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1 Introduction

The paper addresses two main questions:

• How can we construct interregional price (and quantity) indexes for a country at the
first stage of aggregation that are transitive over time and space?

• How can we measure the effects on price levels and welfare of smaller choice sets for
regions that have a limited availability of products?

We will use household price and quantity data on purchases of the 80 top selling rice products
over 24 months for six Prefectures in Japan in order to provide possible answers to the above
questions.*1 Many alternative multilateral indexes will be constructed and compared using
this data set.

The transitivity problem can be explained as follows. A bilateral index number formula that
provides an estimate of the price level in one region or period to the price level in another
region or period is basically a weighted average of ratios of product prices where the price
of each product n in one region-month is compared to the same product n price in another
region-month. The weights for the product price ratios are typically an average of the monthly
expenditure shares on the products in the two region-months under consideration. Suppose
we want to compare the prices in period 3 with the same prices in period 1 for the same region.
Then we could construct a fixed base bilateral index number that directly compared the period
3 prices to the period 1 prices. Call this index P (3/1). Alternatively, we could do a series
of comparisons, comparing the prices of period 2 to period 1, obtaining the index P (2/1),
and then comparing the prices of period 3 to the corresponding period 2 prices, obtaining the
index P (3/2). The chained index between periods 3 and 1 is the product of the two chain
link indexes, P (2/1) times P (3/2). We would like P (3/1) to equal P (2/1) × P (3/2) but this
path independence or transitivity property frequently fails. When this property fails, we say
that we have a chain drift problem.*2 Szulc (1983)[65] (1987)[66] demonstrated how big the
chain drift problem could be using chained Laspeyres indexes but at that time, it was thought
that chained superlative indexes*3 would exhibit minimal chain drift.*4 However, de Haan
(2008)[12] using Dutch data on weekly sales of detergents showed that chained Fisher indexes
declined to about 10% of the initial index level after 150 weeks of data.*5 For more recent

*1 Our paper is similar to the recent paper by Fox, Levell and O’Connell (2024)[37] who compared several
multilateral methods using scanner data. It is also related to the papers by Diewert and Fox (2021)[30]
and Melser and Webster (2021)[57] who used simulated data that was exact for CES preferences and
made comparisons between many alternative multilateral indexes.

*2 Fisher (1922; 293)[36] realized that many chained indexes in use at the time could be subject to chain
drift but for his empirical data, there was no clear evidence of chain drift for his Fisher ideal index
number formula. However, Persons (1921; 110)[58] came up with an empirical example where the Fisher
index exhibited substantial downward chain drift. Frisch (1936; 9)[38] seems to have been the first to
use the term “chain drift”. Both Frisch (1936; 8-9)[38] and Persons (1928; 100-105)[59] discussed and
analyzed the chain drift problem.

*3 See Diewert (1976)[18] for his definition of a superlative index. Basically, a superlative bilateral index
number formula gives the “right” answer if consumers are maximizing an associated utility function that
that can approximate an arbitrary linearly homogeneous utility function to the second order around any
given point. Superlative index number formulae (like the Fisher (1922)[36] ideal index) are thought to
deal with substitution effects in a satisfactory manner. The Laspeyres, Paasche and Fisher and other
bilateral index number formulae will be defined below.

*4 See Hill (1988; 136-137)[50].
*5 The problem is caused by huge fluctuations in the volume sold when products are sold at a discount; see

Diewert (2023)[25] on this point. For more information on the Dutch experiments with scanner data,
see de Haan and van der Grient (2011)[14].
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examples of massive downward chain drift of monthly chained superlative Törnqvist indexes
using scanner data, see Fox, Levell and O’Connell (2024)[37].

The chain drift problem was not a problem before 2008, because before scanner data became
available to National Statistical Offices, consumer (and producer) price indexes were produced
in a very different way. At the first stage of aggregation, a sample of prices in a particular
product category was collected in each month and these prices were compared to the same
prices in the base month and either the arithmetic or geometric average of these product prices
was taken as an estimate of the average price level of the current month to the price level of
the product category in the base month. A weighted average of these product category price
level ratios was taken to approximate the national price level for the current month relative to
the base month. Annual weights for the aggregate product categories for some base year were
used at the final stages of aggregation to weight the category price indexes which did not use
weights. The annual weights came from periodic household expenditure surveys. Thus the
tremendous fluctuations in product quantities that are frequently observed at the first stage
of aggregation played no role in this historic way of constructing consumer and producer price
indexes and thus there was no chain drift problem in the periods prior to 2008.

The paper by de Haan (2008)[12] led researchers to look for solutions to the chain drift problem.
Thus Ivancic, Diewert and Fox (2009)[51] (2011)[52] suggested using multilateral index number
theory on a rolling window of observations to mitigate the chain drift problem.*6 This strategy
was eventually implemented by the Australian Bureau of Statistics (2016)[2].

A problem with using rolling window multilateral methods is that as an extra period of data
becomes available, the indexes have to be recomputed and linked to the previous indexes. But
how exactly are the results from the new window to be linked to the previous index values?*7

In this paper, we will not address this issue; it is a subject for ongoing research.*8

Section 2 of the paper provides some information on the data used in this study as well as
introducing some notation that will be used throughout the paper. The remaining sections of
the paper describe the various multilateral indexes that are used in this study. Our goal is to
calculate various multilateral indexes using our Japanese panel data on sales of rice products
for six Prefectures and the 24 months in the years 2021-2022. We will use multilateral indexes
which are transitive, invariant to changes in the units of measurement and satisfy a strong
identity test for quantities.

Section 3 describes our first multilateral method, the GEKS indexes. These indexes are based
on matched product bilateral Fisher indexes so in this section, we also calculate fixed base
Fisher indexes that take the first month in 2021 for Tokyo (the biggest Prefecture) as the base

*6 Balk (1980)[3] (1981)[4] suggested the use of multilateral indexes in the seasonal product context. More
recently, Hill (2001)[48] (2004)[49] used multilateral indexes in the time series context. The origins of
multilateral index number theory date back to Gini (1924)[42] (1931)[43]. For more recent reviews of
multilateral methods, see Balk (1996)[5] (2008)[7] and Diewert (1999)[19] (2023)[25].

*7 Ivancic, Diewert and Fox (2011)[52] suggested that the movement of the rolling window indexes for the
last two periods in the new window be linked to the last index value generated by the previous window.
However Krsinich (2016)[55] suggested that the movement of the indexes generated by the new window
be linked to the previous window index value for the second period in the previous window. Krsinich
called this a window splice as opposed to the IDF movement splice. De Haan (2015; 27)[13] suggested
that perhaps the linking period should be in the middle of the old window which the Australian Bureau
of Statistics (2016; 12)[2] termed a half splice. Diewert and Fox (2021)[30] suggested that the average of
all links for the last period in the new window to the observations in the old window could be used as the
linking factor. Finally, Diewert and Shimizu (2024)[31] suggested an ever expanding window approach.

*8 For systematic treatments of the issues surrounding the implementation of a rolling window multilateral
method and further discussion of extension methods, see the Australian Bureau of Statistics (2016)[2],
Chessa (2016)[9] (2021)[10], Balk (2024)[8] and Diewert and Shimizu (2024)[31].
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period. For comparison purposes, we also compute a simple index that uses the arithmetic
average of prices in each region-month as an estimate of the price level for given month in the
given region. We also compute unit value price indexes for comparison purposes.

In Section 4, we compute weighted and unweighted Time Product Dummy (TPD) Hedonic
price indexes. In Section 5, we compute Geary-Khamis (GK). All three of these indexes are
consistent with purchasers having linear preferences over rice products.

In Sections 6 and 7, we turn to the econometric estimation of linear preferences using share
equations. In Section 6, we indicate why the estimation of the dual unit cost function is not
practical when there are missing products for some region-months.

In Section 8, we estimate a Constant Elasticity of Substitution (CES) utility function using
share equations and we compute the resulting price and quantity indexes for the 6 Prefectures.
The estimation process also gives us an estimate for the elasticity of substitution and we use
this estimate to implement Feenstra’s (1994)[35] method for measuring the welfare benefits
and costs of differing choice sets across the Prefectures. We find that these welfare effects
are substantial. However, all of our Prefecture price indexes show that variations in price
levels across the 6 Prefectures are even more substantial; i.e., the lower population Prefectures
tend to have much higher price levels for rice than the corresponding Tokyo levels. This has
implications for constructing national price and volume estimates for the System of National
Accounts; i.e., the usual national consumption price deflators may be biased (because they do
not take into account the fact that price levels may differ substantially by region and hence
are biased).

Finally, in Section 9, we estimate a more flexible functional form for the purchasers utility
function, the KBF (Konüs-Byushgens-Fisher) utility function with a rank 1 substitution ma-
trix. The CES functional form is of course more flexible than the linear utility function but it
has only a single parameter (the elasticity of substitution) to describe substitution possibili-
ties. If there are N products that are in scope, the KBF functional form has N −1 parameters
to describe substitution possibilities so it is much more flexible than the CES functional form.

We will explain each of the above methods in the following sections.

Section 10 concludes.

2 The Japanese Data and Notation

The six Prefectures are Hokkaido, Tokyo, Kyoto, Tottori, Kochi and Kagoshima. Over the 6
regions and 24 months, there were 499 separate rice products purchased in shops*9 over this
sample period. However, we excluded small sales of products that had very low sales so that
we considered only 80 best selling rice dish products. The percentage of total purchase value
by the 80 top selling products was 88%. There was a maximum total of 6× 24× 80 = 11, 520
observations of monthly product sales. However, many products were missing in each region so
the probability that any one of the 80 products was available in any of the 144 region-months
was equal to 0.5642.*10

*9 We use the weekly retail sales database, ”SRI+ R⃝(Nationwide Retail Store Panel Survey)” by INTAGE
Inc. The analysis covered the period from the first week of January 2021 to the last week of December
2022, and included 804 supermarkets in Hokkaido, Tokyo, Kyoto, Tottori, Kochi, and Kagoshima that
sold products in the Rice Dish category. For the data used in the analysis, first, the data for each store
was aggregated by prefecture, and then the weekly data was aggregated into monthly data to create
monthly data on sales amounts and sales quantities by product and prefecture.

*10 Here are the probabilities of a product being present in each of the 6 Prefectures: 0.646 0.898 0.730 0.239
0.408 0.465. Thus for Tottori, the probability any one of the 80 products being purchased in any of the
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Here is a description of the notation we will use for prices, quantities and values for our data.
Denote the unit value price and total quantity purchased of product n in region r and month
m by prmn and qrmn for r = 1, . . . , 6; m = 1, 2, . . . , 24 and n = 1, . . . , 80. If product n in
region r and month m was not purchased, then we set prmn = 0 and qrmn = 0.

Define the price and quantity vectors for region r and month m as pr,m ≡ [prm1, . . . , prm80]
and qr,m ≡ [qrm1, . . . , qrm80] for r = 1, . . . , 6 and m = 1, . . . , 24.

Relabel the 144 region-month price vectors of dimension 80, [p1,1, . . . ,p1,24; . . . ;p6,1, . . . ,p6,24],
as [p1, . . . ,p24; . . . ;p121, . . . ,p144] and relabel the 144 region-month quantity vectors
[q1,1, . . . , q1,24; . . . ; q6,1, . . . , q6,24] as [q1, . . . , q24; . . . ; q121, . . . , q144]. We also relabel the nth
component of pt as ptn and the nth component of qt as qtn for n = 1, . . . , 80.

Thus we have relabelled the 144 region-month price and quantity vectors , pr,m and qr,m, into
144 time period vectors, pt and qt, for t = 1, . . . , 144. This relabelling simplified the computer
programs. The corresponding expenditure or value vector for period t, vt, was obtained by
multiplying together the components of pt with the corresponding components of qt.

The first 24 period price vectors of dimension 80, pt for t = 1, . . . , 24, correspond to the month
1 to month 24 price vectors for region 1 (Hokkaido) and the last 24 period price vectors pt,
t = 121, . . . , 144, correspond to the month 1 to 24 price vectors for region 6 (Kagoshima).

Define the set of purchased products n in period t as S(t) for t = 1, . . . , 144.

3 Bilateral Fisher Indexes and GEKS Multilateral Indexes

The multilateral GEKS method is due to Gini (1924)[42] (1931)[43] and was further developed
by Eltetö and Köves (1964)[34] and Szulc (1964)[64].

In order to define the GEKS indexes, we first need to define the Laspeyres, Paasche and Fisher
(1922)[36] bilateral price indexes. These indexes which compare the prices of period t to the
prices of period s, PL(t/s), PP(t/s) and PF(t/s) are defined as follows (using our new notation
explained above):

PL(t/s) ≡
∑

n∈S(t)∩S(s)ptnqsn/
∑

n∈S(t)∩S(s)psnqsn; 1 ≤ s, t ≤ 144; (1)

PP(t/s) ≡
∑

n∈S(t)∩S(s)ptnqtn/
∑

n∈S(t)∩S(s)psnqtn; 1 ≤ s, t ≤ 144; (2)

PF(t/s) ≡ [PL(t/s)PP(t/s)]1/2; 1 ≤ s, t ≤ 144. (3)

Note that the comparison of prices in period t to the prices in period s is restricted to products
that were purchased in both periods; i.e., the above bilateral indexes are based on matched

product prices.

The sequence of Fisher price indexes that compare the prices of period 1, 2, . . . , 144 with the
prices of period s is [PF(1/s), PF(2/s), . . . , PF(144/s)]. This sequence of numbers is the Fisher

star index for the 144 periods relative to the fixed base of period s. Obviously, any period
could be chosen as the base so there are 144 Fisher star indexes. The GEKS index simply
takes the geometric mean of these indexes. Thus the (preliminary) GEKS price level for period
t, P t

GEKSP, is defined as follows:

P t
GEKSP ≡ [

∏144
s=1PF(t/s)]1/144; t = 1, . . . , 144. (4)

24 months was only 23.9% while for Tokyo, the corresponding probability was 89.8%. This is a huge
variation in product availability. The range of products available over the 24 months in each region was:
Region 1: 48-53; Region 2: 70-74; Region 3; 54-62; Region 4: 18-20; Region 5: 28-37; Region 6: 36-38.
It can be seen that the lack of matching prices across Prefectures is a big problem.
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We normalize the above 144 price levels so that the price level for period 25 (equal to the
price level for Tokyo in month 1 of our sample of 24 months) is set equal to 1. Thus the final
GEKS price level for period t is:

P t
GEKS ≡ P t

GEKSP/P 25
GEKSP; t = 1, . . . , 144. (5)

Finally, we decompose the P t
GEKS vector of dimension 144 into 6 regional vectors of dimension

24: P 1
GEKS, P 2

GEKS, . . . , P 6
GEKS. Component t of these GEKS price index vectors for regions 1

to 6 are defined as follows:

P 1,m
GEKS ≡ Pm

GEKS;P 2,m
GEKS ≡ P 24+m

GEKS ; . . . ;P 6,m
GEKS ≡ P 120+m

GEKS ; m = 1, . . . , 24. (6)

The Fisher star index that uses month 1 for Tokyo as the base month that has the 144
components PF(t/25) for t = 1, . . . , 144 is also decomposed into 6 regional vectors of dimension
24, which we denote by P 1

F, P 2
F, . . . , P 6

F. Thus the 24 components of these 6 vectors are defined
as follows:

P 1,m
F ≡ PF(m/25);P 2,m

F ≡ PF((24 + m)/25); . . . ;P 6,m
F ≡ PF((120+m)/25);

m = 1, . . . , 24. (7)

The Fixed Base Fisher Star indexes with month 1 for Tokyo as the base and the GEKS indexes
for region r, P r

F and P r
GEKS for r = 1, . . . , 6 are listed in Table 1 in Appendix and plotted on

Chart 1 below as P t
GEKS for t = 1, . . . , 144. On Chart 1, we stacked the 6 Prefecture Fixed

Base Fisher price indexes P r
F of dimension 24 into a single index P t

F for t = 1, . . . , 144. We
also stacked the other 4 indexes described in this section into single indexes of dimension 144
in order to reduce the number of charts.

A possible problem with the fixed base Fisher indexes (and with the GEKS indexes) is that
over time, product matches may decrease due to product churn and hence the indexes become
less reliable. A possible solution to this lack of matching problem could be to construct chained
Fisher indexes for the most populous region, Tokyo, and then at each month, multiply the
chained Tokyo index by the fixed base Fisher index linking the regional prices for Prefectures
1, 3, 4, 5 and 6 to the Tokyo prices in the same month.*11 We explain the algebra for this
method in the following paragraph.

