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Abstract

As consumers have limited capacity to process information, advertisers must com-

pete for attention. This creates information congestion which produces social loss like

unread advertisements. We apply population games and best response dynamics to an-

alyze information congestion. Multiple equilibria impair traditional policies, and thus,

non-traditional policies are examined to lead the system to a Pareto efficient equilibrium.

We achieve this by changing the cost per message multiple times during the evolutionary

process. In this process, policymakers gradually but incompletely investigate external-

ities and adjust the speed of cost changes. Such complicated policies are costly, which

confirms the inefficiency of advertising structures where advertisers send unsolicited mes-
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1 Introduction

Due to the limited capacity of consumers to process information, advertisers have to compete across

industries to gain consumer attention. This creates what is called information congestion1. Information

congestion produces a certain loss of social welfare. For example, the advertiser and consumer both lose

out when a useful message is missed because of too many other messages2. In a primitive advertising

structure where consumer information is not available, advertisers cannot avoid sending unsolicited

messages to masses of consumers, including non-potential customers. Spam mail is a typical example

of such unsolicited messages3. It is a large part of all email traffic, approximately 55% (Symantec 2019)

to 85% (Cisco 2019), and impairs the efficiency of our economy because of the negligible societal

benefit (Rao and Reiley 2012). In a primitive structure in which many advertisers send unsolicited

messages, information congestion occurs.

In this study, we theoretically analyze an implementation problem with both hidden actions and

information and identify the primitive structure’s limitations. This can be used as a benchmark to as-

sess the efficiency of advanced modern advertising structures. In particular, we answer the following

question: How can we achieve an efficient allocation of limited consumer attention across many adver-

tisers and industries, when advertisers send messages regardless of consumer interests? Throughout this

study, we support the claim that traditional interventions4 cannot always solve information congestion,

and costly interventions are required to guarantee efficient allocation.

In our information congestion model, a continuum of message-senders (i.e., advertisers) sends a

discrete number of messages to obtain receivers’ limited attention capacity, as in the study by Anderson

and de Palma (2013). When receivers deal with a message at least once, the sender obtains benefits

which depend on the sender’s exogenous type. The unit cost of sending a message is exogenous and

1Early literature, such as Hirshleifer (1973), points to the externality among firms wanting to get consumer

attention as a congestion effect.
2This is often called information overload. Malhotra (1984) discusses earlier contributions regarding infor-

mation overload in consumer decision making, using TV advertising as an example. Eppler and Mengis (2004)

review the early literature about information overload across disciplines.
3As Anderson and de Palma (2009) indicate, conventional advertising (such as billboards, radio/television

and telemarketing) has a similar structure, where advertisers create and deliver messages regardless of consumer

interest or attention.
4Increasing costs of actions with negative externalities is an example of traditional intervention.
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identical. When the total number of messages is larger than the capacity, receivers allocate their atten-

tion to each message at random. Therefore, each message has a negative externality for the other active

senders; and there are sometimes multiple equilibria, including Pareto-inefficient one, for a given unit

cost.

To assess whether the system converges to an efficient allocation after a policy intervention, we ap-

ply the population game framework (Sandholm 2010) along with evolutionary dynamics; in particular,

we apply best response dynamics (Gilboa and Matsui 1991) to information congestion (Anderson and

de Palma 2013). Our following discussion reflects the difficulty in controlling this primitive structure

where senders send messages regardless of receivers’ prior interests or actions.

Although a typical solution for congestion problems is to increase the cost of the action associated

with the negative externality, an additional cost per message can have unintended consequences. This

additional cost sometimes forces small-benefit-type senders to withdraw from the competition. Conse-

quently, the probability of receiving the same information multiple times increases if large-benefit-type

senders continue to send multiple messages. Therefore, an additional cost sometimes hampers the in-

formation flow “efficiency”5. In addition, once the advertising competition intensifies, sometimes, any

amount of additional cost cannot make the system converge to an efficient equilibrium (see subection

5.3). This negative result provides a new insight, unlike the discussion in previous studies6, which

supports placing an additional cost on sending messages when information congestion occurs. In other

words, traditional static pricing, as discussed in the previous literature, sometimes does not work well.

Since the traditional one-shot intervention does not necessarily work well, we consider an idealized

setting in which a policymaker can put in place a new type of policy: two-step cost change. We can

always achieve a Pareto efficient equilibrium with almost minimum social loss by following two steps:

(1) raising the senders’ cost per message until sending no messages becomes the dominant strategy

for all senders (and waiting for the senders’ adjustment); (2) gradually reducing the senders’ cost until

congestion appears (or all senders send a message). Although this policy works regardless of the initial

condition and distribution of the senders’ benefit, it requires a complicated process that may take time

and financial resources. This policy is desirable in certain situations, but its requirements limit its

feasibility. A simpler policy may exist, but as far as we can deduce, in the primitive structure, costly

policies are required to guarantee the best allocation of receivers’ (consumer) attention.

The two-step cost change satisfies the following typical requirements of evolutionary implemen-

5This study focuses on the benefit of information transmission and ignores the benefit of repetition for senders

(and receivers).
6See Van Zandt (2004), and Anderson and de Palma (2009, 2012, 2013).
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tation for situations where players’ actions are anonymous (Sandholm 2002). First, the two-step cost

change adjusts the cost of actions regardless of the players’ type. It does not require policymakers to

monitor private information and actions. Additionally, global convergence is guaranteed, at least under

the best response dynamics.

However, the logic behind the two-step cost change is distinct from that of a traditional evolution-

ary implementation. In the traditional evolutionary implementation, thanks to exogenous information,

before implementation begins, a policymaker can fully understand the externality at each aggregate

state7, namely, the number of players who select each action. Thus, in the beginning, the policymaker

can create a complete path-independent policy for each aggregate state.

Our approach does not require this complete knowledge. In the two-step cost change, senders’

aggregate reactions gradually reveal the distribution of the benefit. This is because senders will con-

tinue to send messages only if the cost of sending the message is less than the exogenous benefit from

the received message. Eventually, policymakers will understand the externality among players and

will decide the timing of each step in the policy. Although the two-step cost change depends on the

unique characteristics of information congestion, the underlying logic is more general; evolutionary

implementation, in its process, can reveal extensive information about externalities, which policymak-

ers can use to design a policy that achieves an efficient state8. We contribute to the field of evolutionary

implementation by highlighting this novel advantage.

We contribute to the field of environmental economics because the two-step cost change is a special

case of the charges and standards approach (Baumol and Oates 1971, 1988). Briefly, this approach sets

environmental standards and tries various tax patterns until the standards are satisfied. Baumol and

Oates mention its two weak points, but these points are not valid in our context. First, Baumol and

Oates concern multiple equilibria. Because their models are static, their discussion cannot guarantee

global convergence, but we do by evolutionary dynamics. Second, their approach does not guarantee

the first-best outcome. However, Baumol and Oates point out that their approach would be valid for

many problems. Information congestion may be one of the best applications for it because Pareto

efficiency is achieved when attention is fully utilized in equilibrium.

7In the framework of the population game, we call a strategy distribution a (population) state.
8Callander (2011) also discusses a similar situation in which the outcomes of each policy are uncertain, the set

of feasible policies are uncountable, and policymakers gradually learn the outcomes through trial and error. How-

ever, uncertainty follows a purely exogenous random motion (Brownian motion). In our discussion, policymakers

gradually learn the externality in the game by observing endogenous reactions to the policy.

Callander et al. (2022, 2023) analyze the dynamic interaction between market competition and policymakers’

interventions. In their settings, the externality in the game is known to the policy makers, and this is different from

our setting. In addition, players understand each other in the market competition, and thus equilibria based on the

strategic reasoning are discussed. We analyze problems where players may not know each other well.
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Table 1: Comparison of Pigouvian Approach and Its Successors

Both the evolutionary implementation and the charges and standards approach are successors of

the Pigouvian approach. Table 1 compares the Pigouvian approach, strategy-proof mechanism design,

traditional evolutionary implementation (EI), and our approach (which we call EI with experiments).

The Pigouvian approach puts additional cost or subsidy on actions with externality such that private

marginal profit equals the social one at efficient equilibrium. Thus, the policymaker needs to forecast

the equilibrium and the externality. To avoid this difficulty, mechanism design collects private infor-

mation from players. However, it requires the centralized system monitoring individuals. Traditional

EI eases the requirement, but it requires complete knowledge about externalities. Our approach, EI

with experiments, does not require individual monitoring and the complete knowledge. In addition, EI

with experiments requires only a finite number of cost changes (interventions for mechanism design).

Except for Pigouvian approach, all of them can gurantee Pareto efficiency after interventions, even if

original games have multiple equilibria.

We utilize evolutionary game theory to compare policies in the setting with multiple equilibria.

Dijkstra and De Vries (2006) also utilize evolutionary game theory to compare policies with multiple

equilibria. They analyze location choices of firms and consumers, and point out that the Pigouvian

approach can fail to guarantee global convergence to efficient resource allocation. Our discussion is

similar to their discussion, but we discuss a situation where policymakers do not know externality

among players at the beginning.

In this study, we utilize a regular Taylor evolutionarily stable state as a solution concept. This con-

cept is stronger than the Nash equilibrium and has asymptotically local stability under many popular

dynamics, including the best response and impartial pairwise comparison dynamics (Sandholm, 2010).

The field of information congestion focuses on competition across industries, and thus, many advertis-

ers play the game. As it is difficult for all advertisers always to select the optimal choice that keeps
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equilibrium, we focus on locally stable equilibria.

