months 1 and 2. Note that there is only a single 

time dummy variable D2 on the right hand side of (58) and the nt component of D2 takes on the value 1 for 

the products sold in month 2 and the value 0 for the products sold in month 1. The definitions for the other 

characteristic dummy variables on the right hand side of (58) are similar to our earlier panel wide definitions 

but now these characteristic dummy variables are only defined for products that were sold in months 1 and 

2.26   

 

Define P1* ≡ 1 as the month 1 index level. Define ρ2
* as the estimated month 2 time dummy coefficient for 

the bilateral regression defined by (58)27 and  define π2
* as the exponential of ρ2

*; i.e., define  π2
* ≡ exp[ρ2

*]. 

Define the month 2 direct price level as P2* ≡ π2
*. 

 

Next, we restricted the definition of lnP to the products that were sold only in months 2 and 3. The new 

adjacent period hedonic regression was similar to the one defined by (58) except the time dummy term ρ2D2
 

on the right hand side of (58) was replaced with the term ρ3D3 where D3 takes on the value 1 for the products 

 
25 For references to the history of this approach to hedonic regressions, see the many references in Diewert (2022) 

(2023).  
26 However, some complications occurred when implementing the above operations. When the data were restricted to 

2 adjacent periods instead of the entire 2 years of data, some of the characteristic dummy variable vectors became zero 

vectors. To deal with this problem, some of our characteristic dummy variable vectors were aggregated together. Thus 

the clock speed dummy variables for groups 6 and 7 were aggregated together to form a new group 6. The terms Σj=2
7 

bCj DCj on the right hand side of (58) were replaced by the terms Σj=2
6 bCj DCj. The screen size dummy variables for 

groups 1 and 2 were aggregated together as were the dummy variables for groups 6 and 7. Thus the terms Σj=2
7 bSjDSj 

on the right hand side of (58) were replaced by the terms Σj=2
5 bSjDSj. Groups 4 and 5 for the pixel groups were 

aggregated together so that the terms Σj=2
5 bPjDPj were replaced by Σj=2

4 bPjDPj. Brands 5 and 11 had only sales of 4 

and 3 units respectively over the two years in our sample so these brands were aggregated together with Brand 3, 

another low sales brand. Thus the terms Σj=2
11 bBjDBj on the right hand side of (58) were replaced by the terms Σj=2

9 

bBjDBj. The CPU cells 4, 5, 6 and 10 had a small number of observations so DU4 was replaced by DU4 + DU5 + DU6 + 

DU10. Finally, even after making these reductions in the number of characteristic dummy variables, it turned out that 

occasionally, one or more of the consolidated characteristic dummy variable vectors in the 23 bilateral hedonic 

regressions was equal to a vector of zeros. These vectors were dropped from the applicable adjacent period regression. 
27 Taking into account the reduction in the number of cells for the various characteristics, (58) became: lnP = ρ2D2 + 

b0ONE + Σj=2
6 bCj DCj + Σj=2

3 bMjDMj + Σj=2
5 bSjDSj + Σj=2

4 bPjDPj + bH2DH2 + Σj=2
9 bBjDBj + Σj=2

7 bUjDUj + Σj=2
7 bWjDWj + 

e. 
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sold in month 3 and the value 0 for the products sold in month 2. Once ρ3
* was estimated, we defined π3

* ≡ 

exp[ρ3
*] and the period 3 price level as P3* ≡ π3

*P2*. 

 

The above procedure was continued until we reached the final bilateral regression that used only the log 

product prices for products that were sold in months 23 and 24. The final bilateral hedonic regression gave 

us an estimate for ρ24
*. Once ρ24

* was estimated,  we defined π24
* ≡ exp[ρ24

*] and the period 24 price level 

was defined as P24* ≡ π24
*P23*. The Adjacent Period Time Dummy (Unweighted) Characteristics Price Index 

for month t, PATDC
t, was defined as follows: 

 

(59) PATDC
t ≡ Pt* ;                                                                                                                             t = 1,…,24. 

 

The price index defined by (59) is not satisfactory because it does not take into account the economic 

importance of each product. The economic importance of product n sold in period t can be taken into 

account in the 23 bilateral regressions of the form given by (58) by multiplying the log price lnptn that 

appears in any of these bilateral hedonic regressions by the square root of the corresponding expenditure 

share stn
1/2. The term stn

1/2 is also applied to the corresponding components of the various dummy variable 

vectors that appear on the right hand sides of the estimating equations of the form given by (58). With the 

application of these multiplicative factors on both sides of the various estimating equations, we again obtain 

estimates for the logarithms of the various bilateral time dummy coefficients ρ2
*, ρ3

*, …, ρ24
*. Once these 

new estimates have been obtained, we took the exponentials of them to obtain the sequence of price levels 

πt
* for t = 2,3,…,24. Now follow the same steps as were made in the paragraphs above definitions (59) in 

order to define the Weighted Adjacent Period Time Dummy Characteristics Price Index for month t, PWATDC
t, 

for t = 1,2,…,24. This index along with its unweighted (or equally weighted) counterpart index, PATDC
t, are 

listed in Table A3 in Appendix A. For comparison purposes, Table A3 also lists the single regression 

weighted and unweighted Time Dummy Characteristics price indexes, PWTDC
t and PTDC

t, as well as the 

simple average and unit value price indexes, PA
t and PUV

t. See Chart 2 below for plots of the indexes listed 

in Table A3. 

 

 
Chart 2. Sample Wide and Adjacent Period Time Dummy Characteristics Price Indexes. 
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Our new Adjacent Period Characteristics Price Indexes, PWATDC
t and PATDC

t, finish well below their single 

regression counterpart indexes, PWTDC
t and PTDC

t when t = 24. More importantly, the new indexes finish 

below the Average Price index PA
24 and the Unit Value index PUV

24, so that there was some positive quality 

improvement in laptops over our sample period. Thus the new adjacent period indexes are more plausible 

than the corresponding single regression based indexes.  

 

Looking at the effects of weighting, it can be seen that the adjacent period equally weighted characteristics 

index PATDC
t finishes 4.3 percentage points above its weighted counterpart PWATDC

t for t = 24 and on average, 

PATDC
t is 2.6 percentage points above the average for PWATDC

t. Since this equally weighted index gives too 

much weight to unrepresentative products, we prefer the Weighted Adjacent Period Time Dummy 

Characteristics Index PWATDC
t.  

 

Here are some of the advantages and disadvantages of the Weighted Adjacent Period Time Dummy 

Characteristics indexes PWATDC
t over the (sample wide) Weighted Time Dummy Characteristics indexes 

PWTDC
t: 

 

• The adjacent period indexes fit the data much better since each bilateral regression estimates a new 

set of quality adjustment parameters whereas the panel regression approach fixes the quality 

adjustment parameters over the entire window of observations.  

• The adjacent period methodology that allows the quality adjustment parameters to change every 

month means that purchasers may not have stable consistent preferences over time and some 

economists may object to the resulting inconsistency of these indexes.  

• The adjacent period indexes are chained indexes. If there are large fluctuations in the monthly 

product prices and quantities, then there is a danger that these indexes may be subject to the chain 
drift problem. Since there are large fluctuations in monthly prices and quantities in our data, there 

is some danger that our adjacent period indexes may be subject to some downward chain drift. We 

will revisit this point in section 7 below.   

 

It is well known that missing characteristics can have a material effect on the price index.28 A model that 

includes all possible product characteristics29 is the Time Product Dummy model presented in section 2. 

Thus in the following section, we will consider weighted and unweighted time product dummy hedonic 

regression models.  

 

5. Time Product Dummy Regression Models.  

 

The Weighted Time Product Dummy least squares minimization problem was defined by (20). To obtain a 

unique solution to this problem, we added the normalization ρ1 = 0. The corresponding Unweighted Time 

Product Dummy least squares minimization problem is defined by (20) with all expenditure shares stn set 

equal to 1.  

 

 
28 We found this to be the case as we worked through the various hedonic regression models described in Appendix 

A. 
29 There may be external environmental factors (that change over time) which affect the utility to purchasers of the 

products in scope. We are assuming that purchasers of the products in scope have preferences that are separable from 

other products which can only be a rough approximation to reality. Also, the “newness” or “oldness” of a product may 

affect purchaser utility.  
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In order to set up the unweighted regression problem for our particular application, we make use of the 

vectors of time dummy variables, D1, …, D24 and the 366 product dummy variable vectors of dimension 

2639, DJ1, …, DJ366. Define the vector of the logarithms of observed laptop prices as lnP as was done in the 

previous section. Then the (sample wide) unweighted Time Product Dummy regression model can be 

expressed as the vector equation (60) where the unknown parameters are the log price levels ρ2, ρ3, …, ρ24 

and the 366 product log quality adjustment factors β1, β2, …, β366:                       

 

(60) lnP = Σt=2
24 ρtDt + Σk=1

366 βkDJk + e. 

 

The R2 for the above regression turned out to be 0.9836. Thus the fit for the model defined by (60) is 

substantially better than the fit for the unweighted characteristics regression defined by (57) in the previous 

section, which was 0.8926.  We set ρt
* equal to one. The estimated ρt

* were exponentiated and the sequence 

of the πt
* ≡ exp[ρt

*] are the Time Product Dummy Price Indexes PTPD
t, which are listed in Table A4 in 

Appendix A.   

 

To obtain the Weighted Time Product Dummy Price Indexes, multiply the vectors on both sides of (60) 

(excluding the error vector e) by the vector of positive square roots of the month by month expenditure 

shares stn on the products which were purchased in each period. The resulting linear regression in the same 

parameters ρ2, ρ3, …, ρ24 and β1, β2, …, β366 was run and the R2 for this weighted time product dummy 

regression turned to be 0.9840. Again, set ρ1
* equal to one. The estimated ρt

* were exponentiated and the 

new sequence of the πt
* ≡ exp[ρt

*] are the Weighted Time Product Dummy Price Indexes PWTPD
t which are 

listed in Table A4 and plotted on Chart 3 below.  

 

The index PWTPD
t is not a real time index. In order to obtain real time indexes, we can calculate adjacent 

period time product dummy regressions.   