First, it is necessary to construct the chained Fisher indexes for Tokyo, Pm
FCH for months m =

1, . . . , 24. For month 1, define P 1
FCH = 1 = PF(25/25). For month 2, define P 2

FCH = P 1
FCH ×

PF(26/25); for month 3, define P 3
FCH = P 2

FCH ×PF(27/26); . . . : for month 24, define P 24
FCH =

P 23
FCH × PF(48/47). The Fisher-Misobuchi multilateral indexes for month m for Prefecture 2

are defined as P 2,m
FM ≡ Pm

FCH for m = 1, . . . , 24. Thus the FM indexes for Tokyo are simply the
chained Fisher indexes Pm

FCH. The Fisher-Misobuchi indexes for month m for Prefecture 1 are

defined as P 1,m
FM ≡ Pm

FCH × PF(m/(24 + m)) for m = 1, . . . , 24. The Fisher-Misobuchi indexes

for month m for Prefecture 3, 4, 5 and 6 are defined as P 3,m
FM ≡ Pm

FCH × PF((48 + m)/(24 +

m)), P 4,m
FM ≡ Pm

FCH × PF((72 + m)/(24 + m)), P 5,m
FM ≡ Pm

FCH × PF((96 + m)/(24 + m)) and

P 6,m
FM ≡ Pm

FCH × PF((120 + m)/(24 + m)) for m = 1, . . . , 24. Denote the vectors of dimension
24 of these multilateral indexes for Prefectures 1-6 by P 1

FM, P 2
FM, P 3

FM, P 4
FM, P 5

FM, P 6
FM. These

indexes are listed in Appendix and stacked and plotted as P t
FM for t = 1, . . . , 144 on Chart 1

below.

It is also of interest to construct unit value prices and average prices for each region-month
in our sample. Let 180 be a vector of ones of dimension 80. The unit value price for period t

*11 This multilateral method was suggested by Hideyuki Mizobuchi.
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is equal to period t expenditure on the 80 products, vt · 180, divided by the number of units
of rice purchased in period t, qt · 180, where vt · 180 ≡

∑

n∈S(t)vtn and qt · 180 ≡
∑

n∈S(t)qtn

for t = 1, . . . , 144. We divide these 144 period unit value prices by the period 25 unit value
price level to make up our unit value price index for all 144 periods, with month 1 for Tokyo
as our base period where the unit value index is equal to 1. We then decompose this vector of
dimension 144 into 6 vectors of dimension 24 to define the 6 regional unit value price indexes,
P 1

UV, P 2
UV, . . . , P 6

UV. These unit value price indexes for the 6 regions have the 24 components
P r,m

UV defined as follows:*12

P 1,m
UV ≡ [vm · 180/qm · 180]/[v25 · 180/q25 · 180]; m = 1, . . . , 24

P 2,m
UV ≡ [v(m+24) · 180/q(m+24) · 180]/[v25 · 180/q25 · 180];

· · ·

P 6,m
UV ≡ [v(m+120) · 180/q(m+120) · 180]/[v25 · 180/q25 · 180]. (8)

It is also of interest to construct a simple (unweighted) Average Price index for each region-
period. The average price of a rice product purchased in period t is defined as the sum of
the period t prices, , pt · 180, divided by the number of rice products that were purchased in
period t, N t, for t = 1, . . . , 144. We divide these 144 period average prices by the period 25
average price to make up our average price index for all 144 periods. We then decompose this
vector of dimension 144 into 6 vectors of dimension 24 to define the 6 regional average price
indexes, P 1

AV, P 2
AV, . . . , P 6

AV. These Average Price indexes for regions 1-6, have 24 components
defined as follows:

P 1,m
AV ≡ [pm · 180/N

m]/[p25 · 180/N
25]; m = 1, . . . , 24

P 2,m
AV ≡ [p(m+24) · 180/N

(m+24)]/[p25 · 180/N
25];

· · ·

P 6,m
AV ≡ [p(m+132) · 180/N

(m+120)]/[p25 · 180/N
25]. (9)

These indexes are listed in Appendix and stacked into the index P t
AV for t = 1, . . . , 144 and

plotted on Chart 1 below.

It can be seen the 5 Tokyo indexes (observations t =25-48) are all fairly close. The Average
Price index levels, P t

AV, tend to be smoother than the other indexes but the P t
AV levels for

Tottori (observations t =73-96) are far below the other indexes. The Unit Value indexes,
P t

UV, are very volatile and for the most part, lie below the other indexes. We will not consider
P t

AV and P t
UV in the remainder of the paper. It can be seen that price levels tended to be a

bit lower than Tokyo price levels for Regions 1 and 3 (Hokkaido and Kyoto) but price levels
tended to be higher in the smaller population Regions 4-6 (Tottori, Kochi and Kagoshima)
and particularly high in Tottori. The three indexes that utilize bilateral Fisher indexes in
their construction are somewhat close to each other but there is a great deal of volatility in
these indexes, particularly for the low population Prefectures.

The GEKS price levels are transitive (or path independent) and are invariant to changes in the
units of measurement. However, they do not satisfy a strong version of Walsh’s (1901; 389)[67]
(1921; 540)[68] Multiperiod Identity Test which asks that the price levels for any two periods

*12 Notation: if a ≡ [a1, a2, . . . , aN ] and b ≡ [b1, b2, . . . , bN ] are vectors of dimension N , then a · b ≡
∑N

n=1 anbn.
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Chart 1 Average Price, Unit Value, GEKS, Fixed Base Fisher and Mizobuchi Fisher
Price Indexes for Six Japanese Prefectures

be equal if the underlying price vectors are identical for the two periods.*13 When there are
missing prices, these GEKS indexes that are based on matched products are no longer exact
for a flexible functional form.*14

Here are some tentative conclusions that emerge from the above Chart:

• Price levels were somewhat stable on average for each Prefecture until the last 5 months
of 2023 when prices rose quite rapidly.

• Price levels differed substantially across Prefectures; the higher population Prefectures
1-3 had similar fairly stable price levels for the first 20 months in our sample and then
experienced rapid inflation. The smaller population Prefectures 4-6 had substantially
higher price levels compared to the Tokyo levels throughout the sample period.

We will exclude the Average Price and Unit Value Price indexes, P t
AV and P t

UV, from further

*13 Suppose that there are no missing products and the price and quantity vectors for 3 periods are pt, qt

for t = 1, 2, 3. Suppose that the price vectors for periods 1 and 2 are identical so we have p1 = p2 ≡ p.
Then using definitions (4) adapted to the current context and straightforward calculations show that the

ratio of the GEKS price levels for periods 1 and 2 is P 1
GEKS/P 2

GEKS = {[p·q1/p·q2]2[p3 ·q2/p3 ·q1]}1/6,

which is not equal to 1 in general. However, this ratio is equal to 1 if q1 = q2. Thus the GEKS price
levels for periods 1 and 2 are identical if prices and quantities are equal for periods 1 and 2, so the GEKS
price levels satisfy a weak identity test. If we interchange prices and quantities in the above algebra, we
can show that the GEKS quantity levels satisfy a weak identity test but not the strong identity test. For
more on the Test Approach to Multilateral Price or Quantity Levels, see Zhang, Johansen and Nygaard
(2019)[70] and Diewert (2023)[25].

*14 See Diewert (1976)[18] for materials on exactness of index numbers for flexible functional forms. The
results in Diewert assumed that there were no missing prices or unavailable products in any two periods
that were being compared. In the present situation, there are a great many missing prices. If we had
reservation prices for the products that were unavailable, then Diewert’s results would be valid. But
we do not have reservation prices in hand so bilateral Fisher indexes are computed only over products
that are present in the two periods that are being compared. The resulting GEKS indexes (that are
constructed using bilateral comparisons) are no longer exact for a flexible functional form.
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consideration as “best” indexes due to the unrepresentative nature of P t
AV and the volatility

of P t
UV. The remaining indexes do not satisfy strong identity tests.*15

4 Weighted and Unweighted Time Product Dummy Hedonic

Regressions

We have converted the 144 region-month price, quantity and value vectors into 144 pt, qt and
vt vectors of dimension 80 that are indexed by an artificial time index t for t = 1, . . . , 144. Thus
we can run a weighted or unweighted Time-Product-Dummy hedonic regression to estimate
the 144 rice price levels for the 144 region-months in our sample.

The unweighted TDP model dates back to Court (1939)[11] and Summers (1973)[63]; the
Weighted TPD model dates back to Rao (1995)[60] (2005)[61] and Diewert (2004)[20]
(2005)[21].

These models are based on the price data satisfying (to some degree of approximation) the
following equations:

ptn ≈ πtαn; t = 1, . . . , 144;n ∈ S(t) (10)

where πt is interpreted as the period t price level and αn is a parameter which reflects the
quality (or marginal utility) of product n. Thus πt is a summary measure for the level of
prices in the region-month that corresponds to period t.

Taking logarithms of both sides of the approximate equalities defined by (10) leads to the
following approximate equalities:

ln ptn ≈ lnπt + lnαn; t = 1, . . . , 144;n ∈ S(t)

= ρt + βn (11)

where ρt ≡ lnπt for t = 1, . . . , 144 and βn ≡ lnαn for n = 1, . . . , 80. The second set of
approximate equations in (11) is a linear regression model. However, the ρt and βn parameters
in (11) are not uniquely determined; we require a normalization on one of these parameters.
Choose the following normalization:

ρ1 = 0 (which corresponds to π1 = 1). (12)

The linear regression that corresponds to (11) and (12) is equivalent to solving the following
least squares minimization problem (using also the normalization (12)):

minρ′s β′s{
∑144

t=1

∑

n∈S(t)[ln ptn − ρt − βn]2}. (13)

Assume for the moment that the approximate equations (11) hold as exact equations. Multiply
both sides of equation ptn by qtn for n ∈ S(t) and sum the resulting equations over n. For
each t, we obtain the following equation:

∑

n∈S(t)ptnqtn = pt · qt ≡ et = πt

∑

n∈S(t)αnqtn = πtα · qt = πtQ
t; t = 1, . . . , 144; (14)

where et ≡
∑

n∈S(t)ptnqtn =
∑80

n=1 ptnqtn ≡ pt ·qt is defined to be period t expenditure on the

80 products and the period t quantity aggregate Qt ≡ α·qt ≡
∑

n∈S(t)αnqtn for t = 1, . . . , 144.

*15 It is of interest to compare the GEKS indexes to the indexes that will be defined in subsequent sections.
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Thus if equations (10) or (11) hold as equalities rather than as approximate equalities, the
Time Product Dummy Hedonic Regression model implicitly assumes that purchasers of the
rice products have the same linear preferences f(q) ≡ α · q over the 80 products.*16

Of course, equations (11) and (12) will not hold as exact equalities. For our data set, we
ran the linear regression defined by equations (11) and the normalization (12). We obtained
estimates for the 143 nonzero ρt parameters which we denote as ρ∗t for t = 2, 3, . . . , 144. We
defined ρ∗1 ≡ 0.

The estimated price levels for our 144 region-months were defined as follows:

π∗
t ≡ exp[ρ∗t ]; t = 1, . . . , 144. (15)

The corresponding period t quantity levels Qt∗ were defined by deflating period t expenditures
et by the π∗

t :

Qt∗ ≡ et/π∗
t ; t = 1, . . . , 144. (16)

We used definitions (15) to define the regions 1-6 Time Product Dummy price levels P rt
TPD for

r = 1, . . . , 6 and t = 1, . . . , 24 as follows:

P 1,m
TPD ≡ π∗

t ;P 2,m
TPD ≡ π∗

t+24; . . . ;P
6,m
TPD ≡ π∗

t+120; m = 1, . . . , 24. (17)

These indexes are listed in Table 2 of the Appendix. They are stacked into the single index
P t

TPD of dimension 144 which is plotted on Chart 2 below. The stacked GEKS price index
P t

GEKS is also plotted on Chart 2 for comparison purposes.

If expenditure information is available, then it is possible to use the above hedonic regression
results to decompose period t expenditure et into price and quantity components in an alter-
native way. For products n that were purchased in at least one region-month, we have nonzero
estimates for the logarithms of the quality adjustment parameters, which we denote by β∗

n. For
these products, define the corresponding quality adjustment parameter α∗

n ≡ exp[β∗
n]. Define

α∗ as the resulting vector of the α∗
n, α∗ ≡ [α∗

1, . . . , α
∗
80]. Define the period t alternative price

and quantity levels, P t∗∗ and Qt∗∗ as follows:

Qt∗∗ ≡ α∗ · qt;P t∗∗ ≡ et/Qt∗∗ ; t = 1, . . . , 144. (18)

If the fit in the regressions defined by (10) or (11) is perfect, then the two sets of aggregate
price and quantity levels will coincide.*17

An advantage of the unweighted (or more properly, the equally weighted) TPD price indexes
defined by (15) is that they can be constructed using just price information on the purchased

*16 The estimating equations (10) for the parameters πt and αn could be written as ptn = πtαn +εtn for t =
1, . . . , 144 and n ∈ S(t) where the εtn are error terms. Then the following equations are the counterparts
to equations (14) that take the error terms into account: et = πt(

∑

n∈S(t)αnqtn) + εt = πtα · qt + εt

where εt ≡ (
∑

n∈S(t)εtnqtn) for t = 1, . . . , 144. We want to decompose period t expenditure et into

P tQt where P t represents the period t aggregate price level and Qt represents the aggregate quantity
level. It is natural that we set P t ≡ πt and Qt ≡ α · qt but then the resulting product, P tQt will not
equal actual expenditure on the products, et, if εt ̸= 0. Thus if we choose P t ≡ πt, then choose the
companion Qt = et/P t. If we choose Qt ≡ α · qt, then we choose the companion P t = et/Qt. This
ensures that no value disappears or is created by the aggregation process; i.e., P t and Qt satisfy the
Product Test for levels: P tQt = et.

*17 Use the estimates α∗
n and π∗

t to define the error terms etn ≡ ptn − π∗
t α∗

n for t = 1, . . . , 144; n ∈ S(t). If

the period t error terms etn sum to zero, so that
∑

n∈S(t)etn = 0, then it can be shown that P t∗∗ = P t∗

and Qt∗∗ = Qt∗ .
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rice products. But this is also a disadvantage of these estimates because products with low
volumes of sales should not get the same weight in the regression as highly popular prod-
ucts. For discussions on the benefits and costs of alternative weighting methods, see Diewert
(2004)[20] (2023)[25].

The weighting method that we considered in this paper is defined by the following Weighted
Time Product Dummy Least Squares estimation model that is a weighted counterpart to the
TPD model defined by the least squares minimization problem defined by (13) above:

minρ′s β′s{
∑144

t=1

∑

n∈S(t)stn[ln ptn − ρt − βn]2} (19)

where stn ≡ ptnqtn/pt · qt is the expenditure share of product n in period t.

We still require a normalization like ρ1 = 0 to get a unique solution to the least squares
minimization problem defined by (19).

To compute the solution to (19), we used the following weighted version of the linear regression
equations (11):

[stn]1/2 ln ptn ≈ [stn]1/2[ρt + βn]; t = 1, . . . , 144;n ∈ S(t). (20)

Once the linear regression defined by (20) was run, we exponentiated the estimated ρ∗t to
define the π∗

t ≡ exp[ρ∗t ] and then used definitions (15) and (18) to define the Weighted Time
Dummy Product price levels P t

WTPD for t = 1, . . . , 144 and to define the regional price indexes,

P 1,m
WTPD - P 6,m

WTPD for m = 1, . . . , 24. These indexes are listed in Table 2 in the Appendix and
the stacked indexes P t

WTPD for t = 1, . . . , 144 are plotted on Chart 2 below.