The rest of the study is organized as follows. In Section 2, we briefly review the associated literature

and our contributions to the field of advertising theory. Section 3 formulates information congestion in

the framework of the population game. Section 4 defines the criterion of local stability, regular Taylor

evolutionarily stable state, and presents a sufficient condition for the existence of (Pareto) suboptimal

equilibrium with local stability. This existence demonstrates the structural inefficiency and the impor-

tance of interventions. In Section 5, we discuss a sufficient condition under which any static pricing

on unit message cannot lead the system to the efficient equilibrium. The case demonstrates that naı̈ve

interventions do not always work. In addition, we propose and analyze the dynamic policy achieving a

Pareto efficient equilibrium with stability. Section 6 summarizes our results and implications.

2 Literature

In this section, we situate this paper within the economic analysis of advertising and related fields.

Further, we explain our contribution to the field of information congestion. The difference between

information congestion and rational inattention is also explained.

In economic theory, advertising informs consumers about the availability of new products at a

minimum (Renault 2015) and complements consumer search9. Despite information from other con-

sumers, consumers sometimes fail to find their best choice without the aid of advertising10. This makes

advertising an important element in the study of market competition.

The economic analysis of advertising usually focuses on effects of advertising on market compe-

tition and social welfare. In contrast, our study focuses on the process of advertising and its efficiency

as a means of information transmission. Our study contributes to the field by supplying a useful tool

for extending the mainstream discussions on the economic analysis of advertising. Bagwell (2007) of-

fers an overview of advertising research in industrial organization. Bagwell proposes three advertising

categories, namely, the persuasive, the informative, and the complementary perspectives of advertising.

The differences in the categories are derived from the impact of advertising on consumer preferences

for the advertised goods11, and consequently, on social welfare. Most advertising literature analyzes

the impact of advertising on market competition and can be classified using Bagwell’s three categories.

9For example, see Stigler (1961) and Butters (1977). Renault (2015) reviews the literature relating to advertis-

ing and consumer search.
10For example, see Ali (2018) and Niehaus (2011).
11For example, if an advertisement just persuades people to buy meaningless items, then the consumer surplus

would eventually be 0 or negative in the long term.
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However, our study does not fall within these categories as it does not assume receivers’ preferences.

Therefore, we can put additional constraints on receivers’ attention in those mainstream models without

conflicting assumptions. For example, Van Zandt (2004) inspired Anderson and de Palma (2012), who

analyzed the impact of consumers’ limited attention on market competition.

Our discussion complements previous literature, focusing on advertising and consumers’ limited

attention, by analyzing an implementation problem with information congestion. Papers in the field put

weight on interesting equilibrium with free entry12, static pricing/policies13 and impacts of advanced

structures14. However, as we see in subection 5.3, in our setting, any static pricing for sending a

message cannot guarantee an efficient allocation after the policy. To understand the performance of the

primitive structure, we discuss implementation through dynamic interventions.

The field of rational inattention (RI) also examines cognitive limitations but focuses on different

research targets. For example, Sims (2003) analyzes a decision maker who decides how much informa-

tion to collect. There are two types of shocks: temporal measurement errors and long-term fundamental

shocks. The decision maker can only partially distinguish between these two shocks because of capac-

ity limitations on the accuracy of information. Therefore, the decision maker gradually adjusts the

understanding of economic fundamentals, instead of accepting the latest information. There are two

differences between information congestion and RI. First, in RI, decision makers are active and ratio-

nal. They have a basic understanding of the economy and the distribution of errors. They completely

control the messages they receive. In information congestion, receivers may not understand anything

about the economy. Second, RI discusses long-term optimization. Information congestion examines

the more myopic players. This difference is rooted in their respective research targets. RI aims to ana-

lyze serious problems for decision makers. Information congestion explains the situation in which the

expected benefits for each player may be low.

3 Formulation and Equilibrium

This section introduces the information congestion model. In 3.1, we introduce the optimization prob-

lems of heterogeneous senders. In 3.2, the optimization problems are applied to the population game

framework. In 3.3, we define the Nash equilibrium.

12See Falkinger (2007, 2008) and Hefti (2018).
13See Van Zandt (2004) and Anderson and de Palma (2009, 2012, 2013).
14Hefti and Liu (2020) and Anderson and Peitz (2023)
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3.1 Formulation (Optimization Problem of Senders)

Information congestion models include message-senders and message-receivers. In this study, we con-

sider a situation in which a continuum of senders cannot distinguish among a continuum of receivers

and focus on a mass of homogeneous receivers. The receivers’ volume is normalized to one. We

consider a situation in which each receiver cannot adjust the capacity for processing messages. For

example, if many flyers/spam mails are present in a mailbox, each receiver may unintentionally rec-

ognize the top one. The capacity for receivers to deal with messages is ϕ > 0. If the total number of

messages by senders, denoted by N ∈ R+, is more than the capacity (ϕ), messages are randomly dealt

with by receivers. We apply this constant-capacity assumption to simplify the receivers’ side and focus

on senders’ behaviors15. The presented basic model with discrete players is essentially identical to the

basic model with two senders in Anderson and de Palma (2013).

First, we explain the basic model with discrete numbers of heterogeneous senders before introduc-

ing the population game with a continuous mass of players. Each sender i gains benefit πi when all

receivers receive at least one message from the sender. For example, if half of the receivers receive a

message from sender i, the sender’s benefit is πi/2. We are interested in information transmission, and

if a receiver deals with two or more messages from the same sender, it cannot convey any additional

information, making it redundant for senders and receivers in our model16. The cost of sending each

message is γ > 0. Senders decide their number of messages l by considering the tradeoff between

the probability of getting attention and the cost of sending a message. Each sender i can select only

discrete numbers l ∈ {0, 1, 2, ..., lmax} as the number of messages, where lmax denotes the exogenous

maximum number of messages for senders.

Suppose that there exist senders including a sender i and aggregate Q number of messages by

15If consumers has already minimized their exposure to unsolicited messages, ϕ can be interpreted as the mini-

mum uncontrollable exposure. The constant-capacity assumption is utilized in Van Zandt (2004), Anderson and de

Palma (2012, 2013), and Hefti and Liu (2020) perhaps because they are modestly consistent with some empirical

literature in advertising research. For example, in Riebe and Dawes (2006), respondents recall 1.1 ads per three

ads in low-clutter groups and 1.4 ads per nine ads in high-clutter groups. Hammer, Riebe, and Kennedy (2009)

analyze four types of advertising data and conclude that the probability of recall for each is low/high in high/low-

clutter situations. As long as an alternative function of ϕ/N is differentiable and decreasing in N when N > ϕ,

we conjecture that our main results hold because the utility of each sender depends on ϕ/N and does not directly

depend on ϕ.
16As Renault (2015) states, the minimum consensus in the economic analysis of advertising is that advertising

communicates to consumers the availability of new products. We focus on this aspect of advertising.
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others. The optimization problem for sender i is

max
li∈{0,1,2,...,lmax}

U i =











πi(1− (1− ϕ
(Q+li) )

li)− γli if ϕ < Q+ li

πi
✶(li > 0)− γli if ϕ ≧ Q+ li

(1)

where ✶ is the indicator function. When ϕ < Q+ li, by sending l messages, sender i gets the expected

benefit of the message being received (πi(1 − (1 − ϕ/(Q + li))l
i

)) and pays the cost of sending l

messages (γl). When ϕ ≧ Q + li, by sending at least one message (l > 0), sender i gets πi and pays

the cost of sending l messages (γl).

(1− (1−ϕ/(Q+ li))l
i

) in (1) is the probability that at least one message from sender i is received

by each receiver. When we apply the population game framework, we assume that each of senders is

small, so that they do not consider the impact of their message on the total number of messages, like

(1 − (1 − ϕ/(Q))l
i

) in this example. We consider advertising competition among many firms across

industries, and this assumption would be reasonable. Anderson and de Palma (2013) explain that this

assumption is similar to a standard monopolistic competition assumption where firms do not count the

impact of their actions on other firms.

As Anderson and de Palma (2013) point out that, when Q is large enough, the breakthrough prob-

ability (1 − (1 − ϕ/(Q + li))l
i

) is decreasing in li; this characteristic is consistent with the shape

of advertising response functions typically confirmed in empirical advertising research. For example,

Taylor, Kennedy and Sharp (2009) confirm the decreasing marginal sales of advertising by analyzing

data from four non-durable-goods categories 17. Vakratsas et al. (2004) show the concave advertising

response function with the probabilistic thresholds of advertising expenditure for attracting additional

market share in durable goods markets. Our discussion supplies a theoretical explanation of these

results.

3.2 Formulation (Population Game Framework)

R = {1, 2, ...,m} is an exogenous benefit set for heterogeneous senders. Each sender belongs to a

single type r ∈ R, and senders with the same type r get the same benefit π(r) > γ if their message is

dealt with. The minimum benefit difference among senders is MD = minr,r′∈R:r ̸=r′ |π(r) − π(r′)|.

We assume π(r) ̸= π(r′) if r, r′ ∈ R and r ̸= r′, and thus MD > 0. The senders’ maximum benefit is

πmax = maxr∈R π(r). The minimum benefit is πmin = minr∈R π(r). The population of type r ∈ R

17Taylor, Kennedy and Sharp (2009) report an exception, but the conclusion about the decreasing marginal sales

of advertising typically holds.
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is denoted by d(r) > 0. We assume that there exists a minimum basic unit ω > 0, and for any r ∈ R

there exists j ∈ N = {1, 2, ...} s.t. d(r) = jω18. The total population of senders is D =
∑

r∈R d(r).

xr
l denotes the population of type r who selects strategy l. The set of available numbers of sending

messages is denoted by L = {0, 1, 2, ..., lmax}. For simplicity, we assume D ≧ ϕ19.