 

To start the adjacent period methodology, we use the price data for products n that were sold in months 1 

and 2. Define S(1,2) as the set of products that were purchased in months 1 and 2. The counterpart regression 

to the unweighted time product dummy hedonic regression defined by (60) that links the prices of months 

1 and 2 is the following regression model: 

 

(61) lnP* = ρ2D2
* + Σk=1

366 βkDJk
* + et*  

              = ρ2D2
* + Σk∈S(1,2) βkDJk

* + et* 

 

where the new log price vector lnP*, the new month 2 time dummy vector D2
* and the new product dummy 

vectors DJ1
*, …, DJ366

* are restricted to the observations that correspond to the products n that were sold in 

periods 1 and 2. The first vector equation in (61) cannot be implemented using standard econometric 

packages because due to rapid product turnover, most of the product dummy variable vectors DJk
* will be 

vectors of zeros. Thus the second line in (61) sums over the products that actually sold in periods 1 and 2.30 

Using the results of the latter regression, we defined PATPD
1 =1 and PATPD

2 =exp[ρ2
*], the exponential of the 

estimated time dummy parameter ρ2
*.  

 

 
30 It turned out to be somewhat difficult to go from line 1 in (79) to line 2 in (79). However, programs were constructed 

that overcome these difficulties. 
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The second bilateral regression has the form lnP** = ρ3D3
** + Σk∈S(2,3) βkDJk

** + et** where the new vectors 

lnP**, ρ3D3
**, DJk

** and et** are restricted to the products that were sold in periods 2 and 3. The estimated 

ρ3
* was exponentiated and PATPD

3 was defined as PATPD
2 times πt

* ≡  exp[ρ3
*]. A similar bilateral regression 

was run using the price data for periods 3 and 4 and the above process was continued.  In all, 23 unweighted 

bilateral time product dummy variable regressions were run, the estimated ρt
* were converted into πt

* and 

the πt
* were chained into the Adjacent Period Time Product Dummy Price Indexes PATPD

t for t = 2, 3, …, 

24. These indexes are listed in Table A4.   

 

As in the previous section, to obtain Weighted Adjacent Period Time Product Dummy Price Indexes, PWAPD
t 

we took the 23 bilateral regressions that were used to form the unweighted indexes and multiplied the 

dependent and independent variables in each of these regressions by the square root of the appropriate 

expenditure share.31  

 

Table A4 in Appendix A lists the Adjacent Period Weighted and Unweighted Time Product Dummy price 

indexes, PWATPD
t and PATPD

t, as well as the simple average and unit value price indexes, PA
t and PUV

t. Chart 

3 below plots the indexes listed in Table A4. 

 

 
Chart 3. Sample Wide and Adjacent Period Weighted and Unweighted Time Product Dummy 

Indexes 

 

There are large differences between the weighted and unweighted Time Product Dummy price indexes with 

the unweighted indexes generating lower rates of laptop inflation. As usual, we prefer the weighted 

estimates over their unweighted counterparts due to the unrepresentative nature of the unweighted indexes. 

However, the adjacent period indexes, PATPD
t and PWATPD

t end up well below their panel data counterpart 

indexes, PTPD
t and PWTPD

t. Since there are large month to month fluctuations in laptop prices and quantities, 

it seems likely that the adjacent period indexes suffer from a chain drift problem. In the following section, 

 
31 The R2 for the 23 bilateral Weighted Time Product Dummy regressions were as follows: 0.9993, 0.9985, 0.9979, 

0.9988, 0.9991, 0.9988, 0.9991, 0.9976, 0.9987, 0.9980, 0.9980, 0.9985, 0.9974, 0.9980, 0.9989, 0.9993, 0.9987, 

0.9989, 0.9980, 0.9986, 0.9990, 0.9988 and 0.9970. Needless to say, these regression fits are very good. 
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we will calculate some traditional indexes as well as Predicted Share Price Similarity linked indexes which 

may reduce chain drift. 

  

6. Traditional Indexes and Similarity Linked Price Indexes for Laptops. 

 

The indexes defined in the previous sections that made use of 23 adjacent period regressions were chained 

indexes; i.e., the index constructed for month t compared the prices for month t with the prices for month t 

− 1. However, it is not the case that all bilateral comparisons of prices between two months are equally 

accurate: if the relative prices for matched products in months r and t are very similar, then the Laspeyres 

and Paasche price indexes will be very close to each other and hence it is likely that the “true” price 

comparison between these two periods (using the economic approach to index number theory32) will be 

very close to the bilateral Fisher index that compares prices between the two periods under consideration. 

In particular, if the two price vectors are exactly proportional, then we would like the price index between 

these two months to be equal to the factor of proportionality (even if the associated quantity vectors are not 

proportional) and the direct Fisher price index between these two periods satisfies this proportionality test. 

This test suggests that a more accurate set of price indexes could be constructed if a bilateral comparison 

of prices was made between the two months that have the most similar relative price structures.33 The 

Predicted Share method of linking months with the most similar structure of relative prices will be 

explained under the assumption that it is necessary to construct a price index Pt in real time.34 

 

As a preliminary step, the price and quantity data that are listed in the Appendix need to be reorganized into 

24 price and quantity vectors of dimension 366, pt ≡ [p1
t,p2

t,…,p366
t] and qt ≡ [q1

t,q2
t,…,q366

t], for t = 1,…,24. 

If product k is not purchased during month t, then we set pk
t = qk

t = 0. For months r and t, define the set of 

products k that are present in both months as S(r,t). The matched model Laspeyres and Paasche indexes, 

PL(r,t) and PP(r,t), that relate the prices of month t to month r are defined as follows: 

 

(62) PL(r,t) ≡ Σk∈S(r,t) pk
tqk

r/Σk∈S(r,t) pk
rqk

r ;                                                                                      1 ≤ r, t ≤ 24; 

(63) PP(r,t) ≡ Σk∈S(r,t) pk
tqk

t/Σk∈S(r,t) pk
rqk

t ;                                                                                      1 ≤ r, t ≤ 24. 

 

Note that the prices of the matched models for month t are in the numerators of definitions (62) and (63) 

and the corresponding prices of the matched models for month r in the denominators of definitions (62) and 

(63). The matched model Fisher index that relates the prices of month t to the prices of month r is defined 

as the geometric mean of PL(r,t) and PP(r,t):35   

 

(64) PF(r,t) ≡ [PL(r,t)PP(r,t)]1/2 ;                                                                                                      1 ≤ r, t ≤ 24. 

 

The components sk
t of the 24 vectors of month t expenditure shares on the 366 products, st ≡ [s1

t,s2
t,…,s366

t], 

are defined as follows: 

 

(65) sk
t ≡ pk

tqk
t/pt⋅qt ;                                                                                                 t = 1,…,24 ; k = 1,…,366 

 
32 See Diewert (1976) for the relationship of the Fisher index to the economic approach to index number theory. 
33 In the context of making comparisons of prices across countries, the method of linking countries with the most 

similar structure of relative prices has been pursued by Hill (1997) (1999a) (1999b) (2009), Hill and Timmer (2006), 

Diewert (2009) (2013) (2023) and Hill, Rao, Shankar and Hajargasht (2017). Hill (2001) (2004) also pursued this 

similarity of relative prices approach in the time series context. 
34 This method is explained more fully in Diewert (2023). 
35 Note that there are 576 = 24x24 matched model bilateral Fisher (1922) indexes PF(r,t).  
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where the inner product of the vectors pt and qt is defined as pt⋅qt ≡ Σk=1
366 pk

tqk
t.   

       

The choice of a measure of relative price similarity plays a key role in the similarity linking methodology. 

Various measures of the similarity or dissimilarity of relative price structures have been proposed by Allen 

and Diewert (1981), Kravis, Heston and Summers (1982; 104-106), Hill (1997) (2009), Sergeev (2001) 

(2009), Hill and Timmer (2006), Aten and Heston (2009) and Diewert (2009) (2023). A problem with most 

measures of relative price similarity is that they are not well defined if some products are missing. The 

following Predicted Share measure of relative price dissimilarity, ∆(pr,pt,qr,qt), is well defined even if some 

product prices in the two periods being compared are equal to zero:36 

 

(66) ∆(pr,pt,qr,qt) ≡ Σk=1
366 [sk

t − (pk
rqk

t/pr⋅qt)]2 + Σk=1
366 [sk

r − (pk
tqk

r/pt⋅qr)]2 ;                           1 ≤ r, t ≤ 24. 

 

We require that pr⋅qt > 0 for r = 1,...,24 and t = 1,...,24 in order for ∆(pr,pt,qr,qt) to be well defined for any 

pair of periods, r and t. Since the two summations on the right hand side of (66) are sums of squared terms, 

we see that ∆(pr,pt,qr,qt) ≥ 0. If ∆(pr,pt,qr,qt) = 0, then the price vectors for months r and t are proportional. 

The closer ∆(pr,pt,qr,qt) is to 0, the closer prices are to being proportional between the two months. If prices 

are proportional for the two months, then any acceptable price index between the two months should equal 

the proportionality factor. If pt = λpr for some positive factor of proportionality λ, then the matched model 

Fisher index PF(r,t) defined by (64) will equal λ. Another very important property of the measure of relative 

price similarity defined by (66) is that the Predicted Share measure penalizes a lack of product matching 

across the two months r and t. Thus if the matched prices for months r and t are equal but there are some 

products that are only available in one of the two periods under consideration, then ∆(pr,pt,qr,qt) will be 

greater than 0.   

 

The 24 by 24 matrix of Predicted Share measures of relative price similarity for our laptop data, ∆(pr,pt,qr,qt), 

are listed in Table A5 in Appendix A. 

 

Table A5 can be used to construct the relative price similarity linked Predicted Share Price index, PS
t, for t 

= 1,…,24. See Appendix A for the details of the construction.   

 

It turns out that the relative price similarity linked indexes PS
t, the Fisher chained maximum overlap indexes 

PFCH
t and the Adjacent Period Weighted Time Product Dummy price indexes PWATPD

t are all extremely close 

to each other for our laptop data set.37 It can also the case that the chained Laspeyres and Paasche indexes, 

PLCH
t and PPCH

t, are very close to PFCH
t for our particular data set. Table A6 in Appendix A lists these indexes 

and they are plotted in Chart 4 below.  