The Weighted Time Product Dummy price levels P t
WTPD were defined directly by using the

exponentials of the estimates for the price levels, the π∗
t , and then the companion period t

quantity levels were defined implicitly by definitions (16), Qt∗ ≡ et/π∗
t for t = 1, . . . , 144. But

as indicated above, it is possible to use the exponentials of the estimated quality adjustment
parameters, the β∗

n for n = 1, . . . , N . For these products, define the corresponding quality
adjustment parameter α∗

n ≡ exp[β∗
n]. Define α∗ as the resulting vector of the α∗

n, α∗ ≡
[α∗

1, . . . , α
∗
80]. Now use definitions (18) to define the period t quantity levels directly as Qt∗∗ ≡

α∗ · qt and the corresponding period t price levels indirectly as P t∗∗ ≡ et/Qt∗∗ for t =
1, . . . , 144.*18 Again, if the fit in the linear regression (20) is perfect, the direct and indirect
estimates will coincide. The advantage of the indirect estimation procedure is that the resulting
quantity levels, Qt∗∗ , will satisfy the strong identity test ; i.e., if qt = qτ , then Qt∗∗ = Qτ∗∗

.
The regional Implicit Weighted Time Product Dummy price levels P rm

IWTPD are defined using

the P t∗∗ divided by P 25∗∗

, the Tokyo Implicit price level for month 1:

P 1,m
IWTPD ≡ Pm∗∗

/P 25∗∗

;P 2,m
IWTPD ≡ Pm+24∗∗

/P 25∗∗

; . . . ;P 6,m
IWTPD ≡Pm+120∗∗

/P 25∗∗

;

m = 1, . . . , 24. (21)

These regional indexes are listed in Table 2 in the Appendix and they are stacked into the
index P t

IWTPD which is plotted on Chart 2 below.*19

*18 The two methods for constructing price and quantity levels from a hedonic regression was discussed by
de Haan and Krsinich (2018; 766)[15] who showed that before normalization that the Implicit WTPD
price levels are equal or less than the corresponding (Direct) WTPD price levels. These authors called
a price level of the form et/α · qt a quality adjusted unit value price level.

*19 Use the estimates α∗
n and π∗

t to define the error terms etn ≡ ptn − π∗
t α∗

n for t = 1, . . . , 144; n ∈ S(t). If

the period t error terms etn sum to zero, so that
∑

n∈S(t)etn = 0, then it can be shown that P t∗∗ = P t∗

and Qt∗∗ = Qt∗ .
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Chart 2 Unweighted, Weighted and Implicit Weighted Time Product Dummy Price Indexes

It can be seen that the (unweighted) Time Product Dummy indexes P t
TPD are not close to the

more appropriate weighted indexes, P t
WTPD, P t

IWTPD and P t
GEKS, particularly for Prefectures

3-6 (observations 49-144). In particular, P t
TPD for Tottori (observations 73-96) is far below

the other 3 indexes. Indexes that are not weighted by economic importance can be unreliable.

The GEKS indexes, P t
GEKS, are more volatile than the two Weighted TPD indexes, P t

WTPD

and P t
IWTPD, which are very close and cannot be distinguished from each other on the Chart.

In particular, the GEKS indexes are below the two Weighted Time Product Dummy indexes
for the smaller Prefectures (observations 73-144).

In the following section, we introduce another multilateral index that is consistent with pur-
chasers having linear preferences. This alternative index does not require econometric estima-
tion.

5 Geary Khamis Multilateral Indexes

The GK multilateral method was introduced by Geary (1958)[41] in the context of making
international comparisons of prices. Khamis (1970)[53] showed that the equations that define
the method have a positive solution under certain conditions. A modification of this method
has been adapted to the time series context and is being used to construct some components
of the Dutch CPI; see Chessa (2016)[9]. The GK index was the multilateral index chosen by
the Dutch to avoid the chain drift problem for the segments of their CPI that use scanner
data.

Recall that S(t) was the set of products n that were purchased in region-month t. Define
S∗(n) as the set of periods t where product n was sold. As was the case for the Time Product
Dummy multilateral system of price and quantity levels, the equations which define the GK
price and quantity levels involve 144 price levels πt and 80 quality adjustment parameters αn

(recall equations (10) above). Define the vector q as the sum of the 144 observed quantity
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vectors qt for each region-month t:
q ≡

∑144
t=1q

t. (22)

The equations which determine the GK price levels π1, . . . , π144 and quality adjustment factors

α1, ..., α80 (up to a scalar multiple) are the following ones:

αn =
∑

t∈S∗(n)[qtn/qn][ptn/πt] =
∑80

n=1[1/qn][ptnqtn][1/πt]; n = 1, ..., 80; (23)

πt = pt · qt/α · qt = et/α · qt; t = 1, ..., 144 (24)

where α ≡ [α1, ..., αN ] is the vector of GK quality adjustment factors and et ≡ pt · qt is
region-period t expenditure on the 80 rice products. Once a solution α and π1, . . . , π144 to
equations (23) and (24) has been found, the period t price levels P t can be set equal to the
corresponding πt and the period t quantity levels are defined as follows:

Qt ≡ α · qt; t = 1, . . . , 144. (25)

It can be seen that if a solution to equations (23) and (24) exists, then if all of the period price
levels πt are multiplied by a positive scalar λ say and all of the quality adjustment factors
αn are divided by the same λ, then another solution to (23) and (24) is obtained. Hence,
the αn and πt are only determined up to a scalar multiple and an additional normalization is
required such as π1 = 1 or α1 = 1 is required to determine a unique solution to the system
of equations defined by (23) and (24). The GK price and quantity levels have some good
axiomatic properties including invariance to changes in the units of measurement.*20

A traditional method for obtaining a solution to (23) and (24) is to iterate between these
equations. Thus set α = 180, a vector of ones, and use equations (24) to obtain an initial
sequence for the πt. Substitute these πt estimates into equations (23) and obtain αn estimates.
Substitute these αn estimates into equations (24) and obtain a new sequence of πt estimates.
Continue iterating between the two systems until convergence is achieved.

Alternative methods are more efficient. Following Diewert (1999; 26)[19] and Diewert and Fox
(2017; 31-32)[29], substitute equations (24) into equations (23) and after some simplification,
obtain the following system of equations that will determine the components of the α vector
(up to a scalar multiplicative factor):

[IN − C]α = 0N (26)

where IN is the N by N identity matrix where N = 80, 0N is a vector of zeros of dimension
N and the C matrix is defined as follows:

C ≡ q̂−1∑T
t=1s

tqtT (27)

where q̂ is an N by N diagonal matrix with the elements of the vector of total purchases q

running down the main diagonal and q̂−1 denotes the inverse of this matrix, st is the period
t expenditure share column vector, qt is the column vector of quantities purchased during
period t and qtT is the transpose of qt.

The matrix IN −C is singular which implies that the N equations in (26) are not all indepen-
dent. In particular, if the first N − 1 equations in (26) are satisfied, then the last equation in
(26) will also be satisfied. It can also be seen that the N equations in (26) are homogeneous
of degree one in the components of the vector α. Thus to obtain a unique solution to (26),

*20 See Diewert (2023)[25] on the test properties of various multilateral indexes.
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set αN equal to 1, drop the last equation in (26) and solve the remaining N − 1 equations
for α1, α2, ..., αN−1. Once the αn are known, equations (24) can be used to determine the
GK price levels, πt = pt · qt/α · qt for t = 1, ..., 144. This is the efficient procedure that was
suggested and used by Diewert and Fox (2021)[30].

In the present study, we used another method to find a solution to equations (26) which also
proved to be efficient. It can be seen that the matrix C has nonnegative elements. Hence
under weak regularity conditions, C has a maximum positive eigenvalue (which can be shown
to equal 1) and the associated eigenvector has strictly positive elements.*21 It was easy to form
the matrix C using our data and Shazam’s eigenvalue-eigenvector operator quickly generated
the maximum eigenvalue (which of course equalled one) and the associated strictly positive
eigenvector, which we denote by α∗. With α∗ in hand, we calculated the 144 region-month
quantity levels, Qt∗

GK ≡ α∗ ·qt and the associated price levels P t∗

GK = et/Qt∗

GK for t = 1, . . . , 144.

These preliminary GK price levels P t∗

GK were divided by P 25∗

GK (the preliminary GK price level
for Tokyo in month 1) to obtain our 6 GK Prefecture price indexes, P 1

GK, P 2
GK, . . . , P 6

GK. The
components of these vectors of dimension 24, P r,m

GK , are defined in two stages in the usual way:

P t
GK ≡ P t∗

GK/P 25∗

GK ; t = 1, . . . , 144; (28)

P 1,m
GK ≡ P t

GK;P 2,m
GK ≡ P t+24

GK ; . . . ;P 6,m
GK ≡ P t+120

GK ; t = 1, . . . , 24. (29)

The GK Prefecture price indexes, P 1
GK, P 2

GK, . . . , P 6
GK, are listed in Table 3 in Appendix. They

are stacked and plotted on Chart 3 in section 7 below.

We conclude this section by noting that the GK indexes defined by (23)-(25) are exact for
linear preferences (products are perfect substitutes) and for Leontief preferences (products are
not substitutable at all). The first result is obvious from definition (25), i.e., utility in period t,
ut, is defined to be equal to the aggregate quantity Qt ≡ α ·qt for t = 1, . . . , T where T is equal
to 144 in our empirical work. The second result was established by Diewert (1999; 58-60)[19]
but his proof is quite complicated. It is possible to establish that the GK indexes are exactly
consistent with all purchasers having Leontief preferences by using the simple proof below.

Consider the case where there are N products and T observations. Assume that the period t
price and quantity vectors, pt and qt for t = 1, . . . , T are consistent with purchasers of the N
products all having Leontief preferences. If we have Leontief preferences, then every product
that is purchased in one period must be purchased in all periods.*22 This means that there
exists an N dimensional vector of positive constants, β, which has components β1, ..., βN ,
utility levels Q1, . . . , QT and unit cost price levels πt such that the following equations are
satisfied:

qt = βQt; t = 1, . . . , T ; (30)

πt = β · pt; t = 1, . . . , T. (31)

Denote D(qt) as the diagonal matrix with the elements of qt on the main diagonal. With all
products being positive in this case, equations (23)-(25) become the following equations:

α = [
∑T

t=1D(qt)]−1[
∑T

t=1D(qt)pt/πt]; (32)

πt = pt · qt/α · qt; t = 1, . . . , T ; (33)

Qt ≡ α · qt; t = 1, . . . , T. (34)

*21 This result is due to Frobenius (1912)[39]; see Gantmacher (1959)[40] for a proof of this result and a
discussion of the regularity conditions on C which ensure the result.

*22 Thus Leontief preferences are not consistent with missing prices or product churn.
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Substitute equations (30) and (31) into equations (32) and we obtain the following vector
equation:

α = [
∑T

t=1D(qt)]−1[
∑T

t=1D(qt)pt/πt]

= [
∑T

t=1D(β)Qt]−1[
∑T

t=1D(β)Qtpt/β · pt]

= [
∑T

t=1Q
t]−1[D(β)]−1[D(β)][

∑T
t=1Q

tpt/β · pt]

= [
∑T

t=1Q
t]−1[

∑T
t=1Q

tpt/β · pt]. (35)

Thus the vector α is well defined by (35), given that we know the variables that appear in
(30) and (31). Take the inner product of both sides of equations (35) with qr for r = 1, . . . , T .
Using equations (30), we obtain the following T equations:

α · βQr = [
∑T

t=1Q
t]−1[

∑T
t=1Q

tpt/β · pt] ·β Qr; r = 1, . . . , T ;

= [
∑T

t=1Q
t]−1[

∑T
t=1Q

tpt · β/β · pt]Qr

= [
∑T

t=1Q
t]−1[

∑T
t=1Q

t]Qr

= Qr. (36)

Now normalize the αn defined by (35) so that they satisfy the following constraint:

α · β = 1. (37)

The resulting GK indexes defined by (32)-(34) are exact for Leontief preferences.*23

In the following sections, we will turn our attention to indexes that are based on the economet-
ric estimation of purchaser preferences. In the section that follows immediately, we explain
why it is difficult to estimate dual representations of purchaser preferences when there are
new and disappearing products.

6 The Estimation of Systems of Inverse Demand Functions

Traditional consumer demand theory in the case of homothetic or linearly homogeneous pref-
erences works as follows:*24 assume a once differentiable functional form for the household
unit cost function c(p) (which is dual to the household linearly homogeneous utility function
f(q)*25). Assume that in period t, all households have the same preferences and face the
vector of period t prices pt. Suppose each household maximizes utility subject to a budget
constraint. Let qt be the observed vector of total purchases of the N products in scope and
further assume that qt is strictly positive. Let et > 0 be observed period t total expenditure
on the products in scope. Then it can be shown that qt,pt and et satisfy the following system
of consumer demand functions:

qt = et∇c(pt)/c(pt); t = 1, . . . , T (38)

*23 In our present context, Leontief preferences are not relevant since they imply that positive amounts of
all products are purchased in all periods where the preferences of purchasers do not change.

*24 See Diewert (1974)[17]. The materials in this section are drawn from Diewert (2024)[26].
*25 We assume that f(q) is a linearly homogeneous function so that the resulting price index is independent

of the scale of the quantity vectors qt. We think that this is a reasonable assumption at the first stage of
aggregation. It would be difficult for statistical agencies to produce price indexes that were conditional
on the scale of purchaser demands.
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where ∇c(pt) is the vector of first order partial derivatives of the unit cost function evaluated
at pt.

However, if there are missing products in one or more periods in the sample period then there
are problems with the above traditional consumer demand methodology. Suppose product n
is not purchased in period t so that qtn = 0. Then the nth component in equations (38) for
period t becomes:

qtn = 0 = et[∂c(pt1, . . . , ptn, . . . , ptN )/∂pn]/c(pt1, . . . , ptn, . . . , ptN ). (39)

The problem is that we cannot observe the price of product n in period t, ptn. Conceptually,
it is the Hicksian reservation price*26 which is just high enough to deter households from
purchasing the product. Thus for every missing product in the sample of periods, we need to
estimate an unknown reservation price in order to apply traditional consumer demand theory.
This is not workable in practice.*27 Hausman (1996)[45] (1999)[46] used variants of this cost
function methodology to estimate reservation prices but it is not known how he solved this
estimation problem.

We turn to the estimation of the utility function, f(q), instead of estimating the dual unit
cost function. When we make this switch, it turns out that we get a “practical” system of
estimating equations.

The inverse demand function estimation methodology starts with the assumption that the
observed period t quantity vector qt is a solution to the following period t utility maximization
problem:

maxq{f(q) : pt · q = et; q ≥ 0N}; t = 1, . . . , T. (40)

Assuming that the linearly homogeneous function f is differentiable, the first order conditions
for the observed qt to solve the period t purchaser utility maximization problem are the
following conditions:

∇f(qt) = λtp
t; t = 1, . . . , T ; (41)

pt · qt = et; t = 1, . . . , T. (42)

Take the inner product of both sides of (41) with qt and solve the resulting equation for the
Lagrange multiplier λt. We find that

λt = qt · ∇f(qt)/et t = 1, . . . , T

= f(qt)/et (43)

where the second line in (43) follows from Euler’s Theorem on homogeneous functions which
(using our assumption that f(q) is linearly homogeneous in q) implies that f(qt) = qt ·

∇f(qt) =
∑N

n=1 qtn∂f(qt)/∂qn for t = 1, . . . , T . Substitute λt defined by (43) into equations
(41) and after a bit of rearrangement, we obtain the following system of estimating equations:

pt = et∇f(qt)/f(qt); t = 1, . . . , T. (44)

The above equations assume that all products were purchased in each period t. However,
equations (44) can be generalized to deal with the case of missing products. When product n

*26 See Hicks (1940; 140)[47] on the concept of a reservation price.
*27 It is workable if the functional form for the unit cost function is a CES (Constant Elasticity of Substitu-

tion) function because the reservation prices are known (and equal plus infinity); see Feenstra (1994)[35].
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is missing in period t, we simply set qtn equal to 0 and drop product n from the utility max-
imization problem defined by (40). This leads to the smaller system of estimating equations
defined by (45):*28

ptn = et[∂f(qt)/∂qn]/f(qt); t = 1, . . . , T ;n ∈ S(t). (45)

Equations (45) define a system of inverse demand functions. We could assume a suitable
functional form for the utility function f(q), add error terms of the right hand sides of these
equations and use the resulting system of equations as estimating equations to determine the
unknown parameters that characterize the function f(q).*29 We also require a normalization
on the parameters that define f(q) in order to obtain a unique function.