The total number of pure strategies for all types is n =
∑

r∈R lmax + 1. The set of all possible

states (strategy distributions) for type r is Xr = {xr ∈ R
lmax+1
+ :

∑

l∈L xr
l = d(r)}. The set of all

possible states in the system (state space) is X =
∏

r∈R Xr = {x = (x0, ..., xr) ∈ R
n
+ : xr ∈ Xr}.

TX is the tangent space of X s.t. TX =
∏

r∈R TXr where TXr = {zr ∈ R
lmax+1 :

∑

l∈L zrl = 0}.

The total number of messages by all senders20 is N(x) =
∑

r∈R

∑

l∈L lxr
l .

The population game framework matches with information congestion. In population games, play-

ers sporadically and myopically21 select their strategies. Information congestion occurs in advertising

competition across industries, and each sender may not understand the other players well. Thus, my-

opic decision making based on realized payoffs is reasonable for analyzing such a situation with a large

number of players.

3.3 Definition of Equilibrium

Before introducing a Nash equilibrium in this game, we formally define a (Lipschitz continuous) payoff

function and the average payoff for type r at x.

U(r, l,x) = π(r)✶(l > 0)
(

1− ✶(ϕ ≦ N(x))(1− ϕ/N(x))l
)

− γl (2)

Equation (2) shows that, the utility depends on the benefits, the costs, and the probability that at

least one message is dealt with by receivers. The average payoff is denoted by the following:

Ū(r,x) =
1

d(r)

∑

l∈L

xr
lU(r, l,x). (3)

By using these definitions,

18We use this assumption when we decide the amount of (finite) cost changes (later defined by γ′

z) in policies.
19We discuss more general situations in our previous version Jinushi (2023).
20N plays the role of Q in the previous discrete example, but because each sender is small, senders ignore the

impact of their actions on N .
21Here, “sporadically” suggests that some portion of players can simultaneously change their strategies. “My-

opically” suggests that all players make their decision by assuming that other players retain their strategies.
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Definition 1. State x ∈ X is a Nash equilibrium in this information congestion game if and only if

U(r, l,x) ≦ Ū(r,x)

xr
l (Ū(r,x)− U(r, l,x)) = 0 ∀r ∈ R and ∀l ∈ L (4)

xr
l ≧ 0

(4) indicates that, in equilibrium, all players select their best strategies to maximize their utility and

each population cannot be negative. Since U is continuous in X , from Theorem 2.1.1. in Sandholm

(2010), this population game admits at least one Nash equilibrium.

4 Stability of Equilibria

We use the Regular Taylor Evolutionarily Stable State (RTESS) as a criterion of stability. Whether

an equilibrium is an RTESS only depends on the payoff function of its neighborhood. Therefore, this

concept enables us to discuss the stability of equilibria without assuming a specific dynamic.

From Sandholm (2010), the definition of an RTESS is as follows:

Definition 2. State x ∈ X is a Regular Taylor ESS if the utility function U is Lipschitz continuous in

X and the following two conditions are satisfied.

For any r ∈ R and i, j ∈ L, U(r, i,x) = Ū(r,x) > U(r, j,x) if xr
i > 0 and xr

j = 0. (5)

For any y ∈ X − {x}, (y − x)′DU(x)(y − x) < 0 if (y − x)′U(x) = 0. (6)

Here, (y − x)′ is the transpose of the matrix y − x. The Jacobian matrix DU is the derivative of

the linear map such that U(y) = U(x)+DU(x)(y−x)+ o(y−x) where o(z) represents a function

h : TX → R
n s.t. limz→0 h(z)/|z| = 0,

DU(x) =













∂U(1,0,x)
∂x1

0

· · · ∂U(1,0,x)
∂xm

lmax

...
...

...

∂U(m,lmax,x)
∂x1

0

· · · ∂U(m,lmax,x)
∂xm

lmax

.













(7)

When x satisfies Equation (5), all optimal strategies are selected, and non-optimal strategies are

not selected in x. Equation (6) implies that, in the neighborhood of x, a small deviation among optimal

strategies will be penalized with utility loss. In other words, if a small number of players begin to
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follow another strategy profile y, they are defeated by the majority who follow the strategy profile x.

These conditions are satisfied if each type of player has a unique type-specific optimal strategy. When

a single type has multiple best replies in the equilibrium and all other types have a unique type-specific

optimal strategy, and if each of the multiple best replies is selected and has a self-defeating externality,

these conditions are satisfied.

4.1 Evolutionary Stability and Dynamics

Is the RTESS a good criterion for the stability of information congestion? The answer depends on

whether dynamics covered by the RTESS are fit for advertising competition across industries. As

typical examples, an RTESS is locally asymptotically stable under any impartial pairwise comparison

and best response dynamics (Theorem 8.4.7 in Sandholm (2010)).

Advertisers can estimate or observe the intensity of congestion (ϕ/N ) in advertising. Thus, they

can directly select the best strategy for the situation. Therefore, we consider that this dynamic, known

as the best response dynamic, is valid in the context of advertising.

Our policy discussion focuses on the best response dynamics and does not discuss policies for

more general dynamics. There are two reasons for this approach. First, our goal is to demonstrate the

difficulty of controlling information congestion under evolutionary dynamics. Thus, it is sufficient to

show that the control is difficult under the best response dynamics. Second, under impartial pairwise

comparison dynamics and more general evolutionary dynamics, it is relatively difficult to find a simple

and general interpretation on the senders’ reactions to the policies. In particular, the required speed of

cost changes will depend on exogenous parameters. Our following results show that, at least under the

specific dynamic, we can control information congestion if we spend time and other resources. There

would exist more robust policies for general dynamics, but we save these for future research.

t ∈ [0,∞) denotes continuous time in the economy. At t = 0, an exogenous initial condition

x(0) ∈ X exists, and the system follows the best response dynamics. x(t) denotes one of the possible

states at t under the best response dynamics for a given initial condition x(0). When describing a static

state, we omit the time notation.

The best response dynamic for type r is given by22

Definition 3. Best Response Dynamic: ẋr ∈ d(r)Mr(U(r,x))− xr

22We follow the notation in Sandholm (2010). Gilboa and Matsui (1991) propose the best response dynamics

and analyze the cyclically stable sets of strategy profiles (x in this project) that have a trajectory based on the best

response dynamics from any other strategy profile in the set.
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where

Mr(U(r,x)) = argmax
yr∈∆r

(yr)′













U(r, 0,x)

...

U(r, lmax,x)













(8)

is the maximizer correspondence for type r and

∆r =

{

yr ∈ R
lmax+1
+ :

∑

i∈L

yri = 1

}

. (9)

is the set of mixed strategies for type r. In our model, each r ∈ R follows the best response dynamic

given above.

4.2 Existence of Suboptimal Stable Equilibrium

Even in a simple setting, our model has multiple equilibria, including a suboptimal and locally stable

equilibrium. For simplicity, we focus on the case of homogeneous senders (R = {1}). This specific

setting is sufficient to show the suboptimal stable equilibrium.

Figure 1 shows the best responses of senders for each ϕ/N(x), which represents the probability

that a unit message is received, with the restriction that the maximum number of sending messages is

5. (see Appendix A.1 for details.) The set of optimal strategies for senders at given x is either a single

strategy or the pair of two consecutive numbers23 (see Appendix A.1 for the proof.). Therefore, when

the ratio of capacity to senders’ population (ϕ/D) is given, we can calculate the possible range of ϕ/N

for each pair of strategies. We combine the ranges and Figure 1 to derive Figure 2.

The curve in Figure 2 shows the equilibria for each γ/π when D = ϕ. The orange rectangle

represents multiple equilibria when 0.2 = γ/π. Each point (A and C) is an RTESS24 (see Appendix

A.2 and A.3 for the proof.). The arrows in Figure 2 explain the direction of the dynamics at ϕ/N when

we apply the best response dynamics to the specific state x in which N = N(x) and all senders select

the strategies that use one of two consecutive numbers like sending a message once or twice. When we

consider a point above the curve, the dynamics gradually reduce N . When we consider a point below

the curve, the dynamics gradually increase N . Appendice A.2 and A.3 provide the details about the

stability and the derivation of Figure 2.

23In this study, we define that consecutive numbers are the sequence of (non-negative) integers like 0,1,2,3...

without intervals. When we say two consecutive numbers, we imply a pair of two integers such as (0,1), (1,2) and

(3,4).
24The circle (B) represents an equilibrium without stability.
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Figure 1: Best Response Diagram

To define Pareto efficiency for a continuum of players, we introduce the following distribution of

senders’ utility in x ∈ X . For any r ∈ R and any j ∈ R, we define

F r(j,x) =
∑

l∈L

xr
l ✶(U(r, l,x) ≦ j). (10)

F r(j,x) is the number of type r senders whose utility does not exceed j in x. Since each player in

each type is anonymous, for x,x′ ∈ X , when F r(j,x) ≧ F r(j,x′) for all j ∈ R, and if there exists

j′ ∈ R s.t. F r(j′,x) > F r(j′,x′), we consider that x is inferior to x
′ for senders in type r.

Using F r above, in this study, we define a Pareto efficient state as follows:

Definition 4. x ∈ X is Pareto efficient if and only if there is no x
′ ∈ X s.t., for any r ∈ R and for any

j ∈ R,

F r(j,x) ≧ F r(j,x′) (11)

and there exists at least a pair r′ ∈ R and j ∈ R s.t.

F r′(j,x) > F r′(j,x′)25. (12)

25When x ∈ X satisfies these conditions in the definition, any x′ ∈ X cannot enable any portion of players to

be better off, while maintaining the utility of other players. If x ∈ X does not satisfy these conditions, there exists
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Figure 2: Bifurcation Diagram

In equilibrium C in the figure, all senders send their messages twice, and the probability that each

receiver deals with these messages is 3/4. This is Pareto inefficient compared with equilibrium A in

which all senders send their messages only once, and all messages are dealt with by all receivers.