 

 
36 See Diewert (2023) for the axiomatic properties of this measure. 
37 The bilateral link Fisher indexes that were used to construct the similarity linked indexes were equal to adjacent 

period matched model bilateral Fisher indexes for 20 out of 23 bilateral links. This explains why the chained Fisher 

index, PFCH
t, are so close to the relative price similarity linked indexes, PS

t. The bilateral link indexes used to construct 

the Weighted Adjacent Period Time Product Dummy indexes, PWATPD
t, are also numerically close to the corresponding 

matched model bilateral Fisher index, which explains why PWATPD
t is close to PFCH

t; see Diewert (2005b) on this 

approximation.  
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Chart 4: The Predicted Share Similarity Linked Index and Other Comparison Price 

Indexes 

 

 The chained Fisher indexes have the advantage that no complex hedonic regression methodology is 

required to implement these indexes. They are also relatively easy to explain to the public. However, in 

many applications where products go on sale or there are strongly seasonal products, chained Fisher indexes 

are likely to be subject to some chain drift. Since the similarity linked indexes are so close to the Fisher 

chained indexes, it is likely that they are also subject to some chain drift.38 Thus it is likely that PS
t, PFCH

t, 

PL
t, PP

t and PWATPD
t all suffer from some chain drift. We will address this potential chain drift problem in the 

following section. 

 

We conclude this section by considering Hedonic Imputation Indexes and their relationship to Fisher 

indexes when each product has its own unique characteristic. Hedonic imputation indexes run a hedonic 

regression using the data for one period and then they use the results of this regression to impute prices or 

quantities in a subsequent period.39  

 

We will first consider the case when there are N products that are available in both periods under 

consideration and there is a separate characteristic for each product. Thus the hedonic imputation regression 

for period 1 is given by (13) in the paper for a Weighted Time Product Dummy regression when there are 

T periods. When the number of periods T becomes T = 1, (13) becomes (67) below: 

(67) min ρ, β {Σn=1
N s1n[lnp1n − ρ1 − β1n]2}. 

 
38 Thus the fact that the similarity linked indexes satisfy Walsh’s Multiperiod Identity Test is not sufficient to eliminate 

possible chain drift. In order to be certain to eliminate chain drift, we need the indexes to satisfy the transitivity or 

circularity test in index number theory. The problem with the predicted share methodology is that it tends to pick the 

previous period as the preferred period to link the current period index to an earlier most similar in structure period. 

Fox, Levell and O’Connell (2023) noted this problem in their study of the chain drift problem for UK prices.     
39 The method dates back to Court (1939; 108) and Griliches (1971; 6). See also Diewert (2003b) for an extensive 

discussion of some of the issues.  
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Obviously, not all of the parameters in (67) can be uniquely determined so we set ρ1 = 0 and then the β1n 

are identified and we obtain the following solution to the weighted least squares problem defined by (67):40 

(68) ρ1= 0; β1n = lnp1n ;                                                                                                                    n = 1,…,N. 

Exponentiating the β1n gives us the α1n parameters for the purchasers’ period 1 utility function: 

(69) α1n ≡ exp[β1n] = p1n;                                                                                                                  n = 1,…,N. 

Using equations (19) give us estimates for aggregate quantity (or utility) for period t, Qt*, and the aggregate 

price level for period t, Pt*, for t = 1,2, using the preferences estimated using the  period 1 data. Let p1 ≡ 

[p11,…,p1N] be the observed period 1 price vector and let α1 ≡ [α11,…, α1N] = p1 be the vector of period 1 

marginal utility parameters. Thus we obtain the following period 1 and period 2 aggregates using the period 

1 hedonic regression: 

(70) Q1* ≡ α1⋅q1 = p1⋅q1 ; P1* ≡ p1⋅q1/α1⋅q1 = p1⋅q1/p1⋅q1 = 1 ; Q2* ≡ α1⋅q2 = p1⋅q2 ; P2* ≡ p2⋅q2/α1⋅q2 = p2⋅q2/p1⋅q2. 

Thus the price index relating the prices of period 2 to the prices of period 1, P2*/P1*, can be calculated using 

(70): 

(71) P2*/P1* = p2⋅q2/p1⋅q2 = PP 

 where PP is the ordinary Paasche price index between periods 2 and 1. Thus the period 1 hedonic regression 

in the special case where each product is given a separate characteristic leads to the regular Paasche price 

index, provided that there are no missing products in each period.  

 

The hedonic imputation regression for period 2 is given by (72) below:  

(72) min ρ, β {Σn=1
N s2n[lnp2n − ρ2 − β2n]2}. 

Again, not all of the parameters in (72) can be uniquely determined so we set ρ2 = 0 and then the β2n are 

identified and we obtain the following solution to the weighted least squares problem defined by (72): 

(73) ρ2= 0; β2n = lnp2n ; α2n ≡ exp[β2n] = p2n;                                                                                 n = 1,…,N. 

Using equations (19) gives us estimates for aggregate quantity (or utility) for period t, Qt**, and the 

aggregate price level for period t, Pt**, for t = 1,2, using the preferences estimated using the  period 2 data. 

Let p2 ≡ [p21,…,p2N] be the observed period 2 price vector and let α2 ≡ [α21,…, α2N] = p2 be the vector of 

period 2 marginal utility parameters. Thus we obtain the following period 1 and period 2 aggregates using 

the period 2 hedonic regression: 

(74) Q1** ≡ α2⋅q1 = p2⋅q1; P1** ≡ p1⋅q1/α2⋅q1 = p1⋅q1/p2⋅q1;                                          

        Q2** ≡ α2⋅q2 = p2⋅q2; P2** ≡ p2⋅q2/α2⋅q2 = p2⋅q2/p2⋅q2 = 1. 

 
40 Since the fit in the regression that corresponds to the least squares problem (67) is perfect, we obtain the same 

solution if we use the unweighted least squares minimization problem. 
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Thus the price index relating the prices of period 2 to the prices of period 1, P2**/P1**, using the preferences 

of period 2 can be calculated using (74): 

(75) P2**/P1** = 1/[p1⋅q1/p2⋅q1] = p2⋅q1/p1⋅q1 = PL 

 where PL is the ordinary Laspeyres price index between periods 2 and 1. Thus the period 2 hedonic 

regression in the special case where each product is given a separate characteristic leads to the regular 

Laspeyres price index, provided that there are no missing products in each period.  

The two equally valid indexes of price change, PL and PP, should be averaged in order to obtain a final 

estimate of price change. Taking the geometric average of PL and PP leads to the Fisher index which satisfies 

more tests than competing indexes. Thus we have shown that in the case where each product has its own 

characteristic (and there are no missing observations in the two periods being compared), hedonic 
imputation leads to the Fisher index using our economic approach to the measurement of quality change. 

 What happens if there are missing observations? The weighted least squares minimization problems (67) 

and (72) are replaced by the following two weighted least squares minimization problems: 

(76) min ρ, β {Σn∈S(t) stn[lnptn − βtn]2 };   t = 1,2. 

In (76), S(t) is the set of products that are available in period t. It can be seen that our previous methodology 

breaks down when there are products that are available in only one of the two periods. The period 1 

regression will give us estimates for β1n and hence estimates α1n = exp[β1n] for products n that are available 

in period 1 but we will have no estimated α1k for products k that are available only in period 2. Thus all we 

can do is restrict n in each period to products that are present in both periods being compared. If we do this, 

we will end up with maximum overlap Fisher indexes.  

7. Expanding Window Weighted Time Product Dummy Indexes. 

 

We can determine whether a given price index suffers from a chain drift problem by comparing it to a 

“reasonable” index that does not suffer from chain drift. But how exactly can we find a “reasonable” target 

index that is not subject to chain drift?  

 

To answer this question, consider the sample wide Weighted Time Product Dummy price index, PWTPD
t, that 

was defined in section 5. The linear regression that defined this index gave rise to estimated parameters ρ2
*, 

ρ3
*, …, ρ24

* and β1
*, β2

*, …, β366
* and we exponentiated the ρt

* to obtain estimated period t price levels, πt
* 

= Pt
* = PWTPD

t, for t = 1,…,24. In this section, we exponentiate the βn
* to obtain the linear utility function 

parameters αn
* for n = 1,…,366. Let α* ≡ [α1

*,…, α366
*]. Now use equations (19) to define the month t 

aggregate quantity levels Qt** and the Implicit Weighted Time Product Dummy price levels Pt**; i.e., define:   

 

(77) Qt** ≡ α*⋅qt ; Pt** ≡ pt⋅qt/α*⋅qt ;                                                                                                  t = 1,…,24.                                     

 

It can be seen that the Qt** are transitive; i.e., Q3**/Q1** = (Q2**/Q1**)(Q3**/Q2**). Expenditures et ≡ pt⋅qt are 

also transitive so that e3**/e1** = (e2**/e1**)(e3**/e2**). Hence the indirectly determined price levels Pt** are 

also transitive. Define the month t Implicit Weighted Time Product Dummy price index PIWTPD
t as the 

following normalization of the month t price level Pt**: 
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(78) PIWTPD
t ≡ Pt**/P1** ;                                                                                                             t = 1,…,24.  

 

The implicit price index PIWTPD
t is also transitive; i.e., it satisfies the circularity test and thus it is free from 

chain drift. It is not always a “reasonable” target index (since the products in scope may not be close 

substitutes or there may not be a sufficient amount of product matching over time) but in our context, it 

probably is a reasonable index, since the R2 for the underlying hedonic regression was 0.9840. Thus the 

assumption of common constant linear preferences by all purchasers is satisfied to a “reasonable” degree 

of approximation. The direct and indirect price indexes, PWTPD
t and PIWTPD

t generated by this weighted panel 

regression are listed in Table 3 below and plotted in Chart 5. There are only small differences between these 

two indexes. 

 

However, PIWTPD
t is not a real time index. Thus we have to find a suitable approximation to this target index 

that can be calculated in real time.  

 

Our first suggested approximation constructs Expanding Window Weighted Time Product Dummy price 
indexes, PEW

t, for t = 1, 2, …, 24.41 We show how this can be done. 

 

Step 1: define PEW
1 ≡ 1.   

 

Step 2: Run the weighted Time Product Dummy regression that links months 1 and 2 as in section 5 above. 

Thus run the weighted version of equations (61) to get estimates for the βk that correspond to products that 

were purchased in months 1 or 2. For products k that were not purchased in months 1 or 2, set βk
* = 0. 