It is usual in estimating systems of consumer demand equations to assume no missing prices
and also to assume that the errors in the N equations pertaining to a single period are cor-
related so that a variance covariance matrix with N(N + 1)/2 unknown parameters is also
estimated. In our present context where we have 80 products, this strategy becomes unwork-
able. One strategy to solve this problem is to stack the estimating equations into a single
estimating equation with only one variance parameter to deal with. However, this problem
runs into a difficulty for National Statistical Offices: in general, the resulting parameter esti-
mates are not invariant to the units in which we measure the products.*30 Thus the resulting
price and quantity indexes will also not be invariant to changes in the units of measurement.
A solution to these problems is to switch from prices as the dependent variables to expenditure
shares. Thus multiply both sides of equation tn in equations (45) by qtn and divide by period
t expenditure et. This leads to the nth expenditure share in period t, stn, as the dependent
variable. These operations lead to the following system of inverse demand share estimating

equations where etn is an error term:*31

stn = qtn[∂f(qt)/∂qn]/f(qt) + etn; t = 1, . . . , T ;n ∈ S(t). (46)

When product n in period t is not available, stn = qtn = 0 so equations (46) are valid for
t = 1, . . . , T and n = 1, . . . , N . However, note that the error term etn is equal to 0 when
qtn = 0. We stacked the resulting augmented equations (46) into a single estimating equation.
In particular, rather than specifying an explicit error structure for equations (46), we assumed
that the unknown parameters which characterize the chosen utility function f(q) are estimated
by solving the nonlinear least squares minimization problem (47) below with respect to the
choice of these parameters:*32

minparameters of f(q)

∑T
t=1

∑N
n=1{stn − [qtnfn(qt))/f(qt)]}2 (47)

*28 For products n which are missing in period t, we can use the equation p∗tn ≡ et[∂f(qt)/∂qn]/f(qt),
n /∈ S(t), to define the Hicksian reservation price p∗tn for that product.

*29 Equations (45) are equivalent to the equations fn(qt)/ptn = f(qt)/et ≡ µt for n ∈ S(t) and t =
1, . . . , 144. When we add error terms to these equations, these equations tell us that in each period t,
the marginal utility of a product divided by its price should be approximately equal to the same number
µt, which turns out to equal f(qt)/et which in turn is equal to 1/P t, where P t is the aggregate price
level for period t. Thus equations (45) are equations which fall out of the period t utility maximization
problem. If the error terms are nonzero and large in magnitude, then this tells us that the assumption
of approximate utility maximizing behaviour on the part of purchasers is probably not a good one.

*30 For our particular application to rice products, this was not a problem since the package size was held
constant across rice products.

*31 Note that the right hand side of equation tn in equations (46) is an elasticity and so it should be invariant
to changes in the units of measurement. The left hand side of equation tn in (46) is an expenditure share
which is also invariant to changes in the units of measurement.

*32 Our estimating method is not perfect from an econometric perspective since we have included observa-
tions in the minimization problem defined by (50) where qtn = stn = 0. We have also neglected the
fact that the shares stn sum to 0 in each region-period t; i.e., our estimation procedure does not take

17



where fn(qt) ≡ ∂f(qt)/∂qn. A normalization on the parameters which characterize f(q) is
also required in order to obtain unique parameter estimates.

Once the unknown parameters characterizing f(q) have been estimated, we can calculate
period t aggregate quantities Qt and the corresponding price levels P t using the following
definitions:

Qt ≡ f(qt);P t ≡ et/f(qt); t = 1, . . . , T. (48)

Note that the resulting quantity levels Qt will satisfy the strong identity test for quantities:
if qr = qt, then f(qr) = f(qt), and hence Qr = Qt.*33

The bottom line is this: it is virtually impossible to estimate systems of direct consumer
demand functions when there are missing prices but it is reasonably straightforward to estimate
systems of inverse demand functions. It is possible to estimate the utility function directly
when there are missing prices but very difficult to estimate the corresponding dual unit cost
function.

In the following three sections, we will work through the algebra presented in this section for
three specific functional forms for f(q).

7 The Econometric Estimation of Linear Preferences

Our first example of the methodology explained in the previous section is the case where the
utility function is a homogeneous linear function of the quantities consumed. Thus we assume
that f(q,α) has the following functional form:

f(q,α) ≡
∑N

n=1αnqn = α · q. (49)

The least squares minimization problem (49) becomes the following problem:

minα′s

∑T
t=1

∑N
n=1{stn − [qtnαn/α · qt]}2. (50)

If α∗ ≡ [α∗
1, . . . , α

∗
N ] is a solution to (50), then it can be seen that λα∗ is also a solution to

(50) where λ is any positive number. This non-uniqueness always occur when we attempt to
estimate utility functions. The scale of utility is arbitrary so we need to impose at least one
normalization on the estimated parameters in order to obtain a cardinal measure of utility.

There is another possible problem with the minimization problem defined by (50): it can be
the case that there is no solution to (50). For example, suppose that there are only 2 periods
and 2 products in scope. Suppose further that product 1 is only available in period 1 and
product 2 is only available in period 2. In this case, there are only 2 independent estimating
equations for the nonlinear minimization problem defined by (50):

1 = α1q11/(α1q11 + α20) = 1; (51)

1 = α2q22/(α10 + α2q22) = 1. (52)

into account the fact that
∑80

n=1 stn = 0 for t = 1, . . . , 144. However, it is convenient to work with the
class minimization problems defined by (50) for specific functional forms for f(q) because it enables us
to deduce axiomatic properties of the resulting price and quantity indexes; i.e., see Diewert (2005)[21]
(2023)[25].

*33 The corresponding period t price level P t regarded as a function of pt will be linearly homogeneous in
the components of pt.
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It can be seen that it is not possible to obtain estimates for the quality adjustment parameters
α1 and α2 in this situation. We need some product overlap between the periods in order to
obtain solutions to (50).

In order to solve the problems of non-uniqueness and non-existence in general, we assume that
there is a product that is present in all 144 periods and we assume that each product in scope
is purchased in at least one period. In our rice products data set, there were 11 products that
were present in all 144 region-months. Product 4 was the lowest number product that was
present in all periods so we set α4 = 1.

We used the nonlinear regression option in Shazam (see White (2004)[69]) to solve (50) with
α4 = 1. The program ran for 87 iterations and took 80.6 seconds to converge. The R2 between
observed and predicted prices was 0.9964. The final loglikelihood was 56774.19. All of the
estimated αn turned out to be positive (and reasonable). Note that the R2 for the Weighted
Time Product Dummy Model (another linear preferences model) was 0.9941. Denote the
estimated αn by α∗

n except define α∗
4 ≡ 1. Define the vector α∗ ≡ [α∗

1, . . . , α
∗
80] and define

preliminary quantity and price levels, Qt∗ and P t∗ for period t (a region-month), as follows:

Qt∗ ≡ α∗ · qt;P t∗ ≡ et/Qt∗ ; t = 1, . . . , 144. (53)

Normalize the sequence of price levels P t∗ into the series P t∗∗ which is such that the normalized
sequence of price levels equals 1 for t = 25 (month 1 for Tokyo):

P t∗∗ ≡ P t∗/P 25∗

; t = 1, . . . , 144. (54)

Finally define the econometric linear utility price levels for regions 1-6 for m = 1, . . . , 24 as
follows:

P 1,m
LU ≡ Pm∗∗

;P 2,m
LU ≡ P (24+m)∗∗ ;P 3,m

LU ≡ P (48+m)∗∗ ;P 4,m
LU ≡ P (72+m)∗∗ ;P 5,m

LU ≡ P (96+m)∗∗ ;

P 6,m
LU ≡ P (120+m)∗∗ . (55)

The regional Linear Utility Price indexes, P 1
LU-P 6

LU are listed in Table 4 of the Appendix.
These indexes were stacked into the index P t

LU which is plotted on Chart 3 below.

The Linear Preferences price indexes, P t
LU, are generally higher than the other indexes and

very much higher for the smaller population Prefectures, which are Tottori (observations 73-
96), Kochi (observations 97-120) and Kagoshima (observations 121-144). The Geary Khamis
indexes, P t

GK, tended to be lower than the other indexes, particularly for the smaller popu-
lation Prefectures. All four indexes were very close to each other for the highest population
Prefecture, Tokyo (observations 25-48). The Implicit Weighted Time Product Dummy in-
dexes, P t

IWTPD, and the GEKS indexes, P t
GEKS, were generally in the middle and fairly close

to each other. It is interesting that the first 3 indexes are all consistent with linear preferences
but they turned out to be quite different for our particular data set. What is striking is the fact
that price levels in the 3 lowest population Prefectures (Tottori, Kochi and Kagoshima) were
generally much higher than price levels in the first 3 higher population Prefectures (Hokkaido,
Tokyo and Kyoto). These differences indicate that there may be a problem in using national
price indexes in order to deflate consumer expenditures into real consumption aggregates since
national Consumer Price Indexes do not take differing interregional price levels into account
in their construction. Thus poverty measures and measures of national real consumption may
be inaccurate to a significant degree.

Could these Linear Utility Price indexes that are based on the estimation of a linear utility
function be acceptable to National Statistical Offices? It seems that they might be acceptable
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Chart 3 Geary Khamis, Linear Preferences,Implicit Weighted TPD and GEKS Price Indexes

since NSOs are already estimating linear preferences when they use Geary (1958)[41] Khamis
(1970)[53] multilateral indexes to construct portions of their CPIs. Many offices also use
hedonic time dummy regression models to quality adjust products that quickly appear and
then disappear. As we have seen in section 5 above, hedonic regression models that use time
dummy variables are also based on the (implicit) assumption of linear preferences.

8 The Estimation of CES Preferences

Our second example of the methodology explained in section 6 is the case where the utility
function is a CES (Constant Elasticity of Substitution) function, f(q) defined as follows in
the case of N products:*34

f(q) ≡ [
∑N

n=1αn(qn)k]1/k (56)

where the αn are positive parameters and the parameter k satisfies the following inequalities:

0 < k ≤ 1.*35 (57)

Note that if the parameter k equals 1, then the CES utility function defined by (56) becomes
the linear utility function that was discussed in the previous section.

Recall from section 6 that the observed period t vector qt solves the period t utility maxi-
mization problem if ptn = et[∂f(qt)/∂qn]/f(qt) for all n ∈ S(t). If we multiply both sides of

*34 In the mathematics literature, if the αn sum to one, this aggregator function or utility function is known
as a power mean or a mean of order k; see Hardy, Littlewood and Pólya (1934; 12-13)[44]. This functional
form was popularized by Arrow, Chenery, Minhas and Solow (1961)[1] in the context of production theory.
For more on estimating CES utility functions, see Balk (1999)[6], Melser (2006)[56], Diewert (2020a)[23]
(2020b)[24] and de Haan and Krsinich (2024)[16].

*35 We require that k ≤ 1 to ensure that the utility function is concave in the components of q and we
require that k > 0 in order to ensure that the utility function is well defined if any component of the qt

vector happens to be equal to 0. The restrictions 0 < k < 1 are also required in order to apply Feenstra’s
(1994)[35] methodology for measuring the welfare effects of increased (or decreased) product choice.
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equation n by qtn, then these first order necessary conditions become the following estimating
equations:

stn = ptnqtn/et = qtn[∂f(qt)/∂qn]/f(qt) = α n(qtn)k/
∑

i∈S(t)αi(qti)
k;

t = 1, . . . , T ;n ∈ S(t). (58)

If qtn = 0, then stn = 0. Thus the equations (58) can be replaced with the following equations:

stn = α n(qtn)k/
∑N

i=1αi(qti)
k; t = 1, . . . , T ;n = 1, . . . , N. (59)

In our particular case, N = 80 and T = 144. We obtained estimates for the CES utility
function by solving the following nonlinear least squares minimization problem:

minα′s

∑144
t=1

∑80
n=1{stn − [α n(qtn)k/

∑N
i=1αi(qti)

k]}2. (60)

Note that if qtn = 0, then both stn and α n(qtn)k equal zero. If α∗ ≡ [α∗
1, . . . , α

∗
N ] and k is a

solution to (60), then it can be seen that λα∗ and k is also a solution to (60) where λ is any
positive number. Thus we imposed the normalization α4 = 1 because product 4 was the first
product on our list of products that was present in all 144 region-periods.

We used the nonlinear regression option in Shazam (see White (2004)[69]) to solve (60) with
α4 set equal to 1. The starting values for the unknown α n were the final estimated coefficients
from the linear model estimated in the previous section. Our starting value for the parameter
k was 1. The starting log likelihood for the present nonlinear regression defined by (60) was
almost equal to the final log likelihood for the linear model,*36 which is a good check on our
estimating code. The program ran for 91 iterations and took 8.6 minutes to converge. The
R2 between observed and predicted prices was 0.9967. The final log likelihood was 57333.19,
a gain of 559.00 over the linear preferences log likelihood for adding 1 parameter. All of the
estimated α n turned out to be positive. Recall that the R2 for the linear preferences model
was 0.9964. The estimated k was k∗ = 0.95668 with an estimated standard error equal to
0.00125. The corresponding elasticity of substitution σ∗ was equal to:*37

σ∗ ≡ 1/(1 − k∗) = 23.086. (61)

Denote the estimated α n by α ∗
n and define α∗

4 ≡ 1. Define the vector α∗ ≡ [α∗
1, . . . , α

∗
80] and

define preliminary CES quantity and price levels, Qt∗ and P t∗ for period t (a region-month),
as follows:

Qt∗ ≡ [
∑N

n=1α
∗
n(qtn)k∗

]1/k∗

;P t∗ ≡ et/Qt∗ ; t = 1, . . . , 144. (62)

*36 The final log likelihood for the linear model was 56774.19; the starting likelihood for the CES model was
56773.57.

*37 For the definition of the elasticity of substitution and derivation of the formula (61), see Diewert(2020a;
31-37)[23]. Our estimated elasticity of substitution is high compared to many estimates in the literature.
The reason for this is that we estimated the CES utility function directly (and the companion unit costs
indirectly) whereas most of the literature estimates the dual CES unit cost function. The CES unit
cost function is only one parameter away from the linear cost function which is dual to a Leontief (no
substitution) utility function. The CES utility function is only one parameter away from a linear utility
function. At the first level of aggregation, a linear utility function is more likely to provide a much better
approximation to preferences than a linear unit cost function. For our particular data set, the CES
direct utility function model fit the data much better than the corresponding CES unit cost function as
we shall see. If there were no errors in fit in either model, we would get the same result but of course,
neither model fits the data perfectly.
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Note that the P t∗ are defined indirectly using the product test, P t∗Qt∗ = et. Normalize the
sequence of price levels P t∗ into the series P t

CES which is such that the normalized sequence
of price levels equals 1 for t = 25 (month 1 for Tokyo):

P t
CES ≡ P t∗/P 25∗

; t = 1, . . . , 144. (63)

Finally define the econometric CES utility function price levels for regions 1-6 as follows:

P 1,m
CES ≡ Pm

CES;P 2,m
CES ≡ P

(24+m)
CES ;P 3,m

CES ≡ P
(48+m)
CES ;

P 4,m
CES ≡ P

(72+m)
CES ;P 5,m

CES ≡ P
(96+m)
CES ;P 6,m

CES ≡ P
(120+m)
CES ; m = 1, . . . , 24. (64)

The CES indexes, P t
CES, are plotted on Chart 4 below and the regional CES indexes P 1,m

CES -

P 6,m
CES are listed in Table 5 in the Appendix.

Our CES price indexes P t
CES were defined indirectly using the estimated utility levels to

deflate actual expenditure levels into aggregate price levels. There is another indirect method
that could be used to define CES price levels given that we have estimated the CES utility
function: we could use the estimated utility function to solve the following period t unit cost
minimization problem for each period t:

minq{
∑

n∈S(t)ptnqn : f(q1, q2, . . . , q80) ≥ 1; qn = 0 if n /∈ S(t)} = c(pt);

t = 1, . . . , 144. (65)

Suppose for the moment that there are no missing products for the period t cost minimization

problem defined by (65) and our f(q) is defined by (62); i.e., f(q) ≡ [
∑N

n=1α
∗
n(qn)k∗

]1/k∗

.
Then it can be shown that the CES unit cost function has the following functional form:*38

c(pt) = [
∑N

n=1β
∗
n(ptn)κ∗

]1/κ∗

(66)

where the parameters β∗
n and κ∗ are defined as follows:

β∗
n ≡ (α∗

n)1/(1−k∗) for n = 1, ..., 80 and κ∗ ≡ −k∗/(1 − k∗) = −22.0856.*39 (67)

In order to deal with the case where some products are not available in period t, Feenstra
(1994)[35] assumed that the parameter κ∗ which appears in definition (66) satisfies κ∗ < 0.
This allowed Feenstra to set the reservation prices for the missing products equal to +∞ and
thus when κ∗ < 0, an infinite price ptn raised to a negative power generates a zero; i.e., if
product n is unavailable in period t, then (ptn)κ∗

= 1/(+∞)|κ
∗| = 0. Thus with infinite

reservation prices for missing products, period t unit cost is equal to:

c(pt) = [
∑N

n=1β
∗
n(ptn)κ∗

]1/κ∗

= [
∑

n∈S(t)β
∗
n(ptn)κ∗

]1/κ∗

≡ P t∗ ; t = 1, . . . , 144 (68)

where the β∗
n and κ∗ are defined by (67). Normalize the resulting period t unit costs P t∗

into the following Alternative CES price levels, P t
ACES = P t∗/P 25∗

for t = 1, . . . , 144. These
alternative indirectly derived CES price indexes are plotted on Chart 4 below. Counterparts
to definitions (64) are used to decompose P t

ACES into the 6 regional indexes, P 1,m
ACES – P 6,m

ACES,
which are listed in Table 5 in the Appendix. It should be noted that the use of the definitions
in (67) led to β∗

n that were tiny if α∗
n > 1 or β∗

n that were huge if α∗
n < 1. This in turn led

*38 See for example Diewert (2020a; 37)[23].
*39 Recall that our estimated k was k∗ = 0.95668.
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to estimated unit costs which exhibited excessive fluctuations; see Chart 4. This method for
forming CES price indexes is not recommended if the parameter κ∗ is large in magnitude or
if the elasticity of substitution σ ≡ 1 − κ∗ is large.