Proposition 1 provides a sufficient condition for the existence of such a suboptimal and locally

stable equilibrium:

Proposition 1. At least a (Pareto) suboptimal equilibrium is a regular Taylor evolutionarily stable

state when lmax ≧ 2, R = {1, 2, ...}, d(1) = ϕ, π(1) ϕ
lmaxd(1)

(1 − ϕ
lmaxd(1)

)lmax−1 > lmaxγ and

γ > ϕ
lmaxd(1)

maxr∈R\{1} π(r) .

Proof: When all d(1) senders of type 1 send messages lmax times, sending messages lmax times is

the unique best strategy for senders of type 1. For other senders, sending no messages is strictly optimal.

Thus, it is a regular Taylor evolutionarily stable state. However, if each type 1 sends a message while

others do not, all type 1 senders gain the maximum benefit, and this state dominates the state mentioned

above. ■

This section demonstrates that the model has multiple equilibria, and the suboptimal equilibrium

is sometimes locally stable. In other words, the primitive structure generates suboptimal outcomes.

Therefore, interventions may improve efficiency for this economy.

x
′ ∈ X such that a portion of players who attain better utility, while maintaining the others’ utility. Therefore,

we define a Pareto efficient state as x ∈ X satisfying these conditions. Later, when we discuss the efficiency of

equilibria, we use this criterion in the original game with the original γ, not with the modified γ′

z .
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5 Policy

In this section, we seek policies to achieve a stable Pareto efficient equilibrium. We assume that the

policymaker does not know the senders’ benefit distribution (d(r)). The externality in the game partially

depends on the distribution, and the policymaker can gradually learn this in the policy process. In the

two-step cost change, the reactions of players partially reveal the distribution, and the policymaker

adjust the speed of the required cost change based on the reactions.

5.1 Approximate convergence

Our discussion in this section frequently utilizes the following basic characteristic of the best response

dynamics.

Lemma 1. Consider t2 > t1 and x(0) ∈ X and suppose that x(t) follows the best response dynamics.

For each t ∈ [t1, t2], if there exists l′ ∈ L s.t. U(r, l,x(t)) < U(r, l′,x(t)), then the population of type

r that selects the suboptimal strategy l has an upper-bound (xr
l (t) ≦ De−t+t1) at t.

Proof: When l ∈ L is strictly suboptimal at t ∈ [t1, t2], ẋr
l = −xr

l ⇔ xr
l (t) = xr

l (t1)e
−t+t1.

Because D is the total number of senders, xr
l (t1) ≦ D, and thus xr

l (t) ≦ De−t+t1. ■

If one strategy is strictly better than any other strategies for a long time, the population that selects

the suboptimal strategy eventually converges to 0. In addition, for each suboptimal strategy, we have

a simple upper-bound xr
l (t) ≦ De−t+t1, which depends on the total population D and t − t1 (the

pass time after the intervention begins). For general evolutionary dynamics, the existence of such an

approximate convergence for a strictly best strategy in a certain period is not guaranteed26.

We introduce a new concept, called ϵ-convergence, to capture the approximate convergecne. Con-

sider xr
l (t) (the population of type-r senders who select strategy l at t) where r ∈ R and l ∈ L. xr

l (lim)

denotes the limit of xr
l (t) (xr

l (t) → xr
l (lim) as t → ∞). When we say that xr

l (t) is in ϵ-neighborhood

of the limit xr
l (lim), |xr

l (lim) − xr
l (t)| < ϵ. For this study, we say that xr

l (t) ϵ-converges at t when

xr
l (t) is in ϵ-neighborhood of each possible limit, and if all possible x′r

l (t
′) satisfying x′r

l (t) = xr
l (t)

are ϵ-neighborhood of each limit for any t′ > t27.

26As a more general discussion, Bandhu and Lahkar (2022) discuss a family of evolutionary dynamics which

satisfy the convergence for a strictly dominant strategy to analyze an evolutionary foundation of dominant strategy

implementation.
27Gilboa and Matsui (1991) introduce ϵ-accessibility with which the system with the best response dynamics

can move to a strategy profile (state x in this study) from ϵ-neighborhood of another strategy profile. We discuss

implementations and later define ϵ-convergence after which each possible trajectory xr
l (t

′) after t′ > t has a

limit (and stays in its ϵ-neighborhood of the limit after t). Unlike ϵ-convergence, ϵ-accessibility captures general

movements like a circular movement.
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When we consider a sequence of numbers z(t) that converges to a number z as t → ∞, for any

ϵ > 0, we find t̄ > 0 s.t., if t > t̄, |z − z(t)| < ϵ. In other words, when policymakers keep a strategy

strictly optimal for each type r, and if the dynamic makes all type-r players eventually select a strictly

optimal strategy, policymakers are certain of the ϵ-convergence where almost all (at least d(r) − ϵ)

players select the best strategies in finite time. Since R is a finite set, we can find the maximum

of required time for each type. T (ϵ) denotes the maximum time for such an ϵ-convergence. In the

following discussion, we assume the best response dynamics, which is why policymakers know T (ϵ)

for ϵ-convergence when there exists a strictly best strategy.

5.2 Policymaker’s Knowledge and Tools

The policymaker knows the population of senders D and capacity ϕ, an upper-bound of the required

time for ϵ-convergence T (ϵ), minimum basic unit of population ω, and the feasible set of senders’

benefits including maximum/minimum benefits πmax, πmin and minimum benefit difference MD
28.

In addition, we assume that the policymaker can observe N(x(t)), and can change the cost of sending

a message γ. We denote the zth changed unit cost as γ′
z where z is an element of a finite set Z =

{1, 2, . . . ,m+ 1}.

For Pareto efficiency, the duplication of messages matters. As seen in Figure 1, there exist two

extreme situations (ϕ/N → 1 and ϕ/N → 0) where no senders have incentive to send multiple mes-

sages. Therefore, a policy which invites either of the cases is promising. Through this section, we

discuss properties of such a policy, namely, two-step cost change29.

In the following discussion, we utilize several characteristics of the best response dynamics. First,

players move from a current strategy to another strategy if the payoff from another strategy is strictly

better than the one from the current strategy. Second, because of the first characteristic, if the strictly

dominant strategy exists for a type of player, the strategy is eventually selected by all players within

the type. Third, conditional on playing dominant strategies, if another type has a strategy that strictly

dominates all other strategies, this conditional dominant strategy is eventually selected by all players

within the type. Further, from any original state, we can move to the state in which those types select

the strictly dominant strategy or the conditional dominant strategy. If this realized state is the desirable

state, or if we can find the policy from the realized state to the desirable state using the first charac-

28Instead of T (ϵ), ω, MD , policymakers can use exaggerated numbers like MD > MD
′, and so we consider

that this requirement is relatively weak.
29In the previous version of our working paper, named ”Costly Advertising and Information Congestion”, we

discuss another policy that leads the system to ϕ/N → 0.
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teristic, this whole process achieves the desirable state from any original state. Even if we restrict that

the policymaker cannot wait for an infinite time for each step, we can approximately implement the

process given above. At least under the best response dynamics, in finite time, our policy achieves

ϵ-convergence, and the limit is a desirable outcome.

5.3 A Simple Negative Example for Static Pricing

We show that an additional cost per message sometimes impairs efficiency, as in the following example.

Consider two types of senders R = {r1, r2}, lmax = 2, γ = 0.9, ϕ = 1, d(r1) = 0.6, d(r2) = 0.4,

π(r1) = 100 and π(r2) = 1.6. If xr1
2 = d(r1) and xr2

1 = d(r2) at t = 0, ϕ
N(x(0)) = 5/8 and x(0)

is a RTESS. If we change the cost from γ = 0.9 to γ′ = 1.6, and all players follow the best response

dynamics, r1 senders keep l = 2 but r2 senders eventually select l = 0. At the limit, xr1
2 = d(r1)

and xr2
0 = d(r2). This equilibrium is inferior because, since the capacity is enough for all senders,

there is a single Pareto efficient equilibrium where xr1
1 = d(r1) and xr2

1 = d(r2) in the original setting.

In addition, any γ′ (one-shot cost change) cannot achieve an evolutionary process which converges

to the efficient equilibrium30. This points to the limitation of the traditional one-shot intervention for

information congestion.

We generalize the implication from the example above.

Proposition 2. Any additional cost per message cannot lead the system to a Pareto efficient state

when the original game and x satisfies the following conditions: lmax ≧ 2, R = {1, 2, ...}, D = ϕ,

π(1) ϕ
lmaxd(1)

(1 − ϕ
lmaxd(1)

)lmax−1 > lmax maxr∈R\{1} π(r), and γ > maxr∈R\{1}
ϕ

lmaxd(1)
π(r),

x1
lmax

= d(1) and xr
0 = d(r) for any r ∈ R \ {1}.

Proof: Because π(1) ϕ
lmaxd(1)

(1 − ϕ
lmaxd(1)

)lmax−1 > lmaxγ when all type-1 senders send lmax

messages, their strategy is strictly the best. Others have no incentive to send a message in this congested

situation.

When we try a new cost γ′ ≦ maxr∈R\{1} π(r) on the congested situation, no senders have incen-

tive to decrease their number of messages. If γ′ > maxr∈R\{1} π(r), type-1 senders may decrease the

number of messages, but no other senders join to the competition31. Since there is a Paretor efficient

state where all senders send a message and get the maximum benefit, other states are inefficient,■

30If 1.6 > γ′ > 1.0, a similar consequence happens. If 1.0 ≧ γ′, the congestion cannot be relaxed. If γ′ > 1.6,

r2 senders completely exit the market.
31If we apply any ascending or descending cost changes from γ to the example above, they cannot work by the

same logic. We need higher costs to relax the congestion and lower costs to make the small-benefit senders active.