Exponentiate these βk
* to get estimated αk

* for k = 1,…,366. Now use definitions (77) for t = 1,2 to define 

P1** and P2** indirectly. Define PEW
2 ≡ P2**/P1**. Note that the quantities associated with the missing prices 

for months 1 and 2 are equal to zero. 

 

Step 3: Run a weighted Time Product Dummy regression using the data for months 1, 2 and 3 42 to get 

estimates for the βk that correspond to products that were purchased in months 1, 2 or 3. For products k that 

were not purchased in months 1, 2 or 3, set βk
* = 0. Exponentiate these βk

* to get estimated αk
* for k = 

1,…,366. Now use definitions (77) for t = 1 and 3 to define P1**, P2**and P3** indirectly. Define PEW
3 ≡ 

P3**/P1**. Note that P1**, P2**and P3** are fully transitive price levels based on the information that is 

available at the end of month 3. However, PEW
3 will not (in general) be equal to PIWTPD

3 since PIWTPD
3 is 

based on more complete data that is available at the end of month 24 (and thus PIWTPD
3 uses more data to 

estimate the underlying linear utility function).  

 

Step 4: Run a weighted Time Product Dummy regression using the data for months 1, 2, 3 and 4 43 to get 

estimates for the βk that correspond to products that were purchased in months 1, 2, 3 and 4. For products 

k that were not purchased in months 1, 2, 3 or 4, set βk
* = 0. Exponentiate these βk

* to get estimated αk
* for 

 
41 Using an expanding window (instead of using a rolling window) to construct multilateral indexes was suggested 

(and implemented) by Chessa (2016) (2021). The idea of using an ever expanding window was suggested by Diewert 

(2023) in the context of the predicted share price similarity methodology.  
42 The unweighted counterpart to the weighted regression has the form lnP* = ρ2D2

* + ρ3D3
* + Σk∈S(1,2,3) βkDJk

* 

+ et* where S(1,2,3) is the set of products which were sold in months 1, 2 or 3. 
43 The unweighted counterpart to the weighted regression has the form lnP* = ρ2D2

* + ρ3D3
* + ρ4D4

* + Σk∈S(1,2,3,4) 

βkDJk
* + et* where S(1,2,3,4) is the set of products which were purchased in months 1, 2, 3 or 4. 
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k = 1,…,366. Now use definitions (77) for t = 1 and 4 to define P1**, P2**, P3** and P4**. Define PEW
4 ≡ 

P4**/P1**.44           

… 

 

Step 24: The final step simply sets PEW
24 equal to the month 24 Implicit Weighted Time Product Dummy 

price index PIWTPD
24.  

 

The Expanding Window price indexes, PEW
t, are listed in Table 3 below and plotted on Chart 5. It can be 

seen that the Expanding Window price indexes PEW
t are reasonably close to their transitive counterpart 

indexes, the Implicit Weighted Time Product Dummy indexes, PIWTPD
t, and they are very close near the end 

of the sample period.  

 

If the statistical agency is able to collect price and quantity data on the products in scope on a retrospective 

basis, then Modified Expanding Window price indexes PMEW
t could be used.45 To construct these indexes, 

start off with a window of 12 months of data and construct Implicit Weighted Time Product Dummy indexes 

for this 12 month window. Then simply switch over to the Expanding Window price indexes for months 13 

to 24. Thus the resulting indexes will be real time indexes over months 13-24. The Modified Expanding 
Window price indexes, PMEW

t, are also listed in Table 3 below and plotted on Chart 5. It can be seen that the 

Modified Expanding Window price indexes PMEW
t are generally closer to their transitive counterpart indexes, 

the Implicit Weighted Time Product Dummy indexes, PIWTPD
t, than the unmodified indexes PEW

t for t = 2, 

3, …, 12. 

 

Table 3: Expanding Window, Modified Expanding Window and Weighted Time Product 

Dummy Price Indexes 

 

Month PEW
t PMEW

t PIWTPD
t PWTPD

t 

1 1.000  1.000  1.000  1.000  

2 0.994  0.988  0.988  0.988  

3 0.985  0.979  0.982  0.982  

4 0.984  0.976  0.980  0.980  

5 0.985  0.966  0.969  0.969  

6 0.973  0.950  0.951  0.951  

7 0.943  0.928  0.922  0.923  

8 0.934  0.920  0.918  0.918  

9 0.921  0.913  0.910  0.910  

10 0.908  0.906  0.903  0.903  

11 0.884  0.884  0.878  0.879  

12 0.855  0.855  0.851  0.851  

13 0.822  0.822  0.833  0.833  

 
44 Note that we always link our price level estimate for the last period in our current regression back to the price level 

in period 1 because the period 1 price level set equal to 1 is the “true” period 1 price level and never changes whereas 

our new price levels for periods 2 to t−1 are changing as we add another period of data to the regression. Thus we are 

following Krsinich (2016) in our choice of “best” linking period.  
45 Krsinich (2016; 401) noted that estimates for the quality adjustment parameters αn are not reliably determined until 

the products have been present in the marketplace for several periods. This observation helps to explain why the 

Modified Expanding Window (EW) estimates will be more accurate than the simple EW estimates for the first few 

periods.   
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14 0.811  0.811  0.825  0.826  

15 0.797  0.797  0.814  0.814  

16 0.806  0.806  0.823  0.823  

17 0.811  0.811  0.820  0.820  

18 0.797  0.797  0.810  0.810  

19 0.799  0.799  0.809  0.809  

20 0.792  0.792  0.798  0.798  

21 0.784  0.784  0.788  0.788  

22 0.786  0.786  0.784  0.785  

23 0.766  0.766  0.768  0.768  

24 0.745  0.745  0.745  0.745  

Mean 0.870  0.866  0.870  0.870  

 

 
Chart 5: Expanding Window and Weighted Time Product Dummy Price Indexes 

 

 

The Modified Expanding Window indexes PMEW
t are in general closer to our target transitive indexes PIWTPD

t 

indexes for months 1-12 than the Expanding Window indexes PEW
t. Of course, PMEW

t coincides with PEW
t 

for months 13-24 by construction. The first 3 indexes listed in Table 3 all coincide at month 24. Finally, the 

directly estimated weighted TPD indexes, PWTPD
t are slightly different from the final transitive indexes 

PIWTPD
t. 

 

At each month t, the current Weighted TPD generates our “best” estimates for the αn parameters and the 

“best” transitive set of indirectly determined price levels for months 1 to t. However, the fixity (or no 

revisions) constraint on consumer price indexes prevents Statistical Offices from publishing new 

“improved” estimates of inflation for months 2 to t−1: all that can be done is to publish the new estimate 

for the period t price level. Thus there will be some differences or biases between the newly generated price 

levels for months 2 to t−1 and the historical published price levels for months 2 to t−1. These biases could 

be termed fixity biases. However, the newly estimated price levels will satisfy the circularity test for months 

1 to t. Hence the period t price level should be free from any chain drift bias using these new price levels.  
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As the number of periods in the sample increase, the complexity of the Weighted TPD regression increases. 

Thus one might ask: when should we start dropping the prices that correspond to the early months in the 

sample? In situations where there is a rapid product turnover, what will happen is that the αn estimates for 

products that were purchased at the beginning of the sample period stabilize. Moreover, the qtn that 

correspond to these disappeared products will be 0 and so these obsolete products will no longer enter the 

quantity aggregate of the current month. Thus at some point, the ever expanding window can be replaced 

by a (probably long) rolling window.46 This point will be reached when the current price level estimate for 

the expanding window regression for period t is very close to the corresponding rolling window estimate.  

 

What are the limitations of the Expanding Window Weighted TPD model or more generally, of a TPD 

hedonic regression?  

 

• New and existing products must compete in the marketplace for more than one period. It is this 

competition between products that will enable us to estimate the relative values of the products to 

purchasers.47 

• The Time Product Dummy model relies on the assumption that purchasers have linear preferences 

over the products in scope, at least to some degree of approximation. This assumption implies that 

the products are highly substitutable. The validity of this assumption can be determined by looking 

at the R2 for the TPD model (provided that there is an adequate amount of matching of products 

over time): if the R2 is low, it may be best to turn to a model that allows for more flexible purchaser 

preferences such as Rolling Year GEKS or CCDI.48  

• The Expanding Window Weighted TPD model does not allow for preference changes. The Rolling 

Window TPD model does allow for gradual preference changes at the cost of introducing some 

possible chain drift.  

 

8. Conclusion. 

 

The following tentative conclusions emerge from our study: 

 

• When price and quantity data for the products in scope are available, it is best to use weighted 

hedonic regressions that take into account the economic importance of the products. We found 

substantial differences between our weighted and unweighted (or more accurately, equally 

weighted) hedonic regressions.  

• The Time Dummy Characteristics approach to hedonic regressions did not work well for our 

particular example. This approach requires data on characteristics (which is expensive) and it is 

subject to the missing characteristics problem. We found that the indexes changed substantially as 

 
46 For an early application of the Rolling Window Weighted TPD model, see section 7 of Ivancic, Diewert and Fox 

(2009). For their particular scanner data set, the authors found little difference between their Rolling Window GEKS 

estimates and their Rolling Window TPD estimates. However, their monthly data series covered only 15 months.    
47 This limitation of the TPD methodology was recognized by Krsinich (2016; 400-401) and de Haan, Hendricks and 

Scholz (2021; 395). Again consider the extreme example where a new product enters the marketplace every period 

but exits after only one month. There is an extreme lack of matching bias. 
48 On the Rolling Year GEKS methodology, see Ivancic, Diewert and Fox (2011). On the Rolling Year CCDI 

methodology, see Diewert and Fox (2022) and Fox, Levell and O’Connell (2022) (2023). The CCDI multilateral price 

index is due to Caves, Christensen and Diewert (1982) and Inklaar and Diewert (2016). 
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we added additional characteristics to the regressions.49 However, there are situations where the 

TPD approach does not work well and other approaches should be used.50 

• There was a chain drift problem with all of our models that used chaining to link adjacent periods. 

The chain drift problem was not cured by the use of the multilateral predicted share method because 

most of the bilateral links chosen by the method were chain links.51  

• A satisfactory solution to the chain drift problem for our example was provided by the use of the 

Expanding Window methodology explained in section 7. This method should work well for many 

product classes where substitution between the competing products is high and each product is 

available on the marketplace for a number of consecutive periods. 