Our final CES set of regional price indexes is obtained by directly estimating the unit cost
function defined by (68).*40 Shephard’s Lemma can be used to obtain cost minimizing quan-
tities as functions of prices when preferences are represented by a differentiable unit cost
function.*41 Thus if preferences are represented by the CES utility function that is dual to
a CES unit cost function that is defined by (66) in the case of no missing products, then
qtn = Qt∂c(pt)/∂pn for n = 1, . . . , N . This approach can be generalized to the case of missing
products and it leads to the following system of estimating equations:

stn = βn(ptn)κ/
∑

j∈S(t)βj(ptj)
κ + etn; t = 1, . . . , 144;n ∈ S(t). (69)

It proved technically difficult to set up the nonlinear least squares minimization problem that
is associated with equations (69) so we used the following approach that is often used in the
literature: take logarithms of both sides of equations (69) for n ∈ S(t), subtract the resulting
logarithmic equation for product 4 in period t from the corresponding log stn equation and set
β4 = 1 (so that the logarithm of β4 equals 0). We obtain the following system of estimating
equations where αn ≡ ln(βn) for n = 1, . . . , 80 and etn is an error term:

ytn = αn + κxtn + etn; t = 1, . . . , 144;n ∈ S(t) (70)

where the etn are error terms, ytn ≡ ln stn−ln st4 and xtn ≡ ln ptn−ln pt4 for t = 1, . . . , 144;n ∈
S(t).

The parameters κ and αn for n = 1, . . . , 80 which appear in equations (70) were estimated
in a single stacked linear regression. The resulting R2 between observed and predicted was
only 0.7289. Recall that the R2 for the direct estimation of the CES utility function (using a
stacked regression) was 0.9967 and the R2 for the direct estimation of a linear utility function
was 0.9964. The sum of absolute errors for the present regression was 5285.3 whereas the sum
of absolute errors for the direct estimation of the CES utility function was 7.2587. This is a
very large difference in fit. Our new estimate for the parameter κ was κ∗ = −5.4994 with a
standard error equal to 0.1036. Thus our new estimate for the elasticity of substitution is:

σ∗ ≡ 1 − κ∗ = 6.4994. (71)

Recall that our earlier estimate for the elasticity of substitution was equal to 23.086. This is
a huge difference.

Denote the estimated αn by α∗
n and define α∗

4 ≡ 1. Define the vector α∗ ≡ [α∗
1, . . . , α

∗
80] and

define preliminary cost function based CES quantity and price levels, Qt∗ and P t∗ for period
t (a region-month), as follows:

P t∗ ≡ [
∑

n∈S(t)α
∗
n(ptn)κ∗

]1/κ∗

;Qt∗ ≡ et/P t∗ ; t = 1, . . . , 144. (72)

Note that the Qt∗ are defined indirectly using the product test, P t∗Qt∗ = et. Normalize the
sequence of cost function based price levels P t∗ into the series P t

CCES which is such that the

*40 There are many other methods that have appeared in the literature for estimating CES price indexes;
see for example Feenstra (1994)[35], Balk (1999)[6], Diewert and Feenstra (2017)[27] (2022)[28], Diewert
(2020a)[23] and de Haan and Krsinich (2024)[16].

*41 See Samuelson and Swamy (1974)[62] or Diewert (1974)[17] (1976)[18] for the details on how this dual
approach works.

23



normalized sequence of price levels equals 1 for t = 25 (month 1 for Tokyo):

P t
CCES ≡ P t∗/P 25∗

; t = 1, . . . , 144. (73)

Finally define the econometric Cost Function Based CES utility function price levels for regions

1-6 as P r,m
CCES using P t

CCES defined by (73) and an appropriate modification of definitions (64).
The Cost Based CES indexes, P t

CCES, are plotted on Chart 4 below and the regional CCES

indexes P 1,m
CCES - P 6,m

CCES are listed in Table 5 in the Appendix.

Chart 4 Alternative CES, GK, Linear Utility and Implicit Weighted TPD Price Indexes

The six alternative price indexes for Tottori (observations 73-96) are widely separated with
almost 30 percentage points difference between the highest and lowest index. The ordering
of the indexes from high to low for the Tottori observations is as follows. The cost function
based CES price index P t

CCES is highest, followed by the unit cost function price levels P t
ACES

that were obtained by using the estimated CES utility function parameters to solve for the
dual unit costs, followed by our first CES estimates for price levels P t

CES that were obtained
by deflating expenditures by CES utility levels, followed by the linear utility function price
levels P t

LU. The two lowest series were the Geary Khamis price indexes P t
GK and the Weighted

Implicit Time Product Dummy indexes P t
WITPD. For Prefectures 4-6, the GK Price indexes

tended to be lowest. It is clear that P t
ACES is not a suitable index due to its extreme volatility.

A linear utility function is likely to overstate substitution possibilities so it is not surprising
that the more flexible CES based price indexes, P t

CES and P t
CCES, are generally higher than the

linear utility function price indexes P t
LU. What is surprising is that the cost function based

CES indexes P t
CCES are so much higher than the utility function based CES price indexes

P t
CES. Since the utility function based indexes P t

CES fit the data so much better than the cost
function based indexes P t

CCES, the former indexes are preferred.

With estimates for the elasticity of substitution in hand, we can use Feenstra’s 1994 method-
ology to estimate the effects on welfare of different degrees of product availability across the
6 Prefectures. Suppose that the CES unit cost function for month m in region r is defined
as c(pr,m) ≡ [

∑

n∈S(r,m)αn(prmn)κ]1/κ where S(r,m) is the set of rice products n that are

24



purchased in month m in region r and the parameter κ is less than 0. The unit cost c(pr,m)
represents the rice price level for region r in month m. Thus the rice consumer price index for
month m in region r relative to the price level in Tokyo for the same month m is the ratio of
unit costs, c(pr,m)/c(p2,m). Feenstra obtained the following decomposition of c(pr,m)/c(p2,m):

P r,m
CES/P 2,m

CES ≡ c(pr,m)/c(p2,m); r = 1, . . . , 6; m = 1, . . . , 24

≡ [
∑

n∈S(r,m)αn(prmn)κ]1/κ/[
∑

n∈S(2,m)αn(p2mn)κ]1/κ

= [Ar,m] × [Br,m] × [Cr,m] (74)

where the three indexes in the last line of equations (74) are defined as follows:*42

Ar,m ≡[
∑

n∈S(r,m)∩S(2,m)αn(prmn)κ]1/κ/[
∑

n∈S(r,m)∩S(2,m)αn(p2mn)κ]1/κ;

r = 1, . . . , 6; m = 1, . . . , 24 (75)

Br,m ≡[
∑

n∈S(r,m)αn(prmn)κ]1/κ/[
∑

n∈S(r,m)∩S(2,m)αn(prmn)κ]1/κ;

r = 1, . . . , 6;m = 1, . . . , 24 (76)

Cr,m ≡[
∑

n∈S(r,m)∩S(2,m)αn(p2mn)κ]1/κ/[
∑

n∈S(2,m)αn(p2mn)κ]1/κ;

r = 1, . . . , 6; m = 1, . . . , 24. (77)

The left hand side of (74) is P r,m
CES/P 2,m

CES ≡ c(pr,m)/c(p2,m) which is the overall CES rice Cost
of Living index for Region r relative to Toyko in month m. The index Ar,m is the relative
cost of achieving the same utility level if purchasers faced the prices of rice products that are
common to both Regions r and Tokyo (region 2) in month m with the Region r price level in
the numerator and the Region 2 prices in the denominator. The index Br,m has the Region r
cost of attaining one unit of utility if purchasers faced the actual prices of month m in Region
r in the numerator and the denominator is the hypothetical Region r cost of attaining one
unit of utility if only products found in Regions r and 2 were available. Thus Br,m ≤ 1. The
lower Br,m is, the bigger is the benefit to purchasers in Region r of having extra products
that were not available in Tokyo in month m. The Region r prices in month m are used
in both numerator and denominator. The reciprocal of the index Cr,m is again equal to the
ratio of two unit costs: the cost of achieving one unit of utility in Region 2 in month m if
region 2 products were available and the cost of achieving one unit of utility in Region 2 if
purchasers faced Region 2 prices in month m but were restricted to purchasing products that
were available in both Regions 2 and r in month m. Region 2 prices in month m are used in
the numerator and denominator. Thus 1/Cr,m ≤ 1 or Cr,m ≥ 1 and the bigger Cr,m is, the
bigger is the benefit to Region 2 to having its choice set S(2,m) relative to the more restricted
choice set S(2,m)∩S(r,m). We define the month m net cost to Region r of having its choice
set relative to the corresponding month m, Region 2 choice set to be the product of Br,m and
Cr,m:*43

Dr,m ≡ [Br,m] × [Cr,m]; r = 1, . . . , 6; m = 1, . . . , 24. (78)

If Dr,m > 1, then the difference in choice sets between Region r and Region 2 adds to the
Region r cost of living.

*42 When r = 2, the indexes Ar,m, Br,m and Cr,m are all equal to 1 for m = 1, . . . , 24.
*43 Of course, the product of Dr,m and the matched product CES index Ar,m is equal to the actual Cost

of Living index between Regions r and 2 for month m, P r,m
CES/P 2,m

CES. Thus Dr,m can be interpreted as
an adjustment to the matched product index that takes into account differences in product availability.
For more details on the Feenstra methodology, see Feenstra (1994)[35], Balk (1999)[6], Melser (2006)[56],
Diewert and Feenstra (2017)[27] (2022)[28] and Diewert (2020b, 41-44)[24].
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Feenstra (1994)[35] showed that if Regions r and 2 have a product in common for month
m, then it is possible to estimate the indexes Br,m and Cr,m without estimating the CES
cost function, provided that we have an estimate for the parameter κ or equivalently for the
elasticity of substitution, σ ≡ 1 − κ. His method starts by defining the following observable

expenditure or sales ratios:

λr,m ≡
∑

n∈S(r,m)prmnqrmn/
∑

n∈S(r,m)∩S(2,m)prmnqrmn; r = 1, . . . , 6; m = 1, . . . , 24 (79)

µr,m ≡
∑

n∈S(r,m)∩S(2,m)p2mnq2mn/
∑

n∈S(2,m)p2mnq2mn; r = 1, . . . , 6;m = 1, . . . , 24. (80)

λr,m is the ratio of rice expenditures in Prefecture r in month m relative to rice expenditures
in the same month restricted to the set of products that are available in both Prefecture r
and Prefecture 2 (Tokyo). Thus this ratio must satisfy the inequality λr,m ≥ 1. µr,m is
the reciprocal of the ratio of rice expenditures in Prefecture 2 in month m relative to rice
expenditures in the same month restricted to the set of products that are available in both

Prefecture 2 and Prefecture r. Thus µr,m must satisfy the inequality µr,m ≤ 1. Of course,
when r = 2, it is the case that λr,m = µr,m = 1 for m = 1, . . . , 24. The expenditure ratios
defined by λr,m and µr,m are listed in Table 6 in the Appendix. Finally, Feenstra (1994)[35]
showed that:

Br,m = [λr,m]1/κ and Cr,m = [µr,m]1/κ; r = 1, . . . , 6; m = 1, . . . , 24. (81)

Thus if κ (or the elasticity of substitution σ = 1 − κ) is known or has been estimated, then
Br,m and Cr,m can readily be calculated as simple ratios of sums of observable expenditures
raised to the power 1/κ. Thus the measures of price level change due to changes in product
availability in Prefecture r relative to Prefecture 2 for month m, Dr,m defined as Br,m times
Cr,m , can be calculated. We have two estimates for the elasticity of substitution, σ = 23.0856
from our first CES model that estimated the CES utility function and σ = 6.4994 from our
CES model that estimated the CES unit cost function. These alternative estimates for the
elasticity of substitution lead to the two alternative estimates for κ equal to −22.0856 and
−5.4994. Thus we can generate two sets of indexes Dr,m using these two estimates for κ and
the above definitions. These two sets of indexes are denoted by Dr,m

CES and Dr,m
CCES and are

listed on Table 7 in the Appendix. These indexes are stacked and plotted as Dt
CES and Dt

CCES

on Chart 5.

Of course, Dt
CES and Dt

CCES are equal to 1 for t = 25, . . . , 48 since these indexes compare
availability of products in Prefecture r = 2 with the same Prefecture (Tokyo). The average
increase in rice prices in Hokkaido and Kyoto due to differences in the availability of products
in these two Prefectures relative to availability in Tokyo was only 0.41 percentage points on
average using the estimates for σ from our estimation of the CES utility function but this
average estimate increased to 1.66 or 1.67 percentage points using the lower estimate of σ that
came out of our estimation of the CES unit cost function. The increase in the cost of living
index due to limited availability of products was much greater for the smaller population Pre-
fectures. Here are the average increases in cost due to limited product availability generated
by the two CES models for the smaller Prefectures in percentage points: Tottori: 5.87 and
25.76; Kochi: 3.94 and 16.82; Kagoshima: 3.24 and 13.68. Thus for the smaller Prefectures,
the cost function based indexes Dt

CCES lie far above the utility function based indexes Dt
CES.

It can be seen that it is very important to obtain accurate and realistic estimates for the
elasticity of substitution when applying the Feenstra methodology. Since our utility function
based method for estimating the elasticity of substitution fit the data far better than the
cost function based method, the smaller estimates for the increase in the cost of living due to
smaller choice sets are our preferred estimates.

26



Chart 5 Two Measures of the Increase in the Price Level of Six Prefectures Relative
to Tokyo Prefecture due to Differences in Product Availability

A problem with the CES functional form is that there is only one parameter, the elasticity
of substitution σ, that is used to describe substitution possibilities between every pair of
products. In the following section, we estimate a functional form for the purchaser’s utility
function that has a separate parameter to describe substitution possibilities for each product.

9 The Econometric Estimation of KBF Preferences with a Rank

One Substitution Matrix

Konüs and Byushgens (1926)[54]*44 introduced the following functional form for a linearly
homogeneous utility function:

f(q) ≡ (qT · Aq)1/2 = (
∑N

i=1

∑N
j=1aijqiqj)

1/2; aij = aji; 1 ≤ i ≤ j ≤ N. (82)

Thus A is an N by N symmetric matrix that contains (N + 1)N/2 unknown aij parameters.
The matrix A satisfies certain restrictions which are spelled out in Diewert (1976)[18]. Konüs
and Byushgens and Diewert showed that this utility function is exact for the Fisher (1922)[36]
Ideal quantity and price indexes so we call preferences defined by (82) KBF preferences.

Using the utility maximization framework which was described in section 6, the possible
estimating equations (45) become the following system of inverse demand functions:*45

ptn = etdtn(
∑N

j=1anjqtj)/(
∑N

i=1

∑N
j=1aijqtiqtj); t = 1, . . . , 144;n = 1, . . . , 80. (83)

where the dummy variable is defined as before; i.e., dtn ≡ 1 if n ∈ S(t) and define dtn ≡ 0 if
product n is not available in period t for t = 1, . . . , 144 and n = 1, . . . , 80.

*44 See Diewert and Zelenyuk (2024)[33] for a translation and commentary on their paper.
*45 We did not use these equations as our estimating equations because the resulting price and quantity

indexes are not invariant to changes in the units of measurement.
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We will not attempt to estimate all (N + 1)N/2 unknown parameters aij in the KBF utility
function defined by (82). In order to reduce the number of parameters in the A matrix, we
define A as the following matrix which has rank 2:

A ≡ ααT − ββT (84)

where the transposes of the column vectors α and β are defined as αT ≡ [α1, . . . , α80] and

βT ≡ [β1, . . . , β80]. Thus we have reduced the number of unknown parameters in A from
(80 + 1) × 80/2 to 2 × 80.