Therefore, we introduce the two-step cost change.
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5.4 Two-Step Cost Change and Loss Minimizing Equilibrium

Before introducing the exact policy, we first define an outcome, Loss Minimizing (LM) equilibrium with

an arbitrary small upper-bound of loss σ̄ ∈ (0, 1/2) s.t. πmin(1− σ̄) > γ as follows:

Definition 5 (Loss Minimizing Equilibrium with a small σ̄). An equilibrium x is a loss minimizing

equilibrium if and only if the following conditions are satisfied:

1. All active senders send a single message (xr
l = 0 if l > 1 ∀r ∈ R).

2. The benefit is larger than the cost for the active senders (π(r) > γ′′ for any r ∈ R s.t. xr
1 > 0).

3. N(x) = min{D,ϕ/(1− σ)} where σ̄ > σ ≧ 0.

4. When there exists a type32 r ∈ R s.t. π(r) ϕ
N(x) = γ′′, xr

0 > 0 and xr
1 > 0.

where γ′′ is the cost considered by senders at the equilibrium. When we discuss the two-step cost

change we define later, γ′′ is γ′
z at the end of the two-step cost change.

We analyze the characteristics of LM equilibrium and later define the policy which achieves LM

equilibrium. LM equilibrium satisfies the following good properties:

Proposition 3. LM equilibrium x ∈ X with a small enough σ̄ is a Pareto efficient state (with the

original γ).

Proof: Because we set σ̄ s.t πmin(1−σ̄) > γ, at x, π(r) ϕ
N(x) > γ for any r ∈ R s.t. xr

1 > 0. If any

additional message appears, all active senders at x lose a part of their profits. If any active advertisers

withdraw from the competition, the advertisers lose their profit because all active advertisers get positive

profits at x. When we change the state, either the total number N increases or an advertiser withdraws

from the competition. Therefore, x is a Pareto efficient state. ■

Proposition 4. LM equilibrium with a small σ̄ is a regular Taylor evolutionarily stable state.

Proof: see Appendix A.4.

The intuition of Proposition 4 is as follows. We consider a LM equilibrium in which marginal

senders exist and are indifferent between sending or not sending a message (because, otherwise a LM

equilibrium is an RTESS since all types have a type-specific unique best strategy). If a small portion of

active marginal senders stop sending a message, the total message N decreases, and sending a message

becomes more attractive for the marginal type. Further, a small portion of non-active marginal senders

32We call such a type marginal type.
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begin to send a message, and the system returns to the original equilibrium. The opposite deviation

invites a similar reaction. When a small fluctuation appears, the marginal senders move to the opposite.

For other (non-marginal) types, a small fluctuation does not change their optimal strategy.

5.4.1 Two-Step Cost Change

We define two-step cost change which makes x(t) ϵ-converge to an LM equilibrium (with σ̄) in a finite

time. In the two-step cost change, the policymaker is required to allow a small congestion (represented

by σ̄) to make the equilibrium locally stable. Let ϕ
N

∈ ((1 − σ̄), 1) s.t. πmax(1 −
ϕ
N
) < πmin

33 and

1
φ

N

−1 < MD

2πmax

34 denote the lower-bound of the target (inverse) congestion intensity after the policy. If

ϕ
N

is close enough to 1, these conditions are satisfied. We need an arbitrary small buffer in the process

and select δ̄, δ s.t. 1 > δ ϕ
N

> ϕ
N

for any δ ∈ [δ, δ̄].

To make the outcome locally stable, any optimal strategy in the equilibrium must be selected by

a small portion of senders. To satisfy this condition while achieving ϵ-convergence in finite time, we

utilize the minimum unit of population ω35. Define Π = {π(r)min(1, ϕ
jω

)|r ∈ R, j ∈ {0, ..., D/ω},

and we require γz ̸= π for any π ∈ Π and for any z ∈ Z.

We select the amount for each γ′
z in the following way. Let πz−1 denote the z − 1th largest

benefit type. First, γ′
1 = πmax + 3 or any arbitrary amount strictly larger than πmax. For any z > 1,

γ′
z = δ ϕ

N
πz−1 s.t. γ′

z ̸= π for all π ∈ Π. (In Appendix A.5, we prove the existence of δ and the set of

γz . In short, because Π is a finite set and (δ, δ̄) is an infinite set, there exists δ.).

For convenience, we define

ϵ̄ = (1− 1/δ)

(

ϕ

N

)−1
ϕ

lmax

. (13)

We define two-step cost change as follows:

Definition 6 (Two-Step Cost Change).

33If this condition is satisfied and if φ

N(x(t))
> φ

N
for all t ∈ [tz, tz+1], no senders change their strategy from 1

to l > 1 under the best response dynamics. In the following discussion, we define the lowest γz s.t. γz > φ

N
πmin.

Therefore, to make senders with πmax avoid multiple messages, πmax(1−
φ

N
) φ

N
< φ

N
πmin is sufficient.

34If this condition is satisfied, and if φ

N(x(t))
> φ

N
for all t ∈ [tz, tz+1], for any r ∈ R, the range of possible

expected gain from sending a message [π(r) φ

N
− γz, π(r)− γz] is narrow. Thus, there is only a single r ∈ R s.t.

π(r) > γ′

z but π(r) φ

N
< γ′

z where γ′

z is defined later.
35This minimum unit is required because we assume that we can change the cost only a finite number of times.

Without this minimum unit, we sometimes meet technical problems. For example, if π(r)min(1, φ

jω
) = γ where

j ∈ {1, ..., D/ω} for r ∈ R, and if D = d(r) = jω, x s.t. xr
1 = d(r) is an equilibrium but not RTESS because

xr
0 = 0. If we know ω, we can avoid the finite set of such cases where continuous parameters coincide.
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1. Change the cost from γ to γ′
1, and define variables z = 1, i = 1 and t0 = 0.

2. a. Wait for either

(N(x(t))− lmaxϵz) > ϕ (14)

or

(N(x(t)) + lmaxϵz) < ϕ (15)

and T ( ϵz
n
) < (t − tz−1) where ϵ̄ > ϵz > 0. (If neither appears forever, the limit is the

intended outcome.) Define tz = (2t− tz−1). Update i s.t. i = z.

b. Wait until t = tz . If N(x(t)) − lmaxϵ > ϕ happens in 2.a., stop this process and define

tz+1 = ∞. Otherwise, update z s.t. z = i+1, change the cost from γ′
i to γ′

z and return to

2.a..

The number of the required cost changes is at maximum finite (n + 1), and the cost change is

finished in finite time.

We claim the following main proposition.

Proposition 5. From any initial state x(0), by the two-step cost change, x(t) → x
∗ and x

∗ is a LM

equilibrium with σ̄.

Proof: See Appendix A.6.

The proof in Appendix A.6 is based on the following logic. Since we assume the best response

dynamics, a strictly best strategy for type r would be selected by at least d(r) − ϵ amount of senders

if the strategy has been strictly best for r from t′ to t′′ s.t. T (ϵ) = t′′ − t′. Consider ϕ < D. Step 1

makes sending 0 messages strictly best for all r ∈ R, and eventually (N(x(t1)) + lmaxϵ1) < ϕ where

t1 = T (ϵ1/n) and ϵ̄ > ϵ1 > 0. In step 2, for a positive integer z, if we slightly decrease the cost from

γ′
z to γ′

z+1 s.t. γ′
z − γ′

z+1 < MD/2 at tz , at maximum a single type r ∈ R begins to send a message.

If (N(x(t)) + lmaxϵz) < ϕ happens, the amount of senders whose benefit is larger than γz is less than

the capacity ϕ. Using this information, if we change the cost from γz to γz+1, all possible N(x(t))

are lower than ϕ/ ϕ
N

after the cost change at tz (Lemma 3 in Appendix A.6.). We repeat such a cost

change and check the ϵ-convergence until (N(x(t)) − lmaxϵk) ≧ ϕ where k is a positive integer. If

the condition appears, without any additional cost change, x(t) eventually enters a sufficiently close

neighborhood of a LM equilibrium x
∗, and so it converges to x

∗. If both conditions never appear for

γz , there exists the exact ϕ amount of senders whose benefit is larger than γz . As t → ∞, in x(t), all

such senders eventually select sending a message, and thus it converges to a LM equilibrium x
∗.
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Proposition 5 means that we achieve LM equilibrium by the two-step cost change, regardless of

both the initial condition and the distribution of senders’ benefit. The policymaker does not need to

know the distribution of senders’ benefit and does not have to observe the number of active senders and

the benefit of marginal senders in each equilibrium.

The two-step cost change for LM equilibrium has three weak points. First, we need time to imple-

ment the policy. Second, we assume that the distribution of senders’ benefit is unchanged; however,

this may not be realistic in the long term. Third, this policy may need an external budget.

The discussion of the two-step cost change and LM equilibrium indicates that, if we have enough

time and can control the unit cost, we can fully utilize attention while avoiding an unnecessary amount

of unsolicited messages, even if we cannot observe the private information of players, such as senders’

benefit distribution, and cannot monitor the number of messages from each sender.