 

An interesting question for further research is a comparison of the Expanding Window Weighted TPD 

method explained above with the Expanding Window Geary (1958) Khamis (1970) index that was 

introduced by Chessa (2016) (2021). Both indexes are exact for linear preferences but the GK index can be 

implemented without econometric estimation.  

 

There are many other problems for further research that could be explored such as determining what is the 

“best” approach to aggregation of microeconomic data at the individual product level: is it simple unit value 

aggregation, a Rolling Window method based on a bilateral superlative index like the Rolling Window 

GEKS and CCDI methods or is it a regression based approach like the Expanding Window Weighted Time 

Product Dummy method?    

 

 

  

 
49 Thus we tend to agree with Krsinich (2016) in her defense of the Time Dummy Product approach to hedonic 

regressions as opposed to de Haan, Hendricks and Scholz (2021), who favoured the Time Dummy Characteristics 

approach because the TPD approach led to too many parameters and an overfitting problem. If a product is only on 

the market for a few periods, then the quality adjustment parameter for that product will not be accurately estimated 

by the TPD method and in that sense, there will be overfitting. But if products are present for say five consecutive 

periods and the regression fit is high, then the TPD method should work well.  
50 The construction of residential and commercial property price indexes cannot use the TPD method because each 

property is unique in its location. If the property has a structure, then the structure changes over time due to 

depreciation and possible renovations so the property is unique over time as well. Thus each property at each point in 

time has its own unique characteristic and the TPD method fails. Thus the TPC model should be used in this context. 
51 The recent paper by Fox, Levell and O’Connell (2023) found the same result for many product classes. 
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Online Appendices : Data Construction and Supplementary Tables. 

 

In this Appendix, we explain how our dummy variables for the various characteristics were constructed and 

we list various Tables for indexes which are described in the main text. The first eight subsections of this 

Appendix describe panel time dummy characteristics hedonic regressions as we introduce an additional 

explanatory characteristic one at a time. These regressions are unweighted Time Dummy Characteristics 

regressions of the type defined by (41) in the main text.   

 

A.1 A Characteristics Hedonic Regression with Clock Speed as the Only Characteristic. 

  

The price indexes PA
t and PUV

t make no adjustments for changes in the average quality of laptops over time. 

Let lnP denote the vector of dimension 2639 that consists of the logarithms of the monthly unit value prices 

of the subset of the 366 products that were sold in each month.  We start our analysis by regressing the price 

vector lnP on the time dummy variables D2, …, D24 and dummy variables for the clock speed of each laptop 

that was sold during the sample period.   

 

The clock speeds range from 1.0 to 3.4 in increments of 0.1. Thus there are 25 possible clock speeds. Vectors 

of dummy variables of dimension 2639, DC1, DC2, …, DC25, were generated using IF statements applied to 

the CLOCK variable.52 The number of observations in each cell of clock speeds were as follows: 53, 280,  

69, 18, 85, 51, 225, 0,  486, 104, 165, 201, 63, 186, 151,  31, 305, 12, 124, 10, 2, 10,  0,  4,  4. Thus DC8 

and DC23 were vectors of zeros and there were no products that have clock speeds equal to 1.7 or 3.2. Also, 

several cells had very few members. Thus we reduced the number of cell speed categories from 25 to 7. We 

attempted to get approximately the same number of observations in each category except the highest cell 

speed category. New Groups 1 to 7 aggregated old groups 1-3, 4-8, 8-9, 10-12, 13-15, 16-18 and 19-25 

respectively. Thus the new dummy variable vector DC1 equals the sum of the old vectors DC1 + DC2 + DC3, 

the new DC2 equals the sum of the old vectors DC4 + DC5 + DC6 + DC7 + DC8 and so on.  

 

Our first hedonic regression regresses lnP on the time dummy variable vectors D2, D3,…,D24 and the 7 clock 

speed dummy variable vectors DC1, DC2, …, DC7. The number of products that are in each of the 7 new 

clock speed cells are 402, 379, 486, 470, 400, 348 and 154. Since we have only one characteristic, our initial 

linear regression is the following one:   

 

(A1) lnP = Σt=2
24 ρtDt + Σj=1

7 bCjDCj + e 

 

where e is an error vector of dimension 2639.  

 

We estimated the unknown parameters, ρ2
*, ρ3

*, …, ρ24
*, bC1

*, …, bC7
* in the above linear regression model 

using ordinary least squares. The log of the likelihood function was − 1401.58 and the R2 between the 

observed price vector and the predicted price vector was only 0.2984. If increased clock speed is valuable 

to purchasers, we would expect the estimated bCj
* coefficients to increase as j increases. For this regression, 

the estimates for bC1
*, …, bC7

* were −0.4213, 0.0669, 0.1498, −0.0050, 0.2606, 0.3253 and 0.4535. These 

coefficients increase monotonically except for bC4
*, so overall, it seems that purchasers do value increased 

clock speed.53     

 

52 Using SHAZAM, DC1, DC2, …, DC25 can be generated using the commands GENR DCL1=(CLOCK.EQ.1.0), 

GENR DCL2=(CLOCK.EQ.1.1), …, GENR DCL25=(CLOCK.EQ.3.4).  
53 Of course, these coefficients will change as we add other characteristics to the regression. 
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The estimated ρt
* are the logarithms of the price levels Pt* for t = 2,3,…,24 but we will not list the estimated 

price levels until we have entered all 8 of our characteristics listed in the data Appendix B into the regression. 

 

Once the estimates for the bCj are available, we can calculate the logarithms of the appropriate quality 

adjustment factor αtn
* that can be used to determine the quality of product n in month t. Denote the logarithm 

of αtn
* by βtn

* for t = 1,…,24 and n∈S(t). Denote the vector of estimated quality adjustment factors (of 

dimension 2639) by β*. It turns out that β* can be calculated as follows: 

 

(A2) β* = Σj=1
7 bCj

*
 DCj. 

 

It is convenient to have a constant term in a linear regression: if this is the case, then the error terms must 

sum to zero across all observations. We can introduce a constant term into our regression model defined by 

(A1) as follows. First define ONE as a vector of ones of dimension 2639. Consider the following linear 

regression model: 

 

(A3) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCjDCj + e 

 

where e is an error vector of dimension 2639. Thus we have added a vector of ones as an independent 

variable in the new regression defined by (A3) and dropped the first clock speed dummy variable vector 

DC1 as an explanatory variable. Denote the ordinary least squares estimates for the parameters in (A3) by 

ρ2
**, ρ3

**, …, ρ24
**, b0

**, bC2
**, …, bC7

**. It turns out that ρt
** = ρt

* for t = 2,3,…,24 and the following vector 

equation also holds: 

 

(A4) b0
*

 ONE + Σj=2
7 bCj

*
 DCj = Σj=1

7 bCj
*

 DCj .  

  

Thus the vector of log quality adjustment factors for the positive observed prices in the sample, β* defined 

by (A2), is also equal to the following expression: 

 

(A5) β* = b0
*

 ONE + Σj=2
7 bCj

*
 DCj. 

 

In the models which follow, we will add additional characteristics to the hedonic regression model defined 

by (A3) rather than adding addition explanatory variables to the model defined by (A1).  

 

A.2 A Hedonic Regression that Added Memory Capacity as an Additional Characteristic. 

 

We add memory capacity as another price determining characteristic of a laptop. There were only 3 sizes 

of memory capacity (the variable MEM in the Data Appendix B): 4096, 8192 and 16384. Construct dummy 

variable vectors of dimension 2639 for each value of MEM.54 Denote these vectors as DM1, DM2 and DM3. 

The new log price time dummy characteristic hedonic regression is the following counterpart to (A3): 

 

(A6) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCjDCj + Σj=2
3 bMjDMj + e. 

   

 
54 Using SHAZAM, the commands to create these dummy variable vectors D are: GENR DM1=(MEM.EQ.4096) ; 

GENR DM2=(MEM.EQ.8192) and GENR DM3=(MEM.EQ.16384). The number of products in each of these 3 cells 

are 620, 1710 and 309. 
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The log of the likelihood function was − 648.937, a gain of 752.64 log likelihood points for adding 2 new 

memory size parameters. The R2 between the observed price vector and the predicted price vector was 

0.6034. If increased memory capacity is valuable to purchasers, we would expect the estimated bMj
* 

coefficients to increase as j increases. For this regression, the estimates for bM2
* and bM3

* were .5493 and 

0.9789. This regression indicates that purchasers do value increased memory capacity and are willing to 

pay a higher price for a laptop with greater memory capacity, other characteristics being held constant.  

 

A.3 A Hedonic Regression that Added Screen Size as an Additional Characteristic. 

 

There were 10 different screen sizes (in units of 10 inches) in our sample of laptop observations. This 

variable is listed as SIZE in Appendix B. The 10 screen sizes in our sample were: 1.16, 1.2, 1.25, 1.33, 1.4, 

1.54, 1.56, 1.6, 1.61 and 1.73. The usual commands were used to generate 10 dummy variables for this 

characteristic. However, for the screen sizes 1.2, 1.56 and 1.61, we had only 12, 14 and 35 observations in 

our sample for these three sizes. Thus we combined the dummy variable for size 1.2 with the dummy 

variable for 1.16,55 combined the dummy variable for size 1.56 with size 1.54 and combined the dummy 

variables for sizes 1.6 and 1.61. Denote the resulting 7 dummy variables of dimension 2639 by DS1, DS2, 

…, DS7. The number of observations in each of the 7 screen size cells was 98, 154, 810, 257, 1106, 114, 

100. 

 

The new log price Time Dummy Characteristics hedonic regression is the following counterpart to (A6): 

 

(A7) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCjDCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + e. 

   

The log of the likelihood function was − 202.270, a gain of 446.667 log likelihood points for adding 6 new 

screen size parameters. The R2 between the observed price vector and the predicted price vector was 0.7173. 

If increased screen size is valuable to purchasers, we would expect the estimated bSj
* coefficients to increase 

as j increases. For this regression, the estimates for bS2
*-bS7

* were 0.73371, 0.59447, 0.22923, 0.34524, 

0.74190 and 0.68987. This regression indicates that purchasers prefer small and large screen sizes over 

intermediate screen sizes for laptops.  

 

A.4 A Hedonic Regression that Added Pixels as an Additional Characteristic. 