With A defined by (84), the system of inverse demand share equations (46) becomes the
following system of estimating equations:

stn = qtn[αnα · qt − βnβ · qt]/[(α · qt)2 − (β · qt)2] + etn; t = 1, . . . , 144;n = 1, . . . , 80. (85)

Equations (85) are valid even when there are missing products because when product n is
missing in period t, stn = qtn = 0.

The utility function, f(q,α,β) is defined as follows:

f(q,α,β) ≡ [qT (ααT − ββT )q]1/2 = [(α · qt)2 − (β · qt)2]1/2. (86)

Note that if β = 0N , then f(q,α,0N ) = [(α · qt)2]1/2 = α · qt =
∑N

n=1αnqn ; i.e., the utility
function collapses down to the linear utility function that was studied in section 7. This is an
important point because it implies that starting coefficients αn and βn for the nonlinear least
squares minimization problem that is defined below can be set equal to the estimates of the
α∗

n that result in the estimation of linear preferences with the starting coefficients for the β∗
n

set equal to 0.

There are some tricky aspects to the new utility function as compared to the case of a linear
utility function. We need to ensure that (α · qt)2 − (β · qt)2 > 0 so that we can calculate
the positive square root, [(α · qt)2 − (β · qt)2]1/2. We also need to set βn = 0 if product n
is available in only one period.*46 However, in our data set, all products are available for at
least 14 periods. In order to identify all of the parameters, we impose our usual normalization
so that our present model contains our linear utility function model as a special case:

α4 = 1 (87)

Define the total sample consumption vector q∗ as
∑144

t=1q
t. In order to prevent multicollinear-

ity between the αn and βn parameters, we imposed the following normalization on the βn

parameters:
β · q∗ = 0.*47 (88)

Estimates for the αn and βn parameters are obtained by solving the following nonlinear least
squares minimization problem subject to the normalizations (87) and (88):

minα,β

∑T
t=1

∑N
n=1{stn − qtn[αnα · qt − βnβ · qt]/[(α · qt)2 − (β · qt)2]}2. (89)

*46 If a product n appears in only one period in the sample of observations, then our KBF model will be able
to estimate the parameter αn but it will not be able to estimate the parameter βn; see the Appendix in
Diewert (2024)[26].

*47 This normalization also helps to ensure that (α · qt)2 − (β · qt)2 > 0 so that we can define f(qt) as
the positive square root of (α · qt)2 − (β · qt)2. This normalization ensures that our estimated KBF
Prefecture price and quantity indexes are invariant to changes in the units of measurement. In our
regression, used the constraint

∑80
n=1 q∗nβn = 0 to solve for β4 = −

∑3
n=1[q∗n/q∗4 ]βn −

∑80
n=5[q∗n/q∗4 ]βn.
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Taking into account the normalizations (87) and (88), there are 158 free parameters to es-
timate. The starting coefficient values for the αn were the final coefficient estimates for the
linear utility function model discussed in section 7 and the starting coefficient values for the
βn were set equal to 0.00001 or −0.00001. As a check on our code, the starting log likelihood
for the model defined by (89) was equal to the final log likelihood for the linear model defined
by (50) in section 7. Shazam took 393 iterations and 26 minutes to converge to a solution.
The gain in log likelihood was 4289.18 points for adding 79 new βn parameters. The R2 for the
new model was 0.9983, an increase over the R2 for the linear model in section 7 (R2 = 0.9964)
and for the CES utility function model in the previous section (R2 = 0.9867). The sum of
absolute errors for the present model was 5.630 and for the linear model and the CES model,
the sums were 7.9178 and 7.2587 respectively. Thus the present KBF model fits the data
significantly better than previous models.

Once the solution (α∗,β∗) to the nonlinear least squares minimization problem (89) has been
obtained, the preliminary period t aggregate quantity and price levels, Qt∗ and P t∗ , are defined
as follows:

Qt∗ ≡ f(qt,α∗,β∗) = [(α∗ · qt)2 − (β∗ · qt)2]1/2;P t∗ ≡ et/Qt∗ ; t = 1, . . . , 144. (90)

Normalize the sequence price levels P t∗ into the series P t
KBF which is such that the normalized

sequence of price levels equals 1 for t = 25 (month 1 for Tokyo):

P t
KBF ≡ P t∗/P 25∗

; t = 1, . . . , 144. (91)

Finally define the KBF utility function price levels for regions 1-6 as P r,m
KBF using P t

KBF defined
by (91) and an appropriate modification of definitions (64). The KBF price indexes, P t

KBF,

are plotted on Chart 6 below and the regional KBF indexes P 1,m
KBF – P 6,m

KBF are listed in Table
8 in the Appendix.

Before we discuss Chart 6, we note that it is of interest to calculate the reservation prices that
the estimated KBF utility function generates. With the solution (α∗,β∗) to (89) in hand,
we can calculate Hicksian reservation prices p∗tn for the products n that were not present in
period t using equations (83) for our BF functional form for products n that are not available
in region-period t:

p∗tn ≡ etfn(qt,α∗,β∗)/f(qt,α∗,β∗); t = 1, . . . , T ;n /∈ S(t). (92)

The average reservation price for our estimated KBF utility function turned out to equal
0.43135 while the average predicted price for products that were present in each period was
equal to 0.32779. Thus on average, reservation prices were 0.43135/0.32779 = 1.316 or 31.6
percent higher than predicted prices.*48 Note that the CES model generates infinite reservation
prices which is a problem with the CES model.*49

The N by N matrix of second order partial derivatives of f(q,α∗,β∗) evaluated at q = qt

is denoted by ∇2f(qt,α∗,β∗) and it is called the period t inverse substitution matrix. For
a general linearly homogeneous and concave utility f(q), it must be a negative semidefinite
matrix that satisfies the restrictions ∇2f(qt)qt = 0N . Thus the rank of ∇2f(qt) is at most

*48 The ratio of the average of observed prices to the average of predicted prices was 1.0038.
*49 We also calculated the ratio of reservation prices to the average of predicted prices for the linear utility

function model that was discussed in section 7. This ratio was 0.40690/0.32549 = 1.2501 so reservation
prices for the linear utility function model were on average 25.0 percent higher. This implies that
purchasers for the most part bought products when they were offered at discounted prices.
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N −1. For our particular functional form for f(q,α∗,β∗) defined by (90), the period t inverse
substitution matrix is defined as follows:

∇2f(qt,α∗,β∗) ≡ −[f(qt,α∗,β∗)]−3[α∗(β∗ ·qt)−β∗(α∗ ·qt)][α∗(β∗ ·qt)−β∗(α∗ ·qt)]T . (93)

If β∗ = 0N , then ∇2f(qt,α∗,β∗) = 0N0
T
N which is an N by N matrix of zeros. If α∗ and

β∗ are both nonzero vectors and α∗ ̸= β∗, then the period t substitution matrix defined by
(93) will have rank equal to one. Diewert and Wales (1988)[32] called a functional form for a
cost function defined over N products a semiflexible functional form of rank k if its matrix of
second order partial derivatives had rank k. Using this terminology, our f(q,α,β) defined by
(90) is a semiflexible functional form of rank 1.*50

The KBF price indexes, P t
KBF, are plotted on Chart 6 below along with five other price indexes

that were described in previous sections. These indexes are the Linear Utility Function indexes
P t

LU, the CES price indexes P t
CES that were defined by deflating region-period expenditures et

by the estimated CES utility levels Qt
CES, the Geary Khamis price indexes P t

GK, the Implicit
Weighted Time Product Dummy indexes P t

IWTPD and the GEKS indexes P t
GEKS.

Chart 6 KBF Price Indexes and Other Indexes for Six Japanese Prefectures

The six series of price indexes are quite close to each other for the Tokyo Prefecture months
(t = 25-48) and somewhat close for Hokkaido (t = 1-24) and Kyoto (t = 49-72) but very
different for the three smaller population Prefectures, Tottori (t = 73-96), Kochi (t = 97-120)
and Kagoshima (t = 121-144). It can be seen that the KBF indexes, P t

KBF, are clearly higher
for the Kochi and Kagoshima time periods and in general, are the highest price indexes. For
periods 73-96, the KBF indexes are about 15 percentage points above the lowest index for
most periods, the Geary Khamis indexes P t

GK. The CES indexes P t
CES and the Linear Utility

function indexes P t
LU are in general quite close and are the second highest indexes. The

*50 If f(qt, α∗, β∗) > 0, then
[

f(qt, α∗, β∗)
]−3

≡ k > 0 and A=kγγT where γ is the N dimensional column

vector α∗
(

β∗ · qt
)

− β∗
(

α∗ · qt
)

. Thus zT Az=zT kγγT z=k
(

zT γ
)2

> 0 for N dimensional vectors z.
Thus A is a negative semidefinite symmetric matrix.
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Implicit Weighted Time Product Dummy indexes P t
IWTPD are well below P t

KBF, P t
CES and

P t
LU but above P t

GEKS and P t
GK for the smaller Prefectures. The fact that the six indexes are

so dispersed is cause for concern: it means that the choice of method matters a lot.

The fact that the KBF indexes are well above the P t
LU, P t

GK and P t
IWTPD indexes is not

surprising if we take the economic approach to index number theory because the latter methods
are based on their consistency with linear preferences which will tend to overstate the degree of
product substitutability and hence bias the price indexes up and the corresponding quantity
indexes down. However, it is surprising that the GEKS indexes were not higher since in
theory, they are exact for a wide variety of preferences. Of course, the theoretical superiority
of the GEKS indexes was established in the context of no missing products and the absence
of discounted prices, which can lead to stockpiling and downward chain drift.

What is clear from Chart 6 is that constant quality rice prices in the low population Prefectures
are much higher than prices in the higher population Prefectures. If this result persists over
many products, it could mean that national Consumer Price Indexes constructed using current
methods that do not adjust prices for product availability have a downward bias and hence
national real consumption may have an upward bias.

10 Conclusion

Here are our tentative conclusions that we draw on from the above analysis:

• Indexes which do not weight prices by their economic importance can be unreliable.
Their use should be avoided if possible.

• In the context of forming inter-regional price indexes where choice sets are very different,
unit value and average price indexes can be very unreliable.

• GEKS indexes can also be unreliable in our context because matching between regions
can be low if choice sets differ a lot across regions. GEKS (and CCDI) indexes rely on
matched models and if there are few interregional matched products, these multilateral
indexes can be inaccurate. Also, these indexes cannot measure the benefits of a larger
choice set.

• Weighted and Unweighted Time Product Dummy Indexes also cannot completely mea-
sure the benefits of larger choice sets.

• The difference between our Linear Utility price index and the counterpart KBF Rank 1
Substitution Matrix Utility price index can measure the benefits of increased choice sets
and the use of a more flexible functional form. But it is not easy to do the econometric
estimation for the KBF model if there are a large number of products in scope.

• The estimation of CES preferences is also problematic: different econometric specifica-
tions can generate very different estimates for the elasticity of substitution and hence
can generate very different estimates for the gains from increased variety using the
Feenstra methodology.

• On the other hand, Weighted Time Product Dummy price indexes can be estimated
when there are numerous products but these indexes cannot measure accurately the
benefits of larger choice sets.

• A robust method for dealing with rapid product turnover, quality adjustment and the
chain drift problem is still to be found.
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Online Appendix: Index Tables

Table 1: Average Price, Unit Value, Fixed Base Fisher, GEKS and Fisher-Mizobuchi Price Indexes

for Six Japanese Prefectures

m P 1,m

AV
P 1,m

UV
P 1,m

F
P 1,m

GEKS
P 1,m

FM
P 2,m

AV
P 2,m

UV
P 2,m

F
P 2,m

GEKS
P 2,m

FM

1 0.99049 1.00350 0.99526 0.97500 0.99526 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.98259 0.99258 0.98266 0.96424 0.97550 1.00899 1.00439 1.00461 1.02316 1.00461
3 0.99068 0.99363 0.98611 0.97102 0.97762 1.00494 1.00693 1.00593 1.01437 1.00497
4 0.98601 0.98468 0.98110 0.95714 0.97646 1.00740 1.00868 1.01083 1.01978 1.01026
5 0.99042 1.00051 0.98845 0.96913 0.98293 1.00604 1.00761 1.00868 1.01753 1.00772
6 0.99419 1.00100 0.98868 0.96904 0.98669 0.99223 0.99285 0.99049 0.99626 0.99135
7 0.99575 1.00147 0.99398 0.97335 0.99179 1.00091 1.01294 1.01227 1.01615 1.01169
8 0.99210 0.99253 0.99201 0.97039 0.98714 1.00130 1.00900 1.00866 1.01546 1.00796
9 0.99413 0.99520 0.98584 0.96830 0.98256 0.99619 1.00154 0.99959 1.00047 1.00001
10 0.99481 0.99026 0.99410 0.97310 0.98391 1.00181 1.00840 1.00645 1.01261 1.00726
11 0.98246 0.99157 0.98910 0.96743 0.98669 0.99157 0.99921 0.99686 1.00156 0.99888
12 0.99495 0.99398 0.98854 0.96697 0.97798 1.00523 1.00893 1.00918 1.01749 1.01333
13 0.99301 1.00192 0.99511 0.97576 0.98828 0.99640 1.00387 1.00063 1.00936 1.00355
14 0.99231 0.98882 0.98849 0.97240 0.98214 0.99707 1.00681 1.00350 1.00397 1.00663
15 0.99883 1.00030 0.99048 0.98062 0.98726 1.00078 1.00442 1.00354 1.00486 1.00416
16 0.99118 0.99984 0.98570 0.98151 0.98237 1.01604 1.01503 1.01818 1.03016 1.02136
17 0.99513 0.99704 0.98193 0.96952 0.97335 1.01254 1.01748 1.01885 1.02465 1.01976
18 0.99901 1.00008 0.98944 0.97917 0.97638 1.00089 1.00454 1.00723 1.01816 1.00920
19 0.99919 0.98492 0.99479 0.98261 0.97933 1.00522 1.00390 1.00495 1.01322 1.00667
20 1.00004 1.00128 0.99007 0.97796 0.98912 0.99627 1.00276 1.00436 1.00637 1.00424
21 1.00946 1.01357 0.99856 0.98393 1.00056 1.00862 1.00647 1.00550 1.00561 1.00815
22 1.00513 1.00672 1.00126 0.98552 1.00597 1.02060 1.01549 1.01767 1.01433 1.02012
23 1.01500 1.00752 1.00217 0.98374 1.01286 1.02260 1.01770 1.01867 1.01817 1.02121
24 1.02921 1.02561 1.01851 0.99767 1.02833 1.02641 1.03643 1.03694 1.03397 1.03884

Mean 0.99650 0.99869 0.99176 0.99176 0.98794 1.00500 1.00810 1.00810 1.01320 1.00920
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Table 1: Continued

m P 3,m

AV
P 3,m

UV
P 3,m

F
P 3,m

GEKS
P 3,m

FM
P 4,m

AV
P 4,m

UV
P 4,m

F
P 4,m

GEKS
P 4,m

FM

1 1.01934 0.97410 0.97619 0.99154 0.97619 1.04608 1.11598 1.15919 1.13288 1.15919
2 1.01612 0.99042 0.98083 1.00849 0.97092 1.03793 1.07604 1.12359 1.10251 1.06255
3 1.01512 0.96182 0.95948 0.98863 0.96794 1.05509 1.09225 1.14505 1.12347 1.11954
4 1.01927 0.97655 0.97299 1.00624 0.96736 1.05028 1.09233 1.14682 1.12336 1.12217
5 1.00825 0.96831 0.98283 1.00619 0.98205 1.05669 1.10540 1.14702 1.12736 1.11867
6 1.01246 0.96697 0.98398 1.00233 0.99284 1.05896 1.12923 1.14884 1.12811 1.11673
7 1.01444 0.97641 0.98543 1.00778 0.99399 1.05489 1.11961 1.13821 1.11902 1.11782
8 1.02200 0.98104 0.99593 1.01935 0.98355 1.04975 1.11811 1.13846 1.11527 1.11871
9 1.01845 0.95506 0.98397 0.98407 0.97209 1.05576 1.11692 1.12784 1.11379 1.12478
10 1.02414 0.98825 1.01598 1.00236 1.00526 1.05417 1.11927 1.12933 1.11452 1.11038
11 1.02445 0.97557 1.00624 0.99010 0.99318 1.04571 1.10185 1.11917 1.10588 1.10575
12 1.02979 0.99138 1.02312 1.00877 1.00495 1.05150 1.09892 1.12118 1.10652 1.09936
13 1.02394 0.96040 1.00002 0.97895 0.98253 1.05717 1.12679 1.15844 1.13877 1.13341
14 1.02563 0.96848 1.00627 0.98489 0.99759 1.05804 1.13056 1.15697 1.13647 1.15639
15 1.03210 0.95930 1.00155 0.98900 0.98907 1.05292 1.11938 1.14791 1.12779 1.14435
16 1.03486 0.98971 1.02654 1.02785 1.00187 1.06243 1.09563 1.13328 1.11648 1.08074
17 1.01663 0.96836 1.00265 0.98993 0.98502 1.05244 1.12107 1.12973 1.11683 1.10189
18 1.00236 0.95702 0.99375 0.97926 0.98066 1.04248 1.10406 1.10474 1.09659 1.06290
19 1.02109 0.99091 1.01947 1.02097 0.99865 1.04022 1.12231 1.11382 1.10170 1.09661
20 1.01832 0.97117 1.00604 0.98957 0.99528 1.05573 1.11158 1.12771 1.11176 1.10982
21 1.03252 0.99795 1.02113 1.01395 1.01237 1.04539 1.11582 1.13018 1.11370 1.13549
22 1.03873 1.00660 1.02972 1.01908 1.03233 1.08529 1.12443 1.14214 1.12096 1.17330
23 1.03364 0.99216 1.01863 1.00710 1.01208 1.09551 1.14331 1.15871 1.14018 1.17694
24 1.03842 1.00951 1.04238 1.02048 1.03459 1.07887 1.13597 1.15037 1.12875 1.16649