5.5 Evolutionary Implementation

The two-step cost change can be classified as an application of evolutionary implementation proposed

by Sandholm (2002, 2005, 2007). When a policymaker observes players’ behaviors only at an ag-

gregate level, it is sometimes difficult to achieve a desirable state. For example, if the policymaker

subsidies an action, the subsidy may invite too many types of players to select the action. Evolutionary

implementation aims to solve inefficiencies in such anonymous situations by using evolutionary dy-

namics. In this study, we define evolutionary implementation as a policy which leads the target system,

in which players can behave anonymously, to a desirable state by using evolutionary dynamics36. Our

policy satisfies this definition.

However, The two-step cost change is completely different from the traditional approach, which

uses a potential function. Sandholm (2002, 2005, 2007) analyzes the situation where the externality

among players is symmetric. In the symmetric-externality case, there exists a price scheme on actions

such that the price scheme equalizes the private cost of the action with its social cost. Under such a

price scheme, each player gradually behaves in accordance with the policymaker’s intention. In the

congestion game with such a price scheme, Sandholm (2002) finds the potential function representing

the total of players’ utility. When such a potential function exists, standard evolutionary dynamics lead

the system toward the direction in which the total utility increases. In addition, the negative externality

36Our definition is slightly different from the original discussion in Sandholm (2002). Sandholm (2002) selects

a large set of evolutionary dynamics (called admissible dynamics), and the price scheme invites the social optimum

as the limit of consequence of all dynamics in the set. The discussions in previous literature focus on the robust

implication among wide ranges of dynamics.
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in the congestion game makes the potential function strictly concave, and thus there exists a unique

equilibrium with global stability. In a similar negative-externality setting, Sandholm (2005) considers

the additional factor, idiosyncratic payoffs, which depend only on the type of players and the action.

Sandholm (2007) discusses general settings where the externality is not necessarily negative. Because

the externality can be complicated, multiple equilibria can appear. By applying stochastic dynamics,

Sandholm (2007) shows that the price scheme makes the system almost always stay efficient in the

long run. As a recent advancement, Lahkar and Mukherjee (2019, 2021) find a methodology that

broadens the application range of the potential-function approach. Their methodology requires a type-

independent externality based on the aggregate strategy level instead of a symmetric externality37. The

current literature on the potential-function approach assumes that, before policies are designed, the

policymaker knows/estimates the aggregate externality of each action at each state38.

We focus on the situation where a policymaker does not know the externality at each state and,

therefore, cannot apply the proposed approach with a potential function. Instead, our approach uses the

unique characteristics of information congestion. In the two-step cost change, the initial step leads the

system to a certain condition by creating a strictly dominant strategy for players. The second step makes

the system move from the condition to the desirable equilibrium. This process is possible because the

characteristic of the desirable equilibrium is well known. In our approach, the policymaker does not

have to understand the details of externalities among players. Further, the policymaker may not know

the details even after the policy ends. In addition, the number of required cost changes is finite. Our

approach guarantees the global convergence but its outcome is typically not globally stable.

6 Conclusion

Under the primitive structure of advertising, advertisers select an excessive amount of unsolicited ad-

vertising in stable equilibrium even if the benefit of repetition is ignored. This structural inefficiency

occurs because the private marginal cost of advertising does not take into account the decreasing per-

formance in consumers’ ability to process information. Traditional one-shot interventions do not work

37If an externality of each action is independent of the type of the player who performs the action, there exists a

price which represents the externality of each action at each state. Lahkar and Mukherjee (2019) focus on a public

goods game, and Lahkar and Mukherjee (2021) analyze general settings where a variable, called aggregate strategy

level, can represent the impact of each state. A symmetric externality is a special case of type-independent exter-

nality where the impact of the externality on each type is identical. However, the impact of each state in Sandholm

(2002, 2005, 2007) is not necessarily represented by a single variable. Therefore, both methods complement each

other.
38We do not claim that this requirement is necessary for the potential-function approach because the process of

policies can reveal the externality and the type distribution.
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well, and we need costly interventions to efficiently utilize receivers’ attention. Our discussion shows

the difficulty of controlling advertising without an advanced structure.

Our main conclusion, the inefficiency of the primitive structure, potentially explains why we have

seen recent advancements in advertising structures (e.g., Rust and Oliver 1994, Dahlen and Rosengren

2016). Typically, under new types of advertising, consumers are more active, and the communication

between consumers and advertisers is (relatively) interactive39. Additionally, when advertisements are

not well targeted to consumers, consumers regard them as nuisances and try to avoid such advertis-

ing via new technology/legislations40. These advanced structures/factors can overcome the limitation

derived from information congestion.

This paper contributes to the field of information congestion. We analyze the theoretical model

of information congestion in which heterogeneous senders can send multiple messages. We assume

a finite number of senders’ benefit types. Hence, the model fits the population game framework. We

analyze equilibria by referring to the known concepts41 of stability in the framework.

We find several new results which are useful for understanding information congestion. First, a

suboptimal stable equilibrium sometimes appears. Thus, interventions are, at times, required to make

the system efficient. Second, sometimes any static pricing, which previous literature supports, fails to

achieve an efficient allocation. Due to this, we must think dynamic interventions. Third, the two-step

cost change is effective, regardless of the initial condition and the distribution of the senders’ benefit.

It achieves loss minimizing equilibrium with local stability and Pareto efficiency. Our main results

support the main policy implications in previous studies such as Van Zandt (2004) and Anderson and

de Palma (2013). The primitive structure of advertising can cause efficiency loss in the allocation

of limited attention. Interventions sometimes significantly improve the performance of advertising.

However, we additionally note that the required interventions are costly and so primitive unsolicited

advertising has a structural limitations.

Our results can be interpreted as “gleaning” through the many discussions that use a random as-

signment as a tie-breaking rule. For example, in a sealed auction, if the bidders believe that other

bidders are submitting the same bid price as theirs, they may bid the same price multiple times by

39For example, behavior-based (conditional on consumption history) advertising in Shen and Villas-Boas (2018),

advertising on nonretail platforms in Eliaz and Spiegler (2020) and skippable advertising and weak/strong conver-

sion in Dukes and Liu (2023).
40For example, targeting advertising and ad avoidance in Johnson (2013), and Do Not Call policy in Goh et al.

(2015). In particular, our discussion complements Johnson (2013) because both approaches get similar implica-

tions that the efficiency of advertising with simple structures is limited.
41For example, Regular Taylor evolutionary stable state is a sufficient condition of local stability under many

types of dynamics.
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borrowing their friends’ names. When each bidder follows this logic, information congestion occurs.

Our result supports an entry payment for auctions by revealing the repercussions that occur without the

entry payment. In many mechanisms, senders can reveal their preferences, and we can achieve effi-

cient allocation by using their preferences. Our study supplies the benchmark without the information

regarding senders’ (and receivers’) preferences. Thus, this benchmark is useful to clarify the value of

revealing/collecting private information in many studies with a random tie-breaking rule.

A Appendix

A.1 How to Derive Best Response Diagram (Figure 1)

Each curve in Figure 1 is the indifference boundary between two strategies of senders such as (0,1),

(1,2) and (3,4)42. Consider a sender with type r > 0 and given x s.t. N(x) > ϕ. We can derive the

indifference boundary between (k, k + 1) from the difference of the utilities as follows:

U(r, k + 1,x)− U(r, k,x) = 0

⇐⇒ π(r)
ϕ

N(x)

(

1−
ϕ

N(x)

)k

= γ (16)

⇐⇒
γ

π(r)
=

ϕ

N(x)

(

1−
ϕ

N(x)

)k

.

We only need to focus on the boundaries of two consecutive numbers because of the following

lemma:

Lemma 2. For a given 0 < ϕ
N(x) < 1, the best strategies for type r are either a single number or two

consecutive numbers.

Lemma 2 indicates that the set of best response strategies for each x includes at maximum two

consecutive numbers. The other sets of strategies, such as {0, 2} and {1, 3, 4}, cannot be a set of best

strategies.

Proof of Lemma 2: Consider 0 < ϕ/N < 1. The utility function conditional on x, denoted by

UC(l), is strictly concave in l ≧ 1 if γ ≦ π(r)ϕ/N . If and only if γ < π(r)ϕ/N is not satisfied, only 0

is the optimal strategy. When γ = π(r)ϕ/N , l = 1 and l = 0 have the same utility (= 0) and both are

optimal. When γ < π(r)ϕ/N , l = 1 strictly dominates l = 0.

42We focus on the strategies l < 6 in Figure 1.

25



From now on, we focus on l ≧ 1 and γ < π(r)ϕ/N . Since UC(l) is a single-variable function,

when we focus on the discrete set of l > 0, we can simply do the convex extension. By the definition

of strictly concave function, for any t ∈ (0, 1) and j, k ≧ 1,

tUC(j) + (1− t)UC(k) < UC(tj + (1− t)k). (17)

This indicates that, if l is a continuous number and the two strategies have the same utility, the third

strategy with the same utility cannot exist. When we consider the subset of the strategy set, this impli-

cation holds. Thus, in the discrete case, we do not have to consider the case in which three strategies

have the same utility.

In addition, because of (17), the two strategies with the same maximum utility are consecutive

numbers. Suppose both k1 and k2 maximize the utility function, but they are not consecutive. Then,

we can find at least an integer k3 between k1 and k2 and t such that k3 = tk1 + (1− t)k2. UC(k3) is

larger than UC(k1) = UC(k2) due to (17). This contradicts the assumption that k1 and k2 maximize

the utility function.

A.2 How to Derive Bifurcation Diagram (Figure 2)

Consider homogeneous senders R = {1}. From the discussion in A.1, the set of optimal strategies in

x ∈ X includes two consecutive numbers at maximum. We can then figure out the equilibria with the

given parameters γ
π

and ϕ
D

without complex calculations through the following way.