 

There were 10 different numbers of pixels in our sample of laptop observations. A larger number of pixels 

per unit of screen size will lead to clearer images on the screen and this may be utility increasing for 

purchasers. The pixel variable is listed as PIX in the Appendix B. There were 10 different PIX sizes in our 

sample. The 10 sizes (in transformed units of measurement) were: 1.049, 1.246, 1.296, 2.074, 3.318, 4.096, 

5.184, 5.530, 5.898 and 8.294. The number of observations having these pixel sizes were as follows: 324, 

4, 2, 1769, 5, 400, 14, 3, 79 and 39. The usual commands were used to generate the 10 pixel dummy 

variables, DP1-DP10. However, the number of observations in pixel groups 2, 3, 5, 7 and 8 were 14 or less 

so these groups of observations need to be combined with other categories. We ended up with 5 pixel 

groups: the new group 1 combined groups 1, 2 and 3; old group 4 became the new group 2, old groups 5 

and 6 were combined to give us the new group 3, old groups 7, 8 and 9 were combined to be the new group 

4 and the old group 10 became the new group 5. Denote the new pixel dummy variable vectors as DP1-DP5. 

The number of observations in each of these new pixel cells was 330, 1769, 405, 96, 39. 

 

55
  GENR DS1=(SIZE.GE.1.16).AND.(SIZE.LE.1.20) is the SHAZAM command to construct the combined 

dummy variable. 
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The new log price time dummy characteristic hedonic regression is the following counterpart to (62): 

 

(A8) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCjDCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + Σj=2
5 bPjDPj + e. 

   

The log of the likelihood function for the hedonic regression defined by (A8) was − 71.1313, a gain of 

131.139 log likelihood points for adding 4 new pixel number parameters. The R2 between the observed 

price vector and the predicted price vector was 0.7440. If an increased number of pixels is valuable to 

purchasers, we would expect the estimated bPj
* coefficients to increase as j increases. For this regression, 

the estimates for bP2
*-bP5

* were 0.19750, 0.21889, 0.56884 and 0.69244. Thus the coefficients for the pixel 

dummy variables increase monotonically, indicating that purchasers are willing to pay more for an increase 

in screen clarity.  

 

A.5 A Hedonic Regression that Added HDMI as an Additional Characteristic. 

 

The dummy variable that indicates the presence of HDMI in the laptop has already been generated and is 

listed in Appendix B as the column vector HDMI. Denote this column vector as DH2 in the following 

hedonic regression which adds DH2 to the other regressor columns in (A8): 

 

(A9) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCjDCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + Σj=2
5 bPjDPj + bH2DH2 + e. 

 

The log of the likelihood function for the hedonic regression defined by (A9) was 49.499, a gain of 120.631 

log likelihood points for adding 1 new HDMI parameter. The R2 between the observed price vector and the 

predicted price vector was 0.7764 which is a material increase over the R2 of the previous model which was 

equal to 0.7440. If having HDMI capability in the laptop is valuable to purchasers, we would expect the 

estimated bH2
* coefficient to be positive. Our estimated coefficient bH2

* was equal to 0.36041 which is a 

positive number and hence, the presence of HDMI in the laptop increases utility.   

 

A.6 A Hedonic Regression that Added Brand as an Additional Characteristic. 

 

There are 11 brands in our sample. In Appendix B the variable BRAND takes on values from 1 to 12 but 

there are no brands that correspond to the number 2 in our sample for the 24 months in the years 2021 and 

2022. Here are the numbers of observations in each of the 12 BRAND categories: 4, 0, 3,101, 6,  235, 107, 

389, 489, 439, 327, 479. We calculated the sample wide average price for each brand and re-ordered the 

brands according to their average prices with the lowest average price brands listed first and the highest 

average brand listed last. After re-ordering (and dropping old brand 2), the new brand ordering from 1-11 

consists of the following initial brands: 7, 6, 5, 9, 1, 12, 8, 4, 11, 10, 3. The number of observations in each 

new BRAND category are as follows: 107, 235, 66, 489, 4, 479, 389, 101, 327, 439, 3. Construct the 11 

vectors of dummy variables for the 11 new brand categories and denote these vectors of dimension 2639 

by DB1-DB11.  

 

Add the column vectors DB2-DB11 to the other regressor columns in (64) in order to obtain the following 

hedonic regression model: 

 

(A10) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCj DCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + Σj=2
5 bPjDPj + bH2DH2  

                + Σj=2
11 bBjDBj + e. 
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The log of the likelihood function for the hedonic regression defined by (A10) was 754.295, a huge gain of 

704.796 log likelihood points for adding 10 new brand parameters. The R2 between the observed price 

vector and the predicted price vector was 0.8631 which is a very big increase over the R2 of the previous 

model which was equal to 0.7764. The estimated brand coefficients bB2
*- bB11

* are as follows: − 0.1014, 

0.1366, 0.0975, 0.1201, 0.5048, 0.4136, 0.1469, 0.4743, 0.2880, 0.6401. Thus there is a general tendency 

for the marginal utility of a more expensive brand to be higher than the marginal utility of a cheaper brand. 

 

A.7 A Hedonic Regression that Added the Type of Central Processing Unit as an Additional 

       Characteristic. 

 

There are 10 types of Central Processing Units (CPUs) in our sample. Here are the numbers of observations 

in each of the 10 CPU categories: 245, 702, 766, 39,  66, 87, 255,  11,  462, 6. Construct the 10 vectors of 

dummy variables for the 10 CPU categories and denote these vectors of dimension 2639 by DU1-DU10.  

 

Add the terms Σj=2
10 bUjDUj  in order to obtain the new hedonic regression model. The log of the likelihood 

function for the new hedonic regression model was 1012.80, a large gain of 258.505 log likelihood points 

for adding 9 new CPU parameters. The R2 between the observed price vector and the predicted price vector 

was 0.8874, which is an increase over the R2 of the previous model which was equal to 0.8631.  

 

A.8 A Hedonic Regression that Added Laptop Weight as an Additional Characteristic. 

 

We defined 7 weight dummy variables, DW1-DW7 by choosing the following break points for laptop weights: 

1.0, 1.3, 1.6, 1.9, 2.1 and 2.3. The DW1 cell consisted of laptops that weighed less than 1 kilo, the DW2 cell 

consisted of laptops that were in the interval 1 ≤ WEIGHT < 1.3, ,,, , the DW6 cell consisted of laptops that 

were in the interval 2.1 ≤ WEIGHT < 2.3 and the DW7 cell consisted of laptops that satisfied the inequality  

WEIGHT ≥ 2.3. The number of laptops in each of these cells was as follows: 417, 408,  477, 311, 297, 466, 

263. 

 

Add the column vectors DW2-DW7 to the right hand side of the previous regression in order to obtain the 

following hedonic regression model: 

 

(A11) lnP = Σt=2
24 ρtDt + b0ONE + Σj=2

7 bCj DCj + Σj=2
3 bMjDMj + Σj=2

7 bSjDSj + Σj=2
5 bPjDPj + bH2DH2  

                + Σj=2
11 bBjDBj + Σj=2

10 bUjDUj + Σj=2
7 bWjDWj + e. 

 

The log of the likelihood function for the hedonic regression defined by (66) was 1074.86,  an increase of 

62.06 over the previous log likelihood for adding 6 additional parameters. The R2 between the observed 

price vector and the predicted price vector was 0.8926 which is a substantial increase over the R2 of the 

previous model which was equal to 0.8631. The estimated weight coefficients bW2
*- bW7

* are as follows:  

0.0765, 0.0018, -0.2094, -0.2447, -0.1852 and -0.2378. Thus a lighter laptop has on average a slightly 

positive price premium but the price premium becomes negative (and approximately constant) for laptops 

that weigh more that 1.6 kilos.  

 

The estimated coefficients on the time dummy variables in this regression are ρ2
*, ρ3

*, …, ρ24
*. Define ρ1

* 

≡ 0 and the estimated period t price levels πt
* ≡ exp[ρt

*] for t = 1,2,…,24. Define the month t Time Dummy 
Characteristics Price Index, PTDC

t ≡ πt
* for t = 1,…,24. This index is listed in Table A2 in the following 

subsection. 
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A.9 The Weighted Time Dummy Characteristics Hedonic Regression Model. 

 

The price indexes defined in sections A4.1-A4.8 can be constructed by using information on product prices 

and the amounts of the various characteristics of each product. If in addition, information on quantities sold 

or purchased during each month in scope is available, then Weighted Time Dummy Characteristics price 

indexes defined by equations (49) in section 3 can be constructed.  

 

Recall that the expenditure share that corresponds to purchased product n in month t is defined as stn = 

ptnqtn/Σj∈S(t) ptjqtj for t = 1,…,24 and n∈S(t). To obtain the weighted counterpart to the hedonic regression 

model defined by (A11) above, we just form a share vector of dimension 2639 that corresponds to the lnptn 

that appear in (A11) and then form a new vector of dimension 2639 that consists of the positive square roots 

of each stn. Call this vector of square roots SS. Now multiply both sides of  (A11) by SS to obtain a new 

linear regression model which again provides estimates for the unknown parameters that appear in (A11). 

The R2 for this new weighted regression model turned out to be 0.9152 which is substantially higher than 

the R2 for the counterpart unweighted model which was 0.8926. 

 

The parameter estimates for this weighted hedonic regression model are listed in Table A1. This is our 

preferred regression from all of the regression models that have been presented thus far.  

 

Table A1: Parameter Estimates for the Weighted Time Dummy Characteristics Hedonic 

Regression 

Coef Estimate 
Std. 

Error 
t-stat Coef Estimate 

Std. 