Mean 1.02260 0.97823 1.00150 1.00150 0.99301 1.05600 1.11400 1.13740 1.11930 1.12140

Table 1: Concluded

m P 5,m

AV
P 5,m

UV
P 5,m

F
P 5,m

GEKS
P 5,m

FM
P 6,m

AV
P 6,m

UV
P 6,m

F
P 6,m

GEKS
P 6,m

FM

1 1.06652 1.04492 1.04876 1.07757 1.04876 1.03129 1.05067 1.03408 1.04529 1.03408
2 1.05936 1.03434 1.04207 1.06086 1.03185 1.02643 1.04396 1.02743 1.03659 1.02393
3 1.05589 1.03737 1.05032 1.06501 1.04728 1.02524 1.04595 1.03080 1.03896 1.02131
4 1.06991 1.03967 1.05423 1.07596 1.03984 1.02148 1.04022 1.02451 1.03209 1.01395
5 1.07991 1.01968 1.05157 1.06680 1.04232 1.02208 1.04693 1.02785 1.04048 1.02163
6 1.06415 0.98170 1.03549 1.03591 1.02844 1.02846 1.04474 1.02777 1.03773 1.03634
7 1.06932 1.03740 1.06212 1.07658 1.06206 1.02177 1.04730 1.02340 1.03882 1.02994
8 1.06223 1.02189 1.04619 1.06734 1.03857 1.03016 1.05105 1.03201 1.04180 1.02814
9 1.04202 1.03738 1.05522 1.07755 1.06008 1.02787 1.05808 1.03570 1.04845 1.03302
10 1.05545 1.03816 1.05316 1.07792 1.07241 1.01551 1.04204 1.02191 1.03405 1.00749
11 1.06418 1.03855 1.05562 1.07469 1.07998 1.02219 1.05025 1.03175 1.04468 1.02213
12 1.05838 1.04355 1.05570 1.07066 1.06767 1.02898 1.04730 1.03459 1.04437 1.02980
13 1.05990 1.04630 1.05869 1.07336 1.07464 1.03213 1.06255 1.04560 1.06166 1.03435
14 1.05182 1.04326 1.05845 1.06674 1.08806 1.03114 1.05856 1.03457 1.05228 1.01955
15 1.04670 1.04760 1.05809 1.06535 1.07651 1.02842 1.07193 1.04380 1.05950 1.03014
16 1.05904 1.03634 1.05318 1.06718 1.07230 1.03024 1.07753 1.04490 1.06475 1.03936
17 1.05907 1.04047 1.05589 1.07097 1.07602 1.03226 1.08820 1.05457 1.07584 1.04592
18 1.02718 0.98499 1.02481 1.02777 1.03352 1.03014 1.05922 1.03503 1.05349 1.02093
19 1.05185 1.04200 1.05650 1.06857 1.06103 1.03189 1.06731 1.03926 1.06101 1.02734
20 1.05027 1.02489 1.04638 1.05930 1.05393 1.02759 1.06720 1.03761 1.05603 1.02628
21 1.05983 1.03491 1.05884 1.06580 1.06215 1.02332 1.05373 1.03573 1.05370 1.03245
22 1.04348 1.04450 1.05588 1.07508 1.08021 1.02275 1.05530 1.02542 1.04692 1.02415
23 1.05981 1.04683 1.06322 1.07503 1.07325 1.03137 1.06153 1.03339 1.05163 1.03682
24 1.06355 1.06307 1.07558 1.08151 1.09159 1.03546 1.08621 1.04460 1.06678 1.04982

Mean 1.05750 1.03460 1.05320 1.06760 1.06090 1.02740 1.05740 1.03440 1.04950 1.02870
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Table 2: Time Product Dummy, Direct and Indirect Weighted Time Product Dummy and GEKS

Price Indexes for Six Japanese Prefectures

m P 1,m

TPD
P 1,m

WTPD
P 1,m

IWTPD
P 1,m

GEKS
P 2,m

TPD
P 2,m

WTPD
P 2,m

IWTPD
P 2,m

GEKS

1 0.98384 0.98566 0.98724 0.97500 1.00000 1.00000 1.00000 1.00000
2 0.97515 0.97491 0.97642 0.96424 1.00834 1.00603 1.00589 1.02316
3 0.98356 0.97851 0.98004 0.97102 1.00503 1.00912 1.00982 1.01437
4 0.97861 0.96822 0.96907 0.95714 1.00690 1.01077 1.01040 1.01978
5 0.98368 0.98320 0.98458 0.96913 1.00605 1.00971 1.01004 1.01753
6 0.98702 0.98401 0.98533 0.96904 0.99278 0.99261 0.99289 0.99626
7 0.98914 0.98441 0.98575 0.97335 1.00085 1.01453 1.01516 1.01615
8 0.98481 0.97461 0.97536 0.97039 1.00258 1.00881 1.00922 1.01546
9 0.98642 0.97798 0.97903 0.96830 0.99754 0.99905 0.99871 1.00047
10 0.98519 0.97216 0.97255 0.97310 1.00388 1.00605 1.00697 1.01261
11 0.97208 0.97367 0.97467 0.96743 0.99414 0.99473 0.99439 1.00156
12 0.98569 0.97592 0.97690 0.96697 1.00748 1.00972 1.01061 1.01749
13 0.98331 0.98483 0.98617 0.97576 0.99885 1.00125 1.00192 1.00936
14 0.98302 0.97129 0.97226 0.97240 0.99923 1.00207 1.00189 1.00397
15 0.99069 0.98143 0.98288 0.98062 1.00352 1.00109 1.00160 1.00486
16 0.98136 0.98315 0.98469 0.98151 1.01719 1.01721 1.01802 1.03016
17 0.98590 0.97919 0.98035 0.96952 1.01458 1.01716 1.01837 1.02465
18 0.99066 0.98477 0.98622 0.97917 1.00366 1.00598 1.00760 1.01816
19 0.99096 0.96964 0.97008 0.98261 1.00763 1.00352 1.00456 1.01322
20 0.99178 0.98505 0.98624 0.97796 0.99881 1.00074 1.00152 1.00637
21 1.00115 0.99832 0.99952 0.98393 1.01065 1.00392 1.00342 1.00561
22 0.99445 0.99081 0.99190 0.98552 1.02238 1.01212 1.01128 1.01433
23 1.00507 0.99215 0.99299 0.98374 1.02606 1.01296 1.01210 1.01817
24 1.01923 1.01206 1.01305 0.99767 1.02987 1.03486 1.03465 1.03397

Mean 0.98803 0.98192 0.98305 0.97481 1.00660 1.00730 1.00750 1.01320

Table 2: Continued

m P 3,m

TPD
P 3,m

WTPD
P 3,m

IWTPD
P 3,m

GEKS
P 4,m

TPD
P 4,m

WTPD
P 4,m

IWTPD
P 4,m

GEKS

1 1.01586 0.98452 0.98273 0.99154 1.03955 1.12970 1.12934 1.13288
2 1.01324 1.00546 1.00555 1.00849 1.02950 1.09676 1.09588 1.10251
3 1.01274 0.98173 0.98200 0.98863 1.04864 1.11498 1.11466 1.12347
4 1.01750 0.99569 0.99627 1.00624 1.04120 1.12049 1.11952 1.12336
5 1.01079 0.99195 0.99172 1.00619 1.05126 1.12929 1.12934 1.12736
6 1.01553 0.99045 0.99059 1.00233 1.05455 1.13951 1.14055 1.12811
7 1.01983 0.99869 0.99934 1.00778 1.04934 1.13154 1.13141 1.11902
8 1.02247 1.00510 1.00554 1.01935 1.04498 1.12806 1.12891 1.11527
9 1.01930 0.97501 0.97523 0.98407 1.05053 1.13704 1.13725 1.11379
10 1.02237 0.99370 0.99168 1.00236 1.04934 1.13621 1.13679 1.11452
11 1.02318 0.97752 0.97538 0.99010 1.04045 1.11990 1.11888 1.10588
12 1.02887 0.99873 0.99725 1.00877 1.04490 1.11992 1.12107 1.10652
13 1.02427 0.96897 0.96724 0.97895 1.05040 1.15146 1.15155 1.13877
14 1.02366 0.97848 0.97609 0.98489 1.05203 1.14961 1.14944 1.13647
15 1.03010 0.97445 0.97360 0.98900 1.04498 1.13583 1.13621 1.12779
16 1.03278 1.00711 1.00819 1.02785 1.05466 1.12861 1.12618 1.11648
17 1.01939 0.97591 0.97410 0.98993 1.04857 1.13827 1.13968 1.11683
18 1.00403 0.97152 0.97171 0.97926 1.03860 1.12828 1.12831 1.09659
19 1.02199 1.00645 1.00763 1.02097 1.03287 1.13927 1.13902 1.10170
20 1.01809 0.97946 0.97804 0.98957 1.05032 1.12950 1.12939 1.11176
21 1.03239 1.00999 1.01013 1.01395 1.03964 1.13262 1.13260 1.11370
22 1.03845 1.00468 1.00076 1.01908 1.06392 1.14023 1.14016 1.12096
23 1.03514 0.99688 0.99511 1.00710 1.07412 1.16129 1.16151 1.14018
24 1.04168 1.01788 1.01711 1.02048 1.05621 1.14874 1.14873 1.12875

Mean 1.02270 0.99126 0.99054 1.00150 1.04790 1.13280 1.13280 1.11930
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Table 2: Concluded

m P 5,m

TPD
P 5,m

WTPD
P 5,m

IWTPD
P 5,m

GEKS
P 6,m

TPD
P 6,m

WTPD
P 6,m

IWTPD
P 6,m

GEKS

1 1.06408 1.08857 1.09028 1.07757 1.03035 1.05742 1.05878 1.04529
2 1.05695 1.07121 1.07243 1.06086 1.02640 1.04918 1.05000 1.03659
3 1.05369 1.07811 1.07969 1.06501 1.02551 1.05217 1.05365 1.03896
4 1.06637 1.08383 1.08528 1.07596 1.02096 1.04311 1.04483 1.03209
5 1.07223 1.06766 1.06845 1.06680 1.02260 1.05293 1.05404 1.04048
6 1.06453 1.02718 1.02505 1.03591 1.02827 1.04899 1.04977 1.03773
7 1.07042 1.08183 1.08319 1.07658 1.02054 1.05324 1.05330 1.03882
8 1.06334 1.06619 1.06749 1.06734 1.02909 1.05606 1.05668 1.04180
9 1.03071 1.08483 1.08478 1.07755 1.03135 1.06376 1.06461 1.04845
10 1.05012 1.08459 1.08590 1.07792 1.01645 1.04504 1.04674 1.03405
11 1.06311 1.08145 1.08280 1.07469 1.02652 1.05813 1.05896 1.04468
12 1.05821 1.08468 1.08600 1.07066 1.03350 1.05414 1.05501 1.04437
13 1.05995 1.08708 1.08854 1.07336 1.03448 1.06984 1.07073 1.06166
14 1.05177 1.08008 1.08136 1.06674 1.03350 1.06265 1.06311 1.05228
15 1.04850 1.07958 1.08096 1.06535 1.03289 1.07828 1.07885 1.05950
16 1.05645 1.07732 1.07845 1.06718 1.03165 1.08190 1.08164 1.06475
17 1.06305 1.08330 1.08436 1.07097 1.03298 1.09416 1.09363 1.07584
18 1.02633 1.02592 1.02303 1.02777 1.03156 1.06596 1.06483 1.05349
19 1.05669 1.08234 1.08354 1.06857 1.03291 1.07357 1.07275 1.06101
20 1.05446 1.06711 1.06800 1.05930 1.02958 1.06856 1.06853 1.05603
21 1.06436 1.07355 1.07423 1.06580 1.02355 1.06155 1.05895 1.05370
22 1.03943 1.08556 1.08668 1.07508 1.02332 1.05423 1.05401 1.04692
23 1.06145 1.08802 1.08932 1.07503 1.03214 1.06178 1.06003 1.05163
24 1.06475 1.10446 1.10447 1.08151 1.03630 1.08254 1.08153 1.06678

Mean 1.05670 1.07640 1.07730 1.06760 1.02860 1.06200 1.06230 1.04950

Table 3: Geary Khamis Price Indexes for Six Japanese Prefectures

m P 1,m

GK
P 2,m

GK
P 3,m

GK
P 4,m

GK
P 5,m

GK
P 6,m

GK

1 1.00167 1.00000 0.96884 1.11595 1.04277 1.05079
2 0.99091 1.00456 0.98529 1.07639 1.03203 1.04393
3 0.99178 1.00691 0.95626 1.09304 1.03466 1.04607
4 0.98288 1.00875 0.97090 1.09236 1.03641 1.04049
5 0.99835 1.00773 0.96342 1.10610 1.01761 1.04729
6 0.99822 0.99292 0.96200 1.12884 0.98085 1.04515
7 0.99874 1.01286 0.97116 1.11933 1.03481 1.04771
8 0.98967 1.00907 0.97595 1.11817 1.01919 1.05133
9 0.99257 1.00163 0.95054 1.11721 1.03482 1.05839
10 0.98747 1.00859 0.98423 1.11934 1.03543 1.04236
11 0.98881 0.99949 0.97185 1.10230 1.03638 1.05079
12 0.99133 1.00918 0.98719 1.09885 1.04087 1.04785
13 0.99931 1.00418 0.95627 1.12727 1.04396 1.06312
14 0.98600 1.00704 0.96476 1.13038 1.04064 1.05905
15 0.99766 1.00465 0.95564 1.11955 1.04547 1.07243
16 0.99742 1.01534 0.98588 1.09615 1.03389 1.07801
17 0.99472 1.01770 0.96484 1.12151 1.03818 1.08865
18 0.99779 1.00482 0.95356 1.10441 0.98374 1.05962
19 0.98227 1.00411 0.98728 1.12259 1.03957 1.06779
20 0.99906 1.00292 0.96774 1.11165 1.02293 1.06758
21 1.01131 1.00667 0.99438 1.11570 1.03302 1.05388
22 1.00438 1.01564 1.00319 1.12475 1.04229 1.05598
23 1.00533 1.01787 0.98860 1.14369 1.04456 1.06184
24 1.02337 1.03665 1.00591 1.13626 1.06057 1.08647