First, we can calculate the possible range of ϕ
N(x) with the pair of strategies. For instance, if ϕ

D
= 1,

the pair (1,2) can achieve 1
2 ≦ ϕ

N(x) ≦ 1. Second, from Figure 1, we know that the best response of

senders in each ϕ
N(x) and γ

π
. Third, by combining the boundaries in Figure 1 and the ranges, we can

draw Figure 2 which illustrates all possible equilibria with the parameters.

A.3 Stability of Equilibria in Figure 2

Consider γ
π
= 0.2 which is represented by the area in the orange rectangle in Figure 2. Figure 3 zooms

in the orange rectangle. The arrows in Figure 3 illustrate the direction of movement in the system if we

apply the best response or any impartial pairwise comparison dynamic to x in which N = N(x) and

all senders select the strategies in which the number of sending messages is either of two consecutive

numbers like sending a message once and twice.

We check the stability of equilibria A and C in Figure 3. Consider the C’s neighborhood O =
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Figure 3: An Example of Stable Equilibria

{y ∈ X : 0.4 < ϕ/N(y) < 0.6}. By the same logic in A.1, at least in 0.28 < ϕ/N(y) < 0.72,

the strategy of sending a message twice is the unique best response. Therefore, both (5) and (6) are

satisfied. Further, equilibrium C is a regular Taylor evolutionarily stable state. By a similar logic,

equilibrium A is a regular Taylor evolutionarily stable state, too.

A.4 Stability of LM equilibrium

We check whether a LM equilibrium meets the definition of Regular Taylor Evolutionarily Stable State

(hereafter RTESS). For all r, r′ ∈ R, l, l′ ∈ L and x ∈ X , all of U ’s partial derivatives
∂U(r,l,x)

∂xr′

l′

exist

and are continuous in X so that U is continuously differentiable. Therefore, U is Lipschitz continuous

in X .

We defined RTESS in equations (5) and (6) using the definition adopted from Sandholm (2010).

In LM equilibrium, if D ≦ ϕ, there does not exist any marginal type. When each type has a unique

optimal strategy, both (5) and (6) are satisfied, and such an equilibrium is a RTESS.

If D > ϕ and ϕ/N(x) ≦ 1, and if there does not exist any marginal type, we can apply a similar

logic in the previous paragraph, and x is a RTESS. If there exists a marginal type, from the definition

of LM equilibrium, the active senders with the minimum benefit among the active senders (hereafter

senders with ramin) are indifferent between sending no messages and sending a message. In addition,

from the definition, xramin

0 > 0 and xramin

1 > 0. Therefore, (5) is satisfied.

When (5) is satisfied, the support of x includes all optimal strategies for each type. Then, the

condition (y − x)′U(x) = 0 in (6) can be satisfied only if the support of x is weakly larger than the

support of y. Thus, we focus on the changes in ramin’s strategy between sending a message or not.

We denote such a change by z. Instead of (6), we use the following condition from p282 in Sandholm

(2010).
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z
′DU(x)z < 0 ∀ nonzero z ∈ TX ∩ R

n
L(x) (18)

where L(x) is the support of x, and y ∈ R
n
L(x) indicates y ∈ R

n and the support of y is a subset of

L(x).

Discuss z01 = eq − es such that eq/es represents a unit population of type ramin which sends 0

messages/ 1 message. (ei is a standard basis of Rn.). In this case, if

∂U(ramin, 0,x)

∂xramin

0

−
∂U(ramin, 0,x)

∂xramin

1

<
∂U(ramin, 1,x)

∂xramin

0

−
∂U(ramin, 1,x)

∂xramin

1

(19)

is satisfied, the equation (18) is satisfied.

∂U(ramin, 0,x)

∂xramin

0

−
∂U(ramin, 0,x)

∂xramin

1

= 0 (20)

and

π(ramin)ϕ

N(x)2
=

∂U(ramin, 1,x)

∂xramin

0

−
∂U(ramin, 1,x)

∂xramin

1

. (21)

Any other nonzero z ∈ TX ∩ R
n
L(x) is the scalar multiplication of z01 and the sign of z′DU(x)z is

unchanged. Therefore, LM equilibrium is a RTESS.

A.5 Existence of δ and γ′

z
s.t. γ′

z
̸= π for any π ∈ Π

For an arbitrary δ ∈ (δ, δ̄), we define γ′
z(δ) = δ ϕ

N
πz−1 for any z ∈ {2, 3, ..., |Z|}. We claim that there

exists δ′′ ∈ (δ, δ̄) s.t. γ′
z(δ

′′) ̸= π for all π ∈ Π and z ∈ {1, 2, 3, ..., zmax}.

Consider a δ ∈ (δ, δ̄). If any δ′′ ∈ (δ, δ̄) satisfies the condition, the claim is correct. If the condition

is not satisfied by δ, there exists at least a pair of π ∈ Π and z ∈ {1, 2, 3, ..., zmax} s.t. γ′
z(δ) = π.

Among the other pairs (π, z) s.t. γ′
z(δ) ̸= π, we can find the minimum difference |γ′

z(δ) − π| ≧ M .

Because γ′
z(δ) is differentiable and strictly increasing in δ, we can slightly decrease from δ to δ′′ ∈

(δ′, δ) s.t. M > |γ′
z(δ) − γ′

z(δ
′′)| > 0 for any z ∈ {1, 2, 3, ..., zmax}. As a result, we find δ′′ ∈ (δ, δ̄)

s.t. γ′
z(δ

′′) ̸= π for all π ∈ Π and z ∈ {2, 3, ..., |Z|}.

A.6 Proof of Proposition 5

We fix ϕ
N

and δ which satisfy the required conditions (for a given σ̄) explained in the main text. For

given ϕ
N

and δ, a set of γ′
z and ϵ̄ are uniquely decided. The timing of switching from γ′

z to γ′
z+1,

denoted by tz , depends on the reaction of ϕ/N(x(t)).
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We would like to show x(t) → x
∗ and x

∗ is LM equilibrium (with σ̄) if the two-step cost change

is conducted. When ϕ ≦ D, an equilibrium x
∗ is a LM equilibrium if and only if ϕ

N(x∗) is 1 or almost

1 ( ϕ
N(x∗) > (1 − σ̄)), all active senders send a single message, and all best strategies for each type

are utilized, and the benefit is larger than the cost for all active senders. Because of ϕ
N

’s definition,

ϕ
N

> (1− σ̄), and the first condition is satisfied if ϕ
N(x∗) >

ϕ
N

and ϕ
N(x∗) ≦ 1.

After Step 1, since sending 0 messages is the strictly dominant strategy among all senders for γ′
1,

(N(x(t)) + lmaxϵ1) < ϕ eventually happens in 2.a. Further, there exist at least D − ϵ1 senders who

send 0 messages and at maximum ϵ1 senders who are going to select 0 messages. In 2.b., at t1, we

change the cost from γ′
1 to γ′

2. We return to 2.a.

Before checking the whole consequence of each process in Step 2, we want to confirm a fact about

this process. Because of the definition of ϕ
N

, if we keep ϕ
N(x(t)) > ϕ

N
, for any r ∈ R, sending a

message is strictly better than any l > 1. We claim that ϕ
N(x(t)) > ϕ

N
for all t ≧ t1 in this policy, and

in the following paragraphs, we check this claim.

When we change the cost from γ′
1 to γ′

2 at t1, N(x(t1)) < ϕ. Under γ′
2, because ϕ

N
is large enough,

only senders with πmax have a larger benefit than γ′
2. For any other type, the unique optimal strategy is

sending 0 messages regardless of x, and ϵ-convergence happens. Later, as Lemma 3, we prove that, for

any z ∈ {1, 2, 3, ..., zmax} s.t. tz exists, ϕ
N(x(t)) > ϕ

N
for any t ≧ tz if we stop the cost change after

tz .

If we observe N(x(t2)) + lmaxϵ2 < ϕ at the end of 2.a, in the whole population D, there exist

less than N(x(t2)) + ϵ2 amount of senders whose benefit is strictly larger than γ′
2. (Otherwise, some

portion of senders in (D − ϵ2) have to select the suboptimal strategy.) At t2, we change the cost from

γ′
2 to γ′

3.

For any z > 2, consider the upper bound (hereafter N̄ ) of N(x(t)) after tz if we ignore the further

cost changes. There exists a marginal type (z−1th largest benefit type) r′ ∈ R s.t. γ′
z > π(r′) > γ′

z+1.

We suppose d(r′) > π(r′)ϕ/γ′
z+1 because this setting would maximize the possible N . If we focus

on D − ϵz with the optimal strategy for γ′
z , any senders except type r′ does not have any incentive to

change their strategies under γ′
z+1 as long as ϕ

N(x(t)) >
ϕ
N

. At tz , ϕ
N(x(tz))

> ϕ
N

.

After tz , as long as ϕ
N(x(t)) > ϕ

N
, only the marginal r′ senders in D − ϵz and ϵz senders can

increase messages under the best response dynamics. After tz , as long as γ′
z+1 < ϕ

N(x(t))π(r
′), r′

senders change their strategy from 0 to 1. Because we assume enough d(r′), if we ignore ϵz senders,

the minimum inverse congestion ratio would be ϕ
N

s.t. γ′
z+1 = ϕ

N
π(r′), and thus the total amount

of messages is
π(r′)ϕ
γ′

z+1

= ϕ/
(

δ ϕ
N

)

. Even if we consider ϵz , the total amount cannot be larger than
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ϕ/
(

δ ϕ
N

)

+ lmaxϵz . Therefore, N̄ = ϕ/
(

δ ϕ
N

)

+ lmaxϵz as long as ϕ
N(x(t)) > ϕ

N
after tz . From the

definition of ϵ̄ > ϵz and δ, N̄ < ϕ/ ϕ
N

. ϕ
N(x(t)) > ϕ

N
is satisfied at tz , and the possible N̄ is too small

to break the condition from x(tz) under the best response dynamics. In conclusion, ϕ
N(x(t)) > ϕ

N
if

t ≧ tz and if there are no additional cost changes.