Error 
t-stat 

b0
* -1.146  0.038  -29.950  bS4

* 0.374  0.031  12.000  

ρ2
* -0.001  0.016  -0.053  bS5

* 0.547  0.044  12.490  

ρ3
* 0.018  0.016  1.154  bS6

* 0.727  0.050  14.630  

ρ4
* 0.024  0.016  1.517  bS7

* 0.733  0.047  15.650  

ρ5
* 0.019  0.016  1.191  bP2

* 0.001  0.018  0.046  

ρ6
* 0.004  0.016  0.255  bP3

* 0.215  0.043  4.944  

ρ7
* -0.026  0.016  -1.607  bP4

* 0.362  0.055  6.600  

ρ8
* -0.028  0.016  -1.713  bP5

* 0.266  0.033  8.143  

ρ9
* -0.038  0.016  -2.323  bH2

* 0.296  0.019  15.460  

ρ10
* -0.032  0.016  -1.972  bB2

* -0.191  0.025  -7.688  

ρ11
* -0.060  0.016  -3.650  bB3

* 0.083  0.033  2.485  

ρ12
* -0.089  0.016  -5.433  bB4

* -0.032  0.022  -1.429  

ρ13
* -0.101  0.016  -6.165  bB5

* 0.007  0.133  0.050  

ρ14
* -0.109  0.017  -6.592  bB6

* 0.319  0.022  14.320  

ρ15
* -0.103  0.017  -6.178  bB7

* 0.240  0.023  10.350  

ρ16
* -0.083  0.017  -4.942  bB8

* 0.010  0.029  0.356  

ρ17
* -0.092  0.017  -5.438  bB9

* 0.310  0.024  12.710  

ρ18
* -0.098  0.017  -5.778  bB10

* 0.190  0.032  5.940  

ρ19
* -0.096  0.017  -5.630  bB11

* 0.838  0.143  5.857  
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ρ20
* -0.115  0.017  -6.809  bU2

* 0.202  0.012  16.470  

ρ21
* -0.122  0.017  -7.208  bU3

* 0.149  0.015  9.831  

ρ22
* -0.116  0.017  -6.825  bU4

* 0.445  0.030  14.710  

ρ23
* -0.098  0.017  -5.752  bU5

* -0.184  0.024  -7.660  

ρ24
* -0.080  0.017  -4.681  bU6

* 0.043  0.026  1.622  

bC2
* 0.076  0.015  5.039  bU7

* 0.213  0.015  14.500  

bC3
* 0.239  0.017  14.230  bU8

* 0.212  0.074  2.854  

bC4
* 0.177  0.017  10.670  bU9

* -0.113  0.019  -5.923  

bC5
* 0.206  0.017  11.950  bU10

* -0.160  0.127  -1.258  

bC6
* 0.341  0.021  16.410  bW2

* 0.083  0.019  4.417  

bC7
* 0.293  0.021  14.090  bW3

* 0.063  0.021  3.073  

bM2 * 0.093  0.014  6.509  bW4
* -0.137  0.039  -3.536  

bM3
* 0.399  0.019  20.810  bW5

* -0.102  0.039  -2.603  

bS2
* 0.476  0.034  14.110  bW6

* -0.142  0.040  -3.577  

bS3
* 0.598  0.032  18.880  bW7

* -0.154  0.039  -3.944  

 

There are 68 parameters in this regression model with 2571 degrees of freedom for the error terms. It can 

be seen that the clock speed parameters bCj
* increase with respect to j up to a point and then basically level 

off; the memory capacity parameters bM2
* and bM3

* are monotonically increasing; the screen size parameters 

bSj
* are roughly increasing; the pixel parameters bPj

* are monotonically increasing (except for bP5
*); the 

HDMI parameter bH2
* is positive which indicates that the availability of HDMI is valued by purchasers and 

the brand parameters bBj
* are weakly increasing so that the higher price brands are mostly preferred by 

purchasers. With respect to weight, it appears that lighter models are preferred up to a point and then weight 

does not seem to matter much.  

 

The estimated coefficients on the time dummy variables in this regression are ρ2
*, ρ3

*, …, ρ24
*. Define ρ1

* 

≡ 0 and the estimated period t price levels πt
* ≡ exp[ρt

*] for t = 1,2,…,24. Define the month t Weighted Time 
Dummy Characteristics Price Index, PWTDC

t ≡ πt
* for t = 1,…,24. This index is listed in Table A2 (and 

plotted in Chart 1 in the main text) and it is our a priori preferred index thus far. The corresponding 

unweighted (or equally weighted) Time Dummy Characteristics Price Index PTDC
t is also listed in Table 5 

along with the simple average laptop price indexes PA
t and PUV

t defined in section 4 of the main text. 

 

Table A2: Weighted and Unweighted Time Dummy Characteristics Price Indexes  

Month t PWTDC
t PTDC

t PA
t PUV

t 

1 1.000  1.000  1.000  1.000  

2 0.999  1.034  1.035  0.997  

3 1.019  1.041  1.035  1.010  

4 1.025  1.037  1.021  0.995  

5 1.019  1.080  1.063  1.020  

6 1.004  1.070  1.066  1.002  

7 0.974  1.018  1.027  0.984  

8 0.972  1.014  1.020  0.974  

9 0.963  1.002  1.011  0.951  
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10 0.968  1.020  1.036  0.991  

11 0.942  0.994  1.013  0.947  

12 0.914  0.947  0.949  0.879  

13 0.904  0.970  0.903  0.844  

14 0.897  0.957  0.914  0.846  

15 0.902  0.943  0.899  0.846  

16 0.921  0.955  0.932  0.854  

17 0.912  0.950  0.891  0.802  

18 0.907  0.948  0.866  0.791  

19 0.909  0.951  0.851  0.799  

20 0.891  0.932  0.831  0.793  

21 0.885  0.931  0.848  0.771  

22 0.891  0.938  0.904  0.853  

23 0.906  0.952  0.859  0.846  

24 0.923  0.935  0.892  0.878  

Mean 0.944  0.984  0.953  0.903  

 

A.10 Supplementary Tables for Sections 4-7  

 

Table A3: Sample Wide and Adjacent Period Weighted and Unweighted Characteristics 

Price Indexes. 

Month t PWATDC
t PATDC

t PWTDC
t PTDC

t PA
t PUV

t 

1 1.000  1.000  1.000  1.000  1.000  1.000  

2 0.999  1.026  0.999  1.034  1.035  0.997  

3 1.007  1.031  1.019  1.041  1.035  1.010  

4 1.010  1.021  1.025  1.037  1.021  0.995  

5 1.007  1.039  1.019  1.080  1.063  1.020  

6 0.995  1.030  1.004  1.070  1.066  1.002  

7 0.972  0.989  0.974  1.018  1.027  0.984  

8 0.960  0.981  0.972  1.014  1.020  0.974  

9 0.953  0.965  0.963  1.002  1.011  0.951  

10 0.949  0.972  0.968  1.020  1.036  0.991  

11 0.929  0.945  0.942  0.994  1.013  0.947  

12 0.899  0.913  0.914  0.947  0.949  0.879  

13 0.875  0.911  0.904  0.970  0.903  0.844  

14 0.863  0.897  0.897  0.957  0.914  0.846  

15 0.851  0.884  0.902  0.943  0.899  0.846  

16 0.862  0.891  0.921  0.955  0.932  0.854  

17 0.857  0.884  0.912  0.950  0.891  0.802  

18 0.846  0.873  0.907  0.948  0.866  0.791  

19 0.841  0.869  0.909  0.951  0.851  0.799  

20 0.825  0.849  0.891  0.932  0.831  0.793  

21 0.818  0.847  0.885  0.931  0.848  0.771  

22 0.807  0.845  0.891  0.938  0.904  0.853  

23 0.795  0.843  0.906  0.952  0.859  0.846  

24 0.788  0.831  0.923  0.935  0.892  0.878  

Mean 0.905  0.931  0.944  0.984  0.953  0.903  
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Table A4: Sample Wide and Adjacent Period Weighted and Unweighted Time Product 

Dummy Price Indexes 

Month t PWATPD
t PATPD

t PWTPD
t PTPD

t PA
t PUV

t 

1 1.000  1.000  1.000  1.000  1.000  1.000  

2 0.994  0.988  0.988  0.983  1.035  0.997  

3 0.985  0.981  0.982  0.978  1.035  1.010  

4 0.985  0.967  0.980  0.965  1.021  0.995  

5 0.975  0.949  0.969  0.953  1.063  1.020  

6 0.964  0.931  0.951  0.937  1.066  1.002  

7 0.944  0.907  0.923  0.906  1.027  0.984  

8 0.930  0.886  0.918  0.889  1.020  0.974  

9 0.920  0.869  0.910  0.877  1.011  0.951  

10 0.916  0.863  0.903  0.874  1.036  0.991  

11 0.891  0.835  0.879  0.853  1.013  0.947  

12 0.859  0.801  0.851  0.825  0.949  0.879  

13 0.826  0.776  0.833  0.808  0.903  0.844  

14 0.815  0.764  0.826  0.795  0.914  0.846  

15 0.796  0.749  0.814  0.779  0.899  0.846  

16 0.795  0.747  0.823  0.779  0.932  0.854  

17 0.787  0.734  0.820  0.771  0.891  0.802  

18 0.778  0.723  0.810  0.759  0.866  0.791  

19 0.767  0.708  0.809  0.754  0.851  0.799  

20 0.752  0.694  0.798  0.745  0.831  0.793  

21 0.743  0.685  0.788  0.737  0.848  0.771  

22 0.734  0.675  0.785  0.733  0.904  0.853  

23 0.715  0.661  0.768  0.724  0.859  0.846  

24 0.694  0.646  0.745  0.707  0.892  0.878  

Mean 0.857  0.814  0.870  0.839  0.953  0.903  

 

Table A5: Predicted Share Measures of Relative Price Similarity for 24 Months 

r ∆(r,1) ∆(r,2) ∆(r,3) ∆(r,4) ∆(r,5) ∆(r,6) ∆(r,7) ∆(r,8) ∆(r,9) ∆(r,10) ∆(r,11) ∆(r,12) 

1 0.000  0.010  0.009  0.017  0.031  0.049  0.051  0.051  0.072  0.064  0.088  0.101  

2 0.010  0.000  0.001  0.009  0.015  0.026  0.027  0.033  0.041  0.045  0.055  0.055  

3 0.009  0.001  0.000  0.005  0.006  0.012  0.016  0.017  0.023  0.024  0.032  0.034  

4 0.017  0.009  0.005  0.000  0.012  0.015  0.021  0.020  0.027  0.027  0.041  0.046  

5 0.031  0.015  0.006  0.012  0.000  0.001  0.008  0.003  0.007  0.007  0.017  0.022  

6 0.049  0.026  0.012  0.015  0.001  0.000  0.008  0.003  0.007  0.006  0.016  0.021  