Mean 0.99629 0.99629 0.97399 1.11420 1.03230 1.05780
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Table 4: Estimated Linear Utility Function Price Indexes for Six Japanese Prefectures

m P 1,m

LU
P 2,m

LU
P 3,m

LU
P 4,m

LU
P 5,m

LU
P 6,m

LU

1 0.99553 1.00000 1.01042 1.19924 1.14125 1.08775
2 0.98554 1.00496 1.03357 1.16931 1.12093 1.07850
3 0.99018 1.00824 1.01394 1.18753 1.12932 1.08316
4 0.97783 1.00698 1.02535 1.19429 1.13256 1.07406
5 0.99358 1.00680 1.01654 1.20331 1.11740 1.08359
6 0.99335 0.99254 1.01759 1.20800 1.07653 1.07795
7 0.99371 1.01352 1.02757 1.19984 1.13198 1.08235
8 0.98365 1.00819 1.03167 1.19712 1.11301 1.08592
9 0.98762 0.99984 1.00058 1.20745 1.13263 1.09403
10 0.98052 1.00748 1.01232 1.20666 1.13579 1.07562
11 0.98261 0.99631 0.99325 1.18816 1.13190 1.08781
12 0.98437 1.01000 1.01615 1.19104 1.13542 1.08244
13 0.99469 1.00256 0.98728 1.22442 1.13769 1.09945
14 0.98031 1.00379 0.99698 1.21988 1.13007 1.09099
15 0.99059 1.00318 0.99445 1.20359 1.12887 1.10848
16 0.99153 1.01597 1.02436 1.20133 1.12652 1.11148
17 0.98806 1.01585 0.99270 1.20904 1.13251 1.12447
18 0.99382 1.00487 0.99190 1.20293 1.07325 1.09492
19 0.97766 1.00255 1.02362 1.20996 1.13251 1.10249
20 0.99403 1.00233 0.99589 1.20079 1.11509 1.09854
21 1.00723 1.00569 1.02814 1.20168 1.12252 1.08715
22 1.00050 1.01392 1.01723 1.21413 1.13571 1.08135
23 1.00223 1.01523 1.01724 1.23399 1.13922 1.08625
24 1.02286 1.03910 1.04074 1.21932 1.15572 1.10805

Mean 0.99133 1.00750 1.01290 1.20390 1.12620 1.09110

Table 5: Alternative CES Price Indexes for Six Japanese Prefectures

m P 1,m

CES
P 2,m

CES
P 3,m

CES
P 4,m

CES
P 5,m

CES
P 6,m

CES
P 1,m

ACES
P 2,m

ACES
P 3,m

ACES

1 0.98432 1.00000 1.00859 1.23490 1.13626 1.09615 1.02221 1.00000 0.95253
2 0.97450 1.00654 1.03115 1.20769 1.11630 1.08648 0.96334 1.00433 1.02377
3 0.97981 1.00820 1.01475 1.22291 1.12511 1.09014 1.02102 1.01909 1.03711
4 0.96686 1.00793 1.02686 1.22892 1.12923 1.08164 0.98921 0.99693 1.04497
5 0.97998 1.00797 1.01610 1.23564 1.11337 1.08909 1.01483 1.01220 1.00386
6 0.98136 0.99190 1.01893 1.24099 1.07489 1.08429 1.01529 0.98922 1.03095
7 0.98219 1.01295 1.02692 1.23363 1.12592 1.08903 1.01588 1.00678 1.04099
8 0.97276 1.00801 1.03029 1.23099 1.10804 1.09195 0.99992 1.00666 1.02105
9 0.97689 1.00016 1.00219 1.23861 1.12796 1.10140 1.00887 0.96626 1.02597
10 0.96968 1.00918 1.00981 1.24066 1.12967 1.08205 0.98927 1.01404 0.95669
11 0.97188 0.99717 0.99217 1.22095 1.12424 1.09206 0.90153 0.96618 0.94712
12 0.97328 1.01185 1.01646 1.22594 1.12712 1.08673 1.00142 1.00690 0.97605
13 0.98380 1.00406 0.99031 1.25795 1.12887 1.10299 1.01577 0.96520 0.97867
14 0.96984 1.00438 0.99663 1.25243 1.12158 1.09500 1.00134 0.94197 0.97065
15 0.98062 1.00418 0.99714 1.23825 1.11918 1.11312 1.02316 1.01364 1.02781
16 0.98207 1.01942 1.02555 1.23506 1.11559 1.11504 0.82039 1.03531 1.04858
17 0.97683 1.01780 0.99163 1.24388 1.12152 1.12711 0.95689 1.03614 0.95729
18 0.98308 1.00747 0.99440 1.24032 1.06572 1.09789 1.02362 1.03051 0.88897
19 0.96685 1.00385 1.02560 1.24251 1.12152 1.10658 0.97722 1.02052 1.04532
20 0.98214 1.00258 0.99484 1.23671 1.10441 1.10068 1.01541 1.01277 0.96198
21 0.99568 1.00533 1.02667 1.23947 1.11284 1.09067 1.01046 0.96695 1.04094
22 0.98894 1.01338 1.01603 1.25292 1.12499 1.08401 0.99314 0.96685 0.96149
23 0.99144 1.01532 1.01610 1.26748 1.12850 1.09023 1.01625 0.98478 0.99795
24 1.01085 1.03944 1.04031 1.25336 1.14438 1.11315 1.04092 1.01765 1.03942

Mean 0.98024 1.00830 1.01290 1.23840 1.11860 1.09610 0.99322 0.99920 0.99917
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Table 5: Continued

m P 1,m

CCES
P 2,m

CCES
P 3,m

CCES
P 4,m

CCES
P 5,m

CCES
P 6,m

CCES
P 1,m

ACCES
P 2,m

ACCES
P 3,m

ACCES

1 1.26727 1.18477 1.13152 0.97613 1.00000 1.02977 1.38471 1.25662 1.20390
2 1.24586 1.15494 1.10371 0.96912 1.01454 1.03509 1.34748 1.24787 1.19390
3 1.25819 1.16647 1.12117 0.97004 1.01424 1.03082 1.37113 1.24875 1.19819
4 1.26216 1.17738 1.12287 0.96519 1.01299 1.04189 1.37996 1.25381 1.19733
5 1.26551 1.15414 1.10714 0.94453 1.01553 1.02458 1.38537 1.21824 1.18678
6 1.28222 1.10347 1.11360 0.94480 1.00184 1.02937 1.37905 1.20810 1.19219
7 1.26853 1.16364 1.04533 0.94942 1.01753 1.03620 1.36776 1.21816 1.17012
8 1.26334 1.14991 1.10896 0.94713 1.01297 1.04001 1.36662 1.21280 1.19580
9 1.26526 0.50269 1.11678 0.96147 1.00508 1.02518 1.36185 1.12510 1.20122
10 1.26600 1.07336 1.03876 0.94136 1.01433 1.01722 1.36478 1.21128 1.19435
11 1.23520 1.16356 1.11916 0.94057 0.99860 1.00934 1.35830 1.21554 1.19372
12 1.27576 1.16207 1.12434 0.95567 1.01674 1.01715 1.36982 1.21061 1.19886
13 1.26707 1.16654 1.14257 0.96230 1.00420 1.00432 1.38776 1.21423 1.20744
14 1.27918 1.15918 1.11597 0.94058 0.99968 1.00068 1.38532 1.20875 1.19372
15 1.26798 1.14557 1.13636 0.96108 1.00591 1.00558 1.38239 1.19228 1.20446
16 1.26763 1.13747 1.11802 0.95900 1.02190 1.02546 1.35990 1.19242 1.19296
17 1.27143 1.09282 1.09068 0.96012 1.02125 1.00703 1.37479 1.19697 1.20292
18 1.19816 0.92140 1.08874 0.95966 1.01070 0.99692 1.33685 1.14510 1.18242
19 1.17200 1.13599 1.10831 0.92480 1.00979 1.02111 1.33337 1.19477 1.19106
20 1.26324 1.12905 1.11147 0.96456 1.00138 1.00935 1.36014 1.19158 1.19051
21 1.24511 1.14561 1.07811 0.97529 1.00536 1.02677 1.36031 1.20150 1.17880
22 1.26725 0.85702 1.09922 0.95889 1.01558 1.03898 1.36358 1.16385 1.18541
23 1.28775 1.16122 1.07832 0.96566 1.01766 1.03212 1.38418 1.21098 1.18134
24 1.24154 1.15567 1.10707 0.99066 1.03616 1.05040 1.36587 1.21366 1.19571

Mean 1.25770 1.09850 1.10530 0.95783 1.01140 1.02301 1.36800 1.20640 1.19300

Table 6: Expenditure Ratios for Five Prefectures Relative to Tokyo Prefecture for Feenstra’s Method

for Adjusting For Variety Changes

m λ1,m λ3,m λ4,m λ5,m λ6,m µ1,m µ3,m µ4,m µ5,m µ6,m

1 1.20231 1.07822 1.00000 1.08543 1.00000 0.79849 0.82257 0.26450 0.31162 0.46641
2 1.18844 1.07353 1.00000 1.09716 1.00000 0.79358 0.82006 0.23832 0.30275 0.47014
3 1.19997 1.06358 1.00000 1.10777 1.00000 0.77661 0.82382 0.26155 0.30002 0.46938
4 1.19303 1.07364 1.00000 1.11060 1.00000 0.78831 0.80790 0.26793 0.27680 0.48433
5 1.23758 1.13580 1.00000 1.08930 1.00000 0.78909 0.81245 0.26517 0.38268 0.47729
6 1.36470 1.13256 1.00000 1.08584 1.00000 0.79424 0.79014 0.26529 0.37184 0.50640
7 1.34626 1.10605 1.00000 1.09260 1.00000 0.79145 0.83769 0.27317 0.39198 0.48750
8 1.37296 1.07043 1.00000 1.09562 1.00000 0.64519 0.85004 0.28657 0.38571 0.49214
9 1.34593 1.06642 1.00000 1.09667 1.00000 0.65514 0.86320 0.28067 0.37657 0.49084
10 1.37275 1.07395 1.00000 1.09947 1.00000 0.66197 0.86026 0.28324 0.41061 0.48937
11 1.36980 1.06994 1.00000 1.07709 1.00000 0.67703 0.86202 0.27959 0.40356 0.49514
12 1.34770 1.08799 1.00000 1.10268 1.00000 0.67166 0.87504 0.28321 0.38786 0.52102
13 1.34604 1.08472 1.00000 1.08845 1.00000 0.66844 0.85971 0.27801 0.39167 0.50904
14 1.37442 1.06866 1.00000 1.10779 1.00000 0.66440 0.86941 0.29237 0.40959 0.50344
15 1.34845 1.06502 1.00000 1.07682 1.00000 0.67109 0.86962 0.28589 0.44689 0.49567
16 1.32884 1.07675 1.00000 1.10389 1.00000 0.66019 0.86987 0.27220 0.41673 0.50382
17 1.30928 1.06781 1.00000 1.08723 1.00000 0.65245 0.85578 0.29067 0.42333 0.50436
18 1.31396 1.06561 1.00000 1.06356 1.00000 0.65713 0.86027 0.29014 0.41691 0.52151
19 1.35678 1.07028 1.00000 1.08673 1.00000 0.65684 0.85865 0.29830 0.42970 0.52021
20 1.31148 1.06358 1.00000 1.07660 1.00000 0.66173 0.85940 0.29923 0.42263 0.50508
21 1.31914 1.06800 1.00000 1.07282 1.00000 0.65360 0.87339 0.29904 0.43350 0.49356
22 1.34536 1.06629 1.00000 1.08263 1.00982 0.64132 0.86317 0.33337 0.47230 0.48144
23 1.34607 1.06195 1.00000 1.08113 1.01199 0.64699 0.83514 0.31800 0.45229 0.46938
24 1.34042 1.05930 1.00000 1.08833 1.00847 0.66521 0.85660 0.31780 0.44712 0.49423
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Table 7: Two CES Based Measures of the Increase in the Cost of Living for Five Prefectures due to

Differences in Product Availability Relative to the Tokyo Prefecture

m D1,m

CES
D3,m

CES
D4,m

CES
D5,m

CES
D6,m

CES
D1,m

CCES
D3,m

CCES
D4,m

CCES
D5,m

CCES
D6,m

CCES

1 1.00185 1.00545 1.06207 1.05031 1.03514 1.00744 1.02206 1.27357 1.21788 1.14876
2 1.00265 1.00579 1.06709 1.05117 1.03476 1.01070 1.02344 1.29794 1.22190 1.14710
3 1.00320 1.00600 1.06261 1.05114 1.03484 1.01290 1.02432 1.27618 1.22177 1.14744
4 1.00278 1.00646 1.06145 1.05486 1.03337 1.01122 1.02621 1.27059 1.23923 1.14091
5 1.00107 1.00365 1.06195 1.04041 1.03406 1.00432 1.01472 1.27299 1.17247 1.14396
6 0.99636 1.00504 1.06192 1.04192 1.03129 0.98546 1.02040 1.27289 1.17929 1.13171
7 0.99713 1.00346 1.06052 1.03914 1.03307 0.98853 1.01397 1.26613 1.16672 1.13956
8 1.00550 1.00428 1.05822 1.03977 1.03262 1.02229 1.01731 1.25515 1.16956 1.13760
9 1.00571 1.00376 1.05922 1.04086 1.03275 1.02314 1.01517 1.25991 1.17447 1.13815
10 1.00434 1.00359 1.05878 1.03667 1.03289 1.01756 1.01450 1.25782 1.15559 1.13877
11 1.00342 1.00367 1.05940 1.03845 1.03234 1.01380 1.01481 1.26079 1.16358 1.13634
12 1.00452 1.00223 1.05878 1.03921 1.02996 1.01828 1.00898 1.25785 1.16701 1.12586
13 1.00479 1.00317 1.05967 1.03936 1.03105 1.01939 1.01278 1.26209 1.16770 1.13064
14 1.00412 1.00333 1.05726 1.03643 1.03156 1.01665 1.01346 1.25058 1.15453 1.13291
15 1.00453 1.00348 1.05833 1.03367 1.03229 1.01833 1.01405 1.25569 1.14225 1.13612
16 1.00595 1.00297 1.06069 1.03578 1.03153 1.02409 1.01197 1.26695 1.15164 1.13276
17 1.00716 1.00409 1.05754 1.03576 1.03148 1.02906 1.01653 1.25191 1.15154 1.13254
18 1.00667 1.00395 1.05763 1.03751 1.02992 1.02706 1.01594 1.25233 1.15937 1.12567
19 1.00523 1.00383 1.05630 1.03508 1.03003 1.02117 1.01548 1.24603 1.14851 1.12618
20 1.00644 1.00408 1.05615 1.03630 1.03141 1.02611 1.01648 1.24532 1.15395 1.13225
21 1.00674 1.00316 1.05618 1.03527 1.03249 1.02733 1.01273 1.24547 1.14937 1.13700
22 1.00670 1.00376 1.05100 1.03084 1.03319 1.02720 1.01520 1.22109 1.12972 1.14013
23 1.00628 1.00545 1.05324 1.03292 1.03428 1.02545 1.02207 1.23162 1.13893 1.14495
24 1.00521 1.00441 1.05327 1.03315 1.03203 1.02107 1.01783 1.23176 1.13994 1.13498

Mean 1.00410 1.00410 1.05870 1.03940 1.03240 1.01660 1.01670 1.25760 1.16820 1.13680

Table 8: KBF Price Indexes for Six Japanese Prefectures

m P 1,m

KBF
P 2,m

KBF
P 3,m

KBF
P 4,m

KBF
P 5,m

KBF
P 6,m

KBF

1 1.00750 1.00000 1.01673 1.22156 1.16826 1.16203
2 0.99729 1.00219 1.03100 1.19432 1.14991 1.14966
3 0.99879 1.00764 1.01209 1.21193 1.15530 1.15177
4 0.99029 1.00682 1.02002 1.22187 1.15858 1.13754
5 1.00754 1.00632 1.01320 1.22941 1.14437 1.15480
6 1.00856 0.99199 1.01200 1.23697 1.11237 1.14718
7 1.00882 1.01259 1.02404 1.22846 1.15770 1.14954
8 0.99997 1.00658 1.02667 1.21837 1.14243 1.15528
9 1.00253 0.99920 0.99641 1.23171 1.15935 1.16195
10 0.99762 1.00638 1.02124 1.23365 1.16111 1.14145
11 0.99842 0.99817 1.00641 1.21512 1.15780 1.15846
12 0.99996 1.00885 1.02296 1.21965 1.16225 1.15683
13 1.00881 1.00230 0.99388 1.24911 1.16387 1.17004
14 0.99543 1.00587 1.00436 1.24914 1.15837 1.16224
15 1.00587 1.00278 0.99547 1.23194 1.15813 1.18140
16 1.00493 1.01269 1.02346 1.22637 1.15608 1.18152
17 1.00345 1.01478 1.00598 1.23750 1.15968 1.19261
18 1.00765 1.00284 0.99415 1.22710 1.09765 1.16746
19 0.99100 1.00313 1.02183 1.23460 1.15853 1.17477
20 1.00785 1.00167 1.00710 1.22346 1.14226 1.16712
21 1.02031 1.00602 1.03212 1.22529 1.14791 1.16295
22 1.01379 1.01504 1.03993 1.23543 1.16563 1.14856
23 1.01575 1.01826 1.03262 1.25912 1.16641 1.15835
24 1.03464 1.03978 1.05133 1.24554 1.18268 1.17943

Mean 1.00530 1.00720 1.01690 1.22950 1.15360 1.16140
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