We can repeat the same argument for each [tz, tz+1] as long as tz < ∞. Therefore,

Lemma 3. In Step 2 after t1,
ϕ

N(x(t)) >
ϕ
N

under the best response dynamics.

Next, we check whether x(t) converges to LM equilibrium in Step 2. Suppose that the cost change

continues until tk when we change the cost from γk to γk+1. If N(x(tk+1))+ lmaxϵk+1 < ϕ, there are

not enough senders under γk+1 to fill the capacity ϕ, and thus we move to the next step by changing

the cost from γk+1 to γk+2.

If N(x(t)) − lmaxϵk+1 > ϕ, this policy stops the cost change (and any additional intervention is

not required). Because of Lemma 3, ϕ
N(x(t)) ≧

ϕ
N

. Since we take ϕ
N

s.t. πmax(1/
ϕ
N

− 1) < MD

2 , there

is only a single type rmar whose optimal strategy fluctuates between 0 and 1 after the stop. Let Nmar

denote the total amount of messages s.t. π(rmar)
ϕ

Nmar
= γk+1. When ϕ

N(x(t)) < ϕ
Nmar

, ẋrmar

1 > 0,

and vice versa. Let ϵ′(t) in t ∈ [tk,∞) denote the upper bound of the total population who selects

suboptimal strategies in r ∈ R− {rmar}
43.

As t → ∞, at least
∑

r∈R−{rmar}
d(r)− ϵ′(t) senders select the unique optimal strategy for each

type. Let N−rmar
denote the limit amount of messages from all r ̸= rmar. From the process of the two-

step cost change, we know N−rmar
< ϕ44. Since ϵ′(t) is monotonically decreasing, the total amount of

messages from the non-marginal types must be between N−rmar
− lmaxϵ

′(t) and N−rmar
+ lmaxϵ

′(t).

In addition, since N(x(t))− lmaxϵk+1 > ϕ, we claim that

N−rmar
+ d(rmar) > ϕ. (22)

This is because if N−rmar
+ d(rmar) ≦ ϕ, more than ϵk+1 senders have to select the suboptimal

strategy at tk+1, but this is impossible.45.

43Such ϵ′(t) exists because there exists a unique optimal strategy for each r ∈ R− {rmar}.
44Otherwise, the process would stop before rk+1.
45Even for the marginal type, the population selecting l > 1 cannot be larger than ϵk+1. When N−rmar +

d(rmar) = ϕ, even if d(rmar)−ϵk+1/n senders in rmar selects 1 and all ϵk+1 senders select lmax, the maximum

total amount N(x(tk+1)) is lower than N−rmar + d(rmar)+ lmaxϵk+1 = ϕ+ lmaxϵk+1. This is not enough for

satisfying N(x(tk+1))− lmaxϵk+1 > ϕ, and thus N−rmar + d(rmar) > ϕ.
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If d(rmar) is small s.t. Nmar −N−rmar
> d(rmar), there exists t̄ s.t. for any t > t̄,

ϕ

N(x(t))
>

ϕ

Nmar

. (23)

First, since N−rmar
+ lmaxϵ

′(t) is a strictly decreasing function in t, we can find t s.t. the possible total

amount of messages from the non-marginal types would be arbitrarily close to N−rmar
. Second, for the

marginal type, the best strategy is either 0 or 1 (by Lemma 3). The other strategies are always strictly

suboptimal for rmar, and thus the possible maximum amount of messages converges to d(rmar) as

t → ∞. Since Nmar −N−rmar
> d(rmar), we can find t̄ s.t. (23) for any t > t̄. Thus, after t > t̄, for

all type, there is a unique best strategy, and the system converges to a unique point x∗ ∈ X . This point

satisfies the definition of LM equilibrium.

d(rmar) s.t. Nmar −N−rmar
= d(rmar) cannot happen because of the definition of γz . When we

decide γz , we make γz ̸= π for all π ∈ Π where Π is the set derived from the minimum basic unit ω.

If there is d(rmar) s.t. Nmar − N−rmar
< d(rmar), the system eventually reaches to Nmar +

lmaxϵ
′(t′) ≧ N(x(t)) ≧ Nmar − lmaxϵ

′(t′) at a finite time after t′. For example, if N(x(t)) <

Nmar − lmaxϵ
′(t′), it must be broken in finite time. For the sake of contradiction, suppose the in-

equality remains forever. Because of the best response dynamics and because sending one message

is the strict best strategy for rmar (Lemma 3), xrmar

1 (t) → d(rmar) as t → ∞. xrmar

1 (t) is strictly

increasing in t and bounded, and thus xrmar

1 (t) converges to a point. For the other type and the other

strategies, because of a unique optimal strategy for each type, they converge to a point. Therefore,

x(t) converges to a point denoted by x
∗ ∈ X where all marginal senders send a message. Thus,

in x
∗, Nmar < N(x∗). However, under the best response dynamics, x(t) can converge to a point

if and only if the point is a Nash equilibrium. When Nmar < N(x∗), x∗ is not a Nash equilib-

rium because sending a message is suboptimal for rmar, and thus we get the contradiction. We can

apply the similar discussion to the case N(x(t)) > Nmar + lmaxϵ
′(t′). Therefore, at finite time,

Nmar + lmaxϵ
′(t′) ≧ N(x(t)) ≧ Nmar − lmaxϵ

′(t′) for any t′(> tk) happens.

A LM equilibrium x
∗ exists for γk+1 and d(rmar) s.t. Nmar − N−rmar

< d(rmar). Since there

can exist at maximum a single marginal type in LM equilibrium, for any r ∈ R − {rmar}, xr
1 = d(r)

if π(r) > γk+1, and otherwise xr
0 = d(r) in x

∗. Thus, the total amount of messages from all non-

marginal types is N−rmar
. Suppose in x

∗, xrmar

1 = Nmar −N−rmar
and xrmar

0 = d(rmar) − xrmar

1 .

This x∗ satisfies the all requirements for a LM equilibrium if d(rmar) ̸= Nmar − N−rmar
. Because

of the definition of γz , π ̸= γz for all π ∈ Π, and thus d(rmar) ̸= Nmar − N−rmar
. In addition,

ϕ < N(x∗) < ϕ/ ϕ
N

. Therefore, there exists a LM equilibrium x
∗ for γk+1. Because LM equilibrium
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is locally asymptotically stable under the best response dynamics, if x
∗ is a LM equilibrium, there

exists a neighborhood O around x
∗ in which the system is attracted to x

∗.

As t → ∞, ϵ′(t) → 0, and thus all of the other types selects the optimal strategy in a LM equilib-

rium x
∗ at the limit of x(t) (Nmar − lmaxϵ

′(t) → Nmar, Nmar + lmaxϵ
′(t) → Nmar). Except xrmar

1

and xrmar

0 , all xr
l converges to the value in x

∗. In addition, from the previous paragraph, N(x(t))

approaches to any neighborhood of N(x∗) = Nmar at least in a finite time. Therefore, x(t) eventually

enters O, where O is the neighborhood of LM equilibrium x
∗ which has the local asymptotic stability

under the best response dynamics. Thus, x(t) converges to x
∗.

We show that, if N(x(t))− lmaxϵ ≦ ϕ ≦ N(x(t)) + lmaxϵ for all t ∈ [tk,∞) where ϵ satisfying

T ( ϵ
n
) < (t − tk) and ϵ̄ > ϵ > 0, the limit of x(t) is a LM equilibrium x

∗. This happens only if

∑

r∈R′ d(r) = ϕ where R′ = {r ∈ R|π(r) > γk+1}
46 (Otherwise, eventually the condition must be

broken.). As same as the discussion for the case N(x(t)) − lmaxϵk+1 > ϕ, there exists a single type

rmar whose optimal strategy is fluctuated between 0 and 1. However, because π(rmar) > γk+1, as

ϵ → 0, there eventually exists a unique best strategy for each type. x(t) → x
∗, and in x

∗, ϕ = N(x∗)

and all active senders strictly select sending a message. Thus, x∗ is a LM equilibrium.

When k = 1, if N(x(t2)) + lmaxϵ2 < ϕ, there are no enough senders under γ′
2 to fill the capacity

ϕ, and thus we move to the next step by changing the cost from γ′
2 to γ′

3.

If N(x(t2)) − lmaxϵ2 > ϕ, this policy stops the cost change. In such a case, γ′
1 > πmax > γ′

2

and d(r) > ϕ for r ∈ R s.t. πmax = π(r). For any other r′ ∈ R − {r}, sending 0 messages is

strictly dominant. Then, by the similar discussion for general k + 1, the system eventually moves

into the neighborhood of a LM equilibrium x
∗ where only r-type senders send a message and either

πmax
ϕ

N(x∗) = γ′
2 or N(x∗) = d(r) is satisfied.

If N(x(t))− lmaxϵ ≦ ϕ ≦ N(x(t))+ lmaxϵ for all t ∈ [t1,∞) where ϵ satisfying T ( ϵ
n
) < (t−t1)

and ϵ̄ > ϵ > 0, this implies d(r) = ϕ where r ∈ R s.t. πmax = π(r). We can apply the similar

discussion for k + 1 again. When we consider r as the marginal type, because π(r) > γ2, as ϵ → 0,

there eventually exists a unique best strategy for each type. Thus, x(t) → x
∗ where x

∗ is a LM

equilibrium.

In conclusion, Proposition 5 is proved.
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