7 0.051  0.027  0.016  0.021  0.008  0.008  0.000  0.005  0.004  0.006  0.007  0.008  

8 0.051  0.033  0.017  0.020  0.003  0.003  0.005  0.000  0.000  0.001  0.001  0.001  

9 0.072  0.041  0.023  0.027  0.007  0.007  0.004  0.000  0.000  0.001  0.000  0.001  

10 0.064  0.045  0.024  0.027  0.007  0.006  0.006  0.001  0.001  0.000  0.001  0.004  

11 0.088  0.055  0.032  0.041  0.017  0.016  0.007  0.001  0.000  0.001  0.000  0.000  

12 0.101  0.055  0.034  0.046  0.022  0.021  0.008  0.001  0.001  0.004  0.000  0.000  

13 0.140  0.083  0.050  0.050  0.029  0.028  0.024  0.016  0.014  0.017  0.013  0.013  

14 0.141  0.094  0.057  0.055  0.035  0.034  0.032  0.022  0.024  0.023  0.019  0.018  

15 0.149  0.101  0.062  0.057  0.041  0.040  0.037  0.027  0.030  0.029  0.024  0.024  
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16 0.178  0.116  0.080  0.077  0.051  0.048  0.046  0.035  0.037  0.037  0.032  0.034  

17 0.300  0.236  0.148  0.129  0.093  0.087  0.093  0.076  0.076  0.078  0.074  0.086  

18 0.380  0.299  0.172  0.144  0.085  0.077  0.083  0.067  0.069  0.067  0.068  0.082  

19 0.394  0.343  0.284  0.255  0.155  0.155  0.158  0.138  0.139  0.141  0.134  0.143  

20 0.608  0.507  0.326  0.253  0.173  0.166  0.172  0.153  0.153  0.154  0.157  0.185  

21 0.589  0.501  0.284  0.223  0.155  0.147  0.185  0.166  0.166  0.168  0.171  0.196  

22 0.850  0.671  0.445  0.380  0.232  0.222  0.246  0.247  0.244  0.246  0.246  0.290  

23 0.865  0.657  0.491  0.457  0.363  0.373  0.427  0.406  0.406  0.410  0.417  0.463  

24 1.013  0.856  0.613  0.459  0.318  0.307  0.354  0.261  0.263  0.261  0.282  0.325  
3                         

r ∆(r,13) ∆(r,14) ∆(r,15) ∆(r,16) ∆(r,17) ∆(r,18) ∆(r,19) ∆(r,20) ∆(r,21) ∆(r,22) ∆(r,23) ∆(r,24) 

1 0.140  0.141  0.149  0.178  0.300  0.380  0.394  0.608  0.589  0.850  0.865  1.013  

2 0.083  0.094  0.101  0.116  0.236  0.299  0.343  0.507  0.501  0.671  0.657  0.856  

3 0.050  0.057  0.062  0.080  0.148  0.172  0.284  0.326  0.284  0.445  0.491  0.613  

4 0.050  0.055  0.057  0.077  0.129  0.144  0.255  0.253  0.223  0.380  0.457  0.459  

5 0.029  0.035  0.041  0.051  0.093  0.085  0.155  0.173  0.155  0.232  0.363  0.318  

6 0.028  0.034  0.040  0.048  0.087  0.077  0.155  0.166  0.147  0.222  0.373  0.307  

7 0.024  0.032  0.037  0.046  0.093  0.083  0.158  0.172  0.185  0.246  0.427  0.354  

8 0.016  0.022  0.027  0.035  0.076  0.067  0.138  0.153  0.166  0.247  0.406  0.261  

9 0.014  0.024  0.030  0.037  0.076  0.069  0.139  0.153  0.166  0.244  0.406  0.263  

10 0.017  0.023  0.029  0.037  0.078  0.067  0.141  0.154  0.168  0.246  0.410  0.261  

11 0.013  0.019  0.024  0.032  0.074  0.068  0.134  0.157  0.171  0.246  0.417  0.282  

12 0.013  0.018  0.024  0.034  0.086  0.082  0.143  0.185  0.196  0.290  0.463  0.325  

13 0.000  0.004  0.003  0.006  0.018  0.023  0.036  0.038  0.044  0.084  0.102  0.094  

14 0.004  0.000  0.001  0.003  0.011  0.017  0.025  0.025  0.030  0.066  0.077  0.076  

15 0.003  0.001  0.000  0.000  0.004  0.007  0.011  0.010  0.015  0.049  0.055  0.057  

16 0.006  0.003  0.000  0.000  0.001  0.004  0.004  0.005  0.006  0.041  0.043  0.046  

17 0.018  0.011  0.004  0.001  0.000  0.002  0.003  0.003  0.004  0.039  0.041  0.044  

18 0.023  0.017  0.007  0.004  0.002  0.000  0.001  0.003  0.002  0.036  0.036  0.040  

19 0.036  0.025  0.011  0.004  0.003  0.001  0.000  0.001  0.001  0.035  0.033  0.037  

20 0.038  0.025  0.010  0.005  0.003  0.003  0.001  0.000  0.001  0.034  0.034  0.037  

21 0.044  0.030  0.015  0.006  0.004  0.002  0.001  0.001  0.000  0.033  0.031  0.036  

22 0.084  0.066  0.049  0.041  0.039  0.036  0.035  0.034  0.033  0.000  0.001  0.004  

23 0.102  0.077  0.055  0.043  0.041  0.036  0.033  0.034  0.031  0.001  0.000  0.001  

24 0.094  0.076  0.057  0.046  0.044  0.040  0.037  0.037  0.036  0.004  0.001  0.000  

 

Table A5 can be used to construct the relative price similarity linked Predicted Share Price index, PS
t, for t 

= 1,…,24.  We set PS
1 = 1. When comparing the prices of month 2 to the prices of previous months, there 

is only one possible comparison in our window of data so that we must compare p2 to p1. We use the matched 

model Fisher index PF(1,2) defined by (64) to define the similarity linked month 2 index. Thus PS
2 ≡ PF(1,2). 

Now look at the column in Table A5 that has the heading ∆(r,3). Look at the first 2 entries in this column. 

We have ∆(1,3) = 0.0088 and ∆(2,3) = 0.0007. Since ∆(2,3) is smaller than ∆(1,3), we link month 3 to 

month 2 using the matched model Fisher index PF(2,3). Thus PS
3 ≡ PS

2 PF(2,3). Now look at the column in 

Table A5 that has the heading ∆(r,4). Look at the first 3 entries in this column. We have ∆(1,4) = 0.0170, 

∆(2,4) = 0.0092 and ∆(3,4) = 0.0046. Since ∆(3,4) is the smallest of these 3 measures, we link month 4 to 

month 3 using the matched model Fisher index PF(3,4). Thus PS
4 ≡ PS

3 PF(3,4). This procedure can be 

continued until we look down the column that has the heading ∆(r,24). The smallest measure of relative 

price similarity in the first 23 rows of this column is the entry for row 23 which has measure 0.0013. Thus 
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we link month 24 to month 23 using the matched model Fisher index PF(23,24) which leads to the following 

definition for PS
24 ≡ PS

23 PF(23,24).56  

 

The relative price Predicted Share Similarity Linked indexes PS
t are listed in Table A6 below. We also list 

the chained maximum overlap Laspeyres, Paasche and Fisher indexes, PLCH
t, PPCH

t and PFCH
t in Table A6. 

Finally, for comparison purposes, Table A6 lists our “best” hedonic price index from the previous sections, 

the Weighted Adjacent Period Time Product Dummy Index, PWATPD
t, as well as the average laptop price 

index PA
t and the Unit Value price index PUV

t. See Chart 3 for plots of the indexes listed in Table A6.      

 

Table A6: The Predicted Share Similarity Linked Price Index and Other Comparison Price Indexes 

Month t PS
t PFCH

t PLCH
t PPCH

t PWATPD
t PA

t PUV
t 

1 1.000  1.000  1.000  1.000  1.000  1.000  1.000  

2 0.993  0.993  0.995  0.991  0.994  1.035  0.997  

3 0.985  0.985  0.985  0.984  0.985  1.035  1.010  

4 0.983  0.983  0.983  0.983  0.985  1.021  0.995  

5 0.979  0.972  0.970  0.975  0.975  1.063  1.020  

6 0.968  0.962  0.959  0.965  0.964  1.066  1.002  

7 0.948  0.941  0.939  0.944  0.944  1.027  0.984  

8 0.935  0.927  0.924  0.930  0.930  1.020  0.974  

9 0.925  0.918  0.912  0.923  0.920  1.011  0.951  

10 0.926  0.918  0.905  0.932  0.916  1.036  0.991  

11 0.894  0.889  0.872  0.907  0.891  1.013  0.947  

12 0.862  0.857  0.841  0.873  0.859  0.949  0.879  

13 0.828  0.824  0.811  0.836  0.826  0.903  0.844  

14 0.817  0.813  0.803  0.823  0.815  0.914  0.846  

15 0.798  0.794  0.784  0.805  0.796  0.899  0.846  

16 0.797  0.792  0.781  0.804  0.795  0.932  0.854  

17 0.789  0.785  0.773  0.796  0.787  0.891  0.802  

18 0.780  0.776  0.765  0.786  0.778  0.866  0.791  

19 0.768  0.764  0.755  0.773  0.767  0.851  0.799  

20 0.753  0.749  0.740  0.757  0.752  0.831  0.793  

21 0.743  0.739  0.733  0.746  0.743  0.848  0.771  

22 0.734  0.730  0.724  0.736  0.734  0.904  0.853  

23 0.715  0.711  0.707  0.716  0.715  0.859  0.846  

24 0.693  0.690  0.689  0.690  0.694  0.892  0.878  

Mean 0.859  0.855  0.848  0.861  0.857  0.953  0.903  

 

 
56 The entire set of bilateral matched model Fisher links is as follows: 2-1; 3-2; 4-3; 5-3*; 6-5; 7-6; 8-6*; 9-8; 10-9; 11-

9*; 12-11; 13-12; 14-13; 15-14; 16-15; 17-16; 18-17; 19-18; 20-19; 21-20; 22-21; 23-22; 24-23. Note that there are 

only 3 bilateral links that are not chain links. Thus the similarity linked indexes for our data are likely to be close to 

the corresponding chained maximum overlap Fisher index. 


