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Abstract  

We demonstrate that heat disproportionately impairs human capital 

accumulation among low-performing students compared with their 

high-performing peers, using data from 22 million students who 

took nationwide examinations in Japan between 2007 and 2019. 

Given the strong correlation between academic performance and 

socioeconomic background, this suggests that heat exposure 

exacerbates pre-existing socioeconomic disparities among children. 

However, access to air conditioning in schools significantly 

mitigates these adverse effects across all achievement levels, with 

particularly pronounced benefits for lower-performing students. 

These findings suggest that public investment in school 

infrastructure can help reduce the unevenly distributed damage 

caused by heat to student learning. 
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1. Introduction 

The impact of global warming on economic inequality is a growing concern (Diffenbaugh 

and Burke 2019). Previous studies suggest that poor countries and individuals are 

disproportionately affected by climate change (Dell et al. 2012; Burke et al. 2015). However, 

these studies have not fully isolated whether this is because they live in warmer regions and 

experience higher temperatures (“exposure”), or because they have limited resources and poorer 

health, thereby making them more susceptible to the same heat exposure (“vulnerability”). This 

distinction is crucial because they require different policy responses: exposure-focused policies 

to reduce direct contact with extreme heat (e.g., urban cooling and housing interventions), or 

vulnerability-focused policies that enhance adaptive capacity (e.g., subsidies for air conditioning, 

healthcare access) to improve the heat resilience among the poor (Hsiang et al. 2019). 

Cognitive skills, a key aspect of human capital, play a key role in shaping labor market 

outcomes and widening the economic gap between the rich and poor (Cunha and Heckman 

2007). Children’s cognitive functions may be particularly vulnerable to environmental stressors 

owing to their physiological and neurocognitive immaturity (Rowland 2008). Therefore, 

prolonged exposure to extreme temperatures can disrupt students’ learning owing to distractions 

and loss of concentration, ultimately leading to a lasting impact on the accumulation of students’ 

human capital. Therefore, the warming climate underscores the importance of improving 

children’s learning environments.  

This study examines how cumulative exposure to extreme heat affects student achievement 

differently based on their socioeconomic background. Historically, educational investment has 

played a critical role in strengthening economies and improving the social distribution of income 

and wealth (Hanushek et al. 2003; Blandena et al. 2023). Although progress has been made in 

understanding the average impact of heat on educational outcomes and the effectiveness of 

mitigation measures (e.g., Park et al. 2020), the distributional impacts remain largely 

unexplored. 

Assessing distributional impacts, particularly identifying which individuals bear the burden 

of heat-related damage disproportionately, requires a representative sample. However, prior 

studies have been unable to assess the distributional impacts owing to their specific samples or 

lack of individual-level data. For example, Cho (2017) and Park et al. (2020) examined the 

effects of cumulative heat exposure on test scores but focused on high school students taking 

college entrance exams in Korea and the PSAT in the United States. These students are likely to 

come from a higher socioeconomic background than the general population, making them 

unsuitable for a distributional analysis. Park et al. (2021) used school district-level achievement 

data from the US, precluding an analysis by socioeconomic status (SES) within districts. 

To overcome these challenges, we analyze individual-level test scores from nationwide 
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exams in Japan between 2007 and 2019 for all public-school students in grades six and nine, 

covering approximately 22.8 million students. Importantly, the combination of individual-level 

data and the nationally representative nature of the exams provides an ideal setting for 

examining, for the first time, the distributional impact of temperature on test scores within 

schools. By holding the “exposure” constant for all the students in the school, we can isolate the 

role of vulnerability—if low-SES students experience greater score declines than high-SES peers 

under the same heat exposure, the disparity is likely to reflect differences in “vulnerability” by 

socioeconomic backgrounds (e.g., differential access to private tutoring). 

Specifically, we analyze test scores at percentile ranks (10th, 25th, 50th, 75th, and 90th 

percentiles) within schools over time, comparing students who experienced hotter summer 

(colder winter) school days with those who experienced milder summer (milder winter) school 

days. Since a student’s rank correlates with socioeconomic factors, such as household income 

and parental education, it serves as a reasonable proxy for socioeconomic background, allowing 

us to assess whether cumulative exposure to extreme temperatures differentially impacts student 

performance based on SES. 

This study has four main findings. First, we demonstrate that cumulative exposure to both 

hot and cold school days negatively affects student learning, on average. While prior studies 

have examined the cumulative impact of heat (Cho 2017; Park et al. 2020, 2021) and cold 

(Johnston et al. 2021) exposure separately, we show that both extremely hot and cold school days 

in the previous academic year impair the learning environment. Specifically, each additional 

summer school day above 34°C, compared with the normal temperature range of 18–22°C, 

reduces test scores by 0.19% of a standard deviation (SD). Similarly, replacing a day of normal 

temperature at 18–22°C with a winter school day below 6°C also reduces test scores by 0.13% of 

SD.  

Second, and most importantly, we document that the negative impact of extreme 

temperatures significantly varies among students across different score distributions. 

Specifically, we find that the adverse effects of heat are far greater for low-performing students 

than for top performers. Each additional day above 34°C lowers scores by 0.09% SD for students 

in the top 10th percentile, but by 0.30% SD for those in the bottom 10th percentile, an impact 

approximately three times larger. This highlights how the average effects mask the substantial 

heterogeneity of heat damage between low-performing students and their high-performing peers, 

overlooking a source of academic inequality. 

Importantly, by comparing temperature effects within schools (i.e., with the school fixed 

effect), we hold school-level “exposure” constant, eliminating influences by school-level 

resources such as staffing ratio, teacher quality, or access to air conditioning. Instead, the results 

likely reflect differences in “vulnerability”—how advantaged and disadvantaged students 
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differentially adapt to the same school heat exposure after school or at home. Indeed, advantaged 

students tend to study longer after school, spend more money on education, and are more likely 

to attend cram school. Given the strong link between academic performance and SES, this 

finding suggests that without further public investment in school infrastructure, climate change 

will widen pre-existing socioeconomic disparities among children. 

Third, we examine whether adaptation through school air conditioning (AC) can mitigate 

the impact of heat on learning. Strikingly, all the negative effects of heat occur in schools 

without AC. Conversely, if considered causal, school AC largely offset the adverse effects of 

heat. On average, without school AC, test scores decline by 0.56% SD by one additional day 

above 34°C, but access to school AC lessens this by 0.41% SD, indicating that AC alleviates 

approximately 73% of the negative effects of heat on learning. However, since school AC may 

correlate with other adaptive technologies in the school or with additional resources available to 

students that could independently enhance learning, the results should be interpreted with 

caution. 

Finally, we examine how the impact of school AC availability differs among students across 

various score distributions. In schools without AC, the negative effects of extreme temperatures 

are significantly more pronounced for low-performing students, who are more likely to come 

from low-SES backgrounds. However, in schools with AC, extreme heat has little impact on test 

scores across all achievement levels. Consequently, the benefits of such public investments are 

progressive, benefiting low-performing students more than high-performing ones. Specifically, 

without AC, one extra day above 34°C widens the 90th–10th score gap by 0.71% SD, but school 

AC reduces this widening gap by 0.55% SD. This finding suggests that public investment, such 

as installing AC in schools (instead of at the household level), can largely mitigate unevenly 

distributed heat damage. This is particularly encouraging because both primary and secondary 

education are compulsory in Japan, as in many other countries where public investment plays a 

critical role. 

This study contributes to several strands of literature. First, it contributes to the nascent 

body of research on the distribution of climate damage (Hsiang et al. 2019) and environmental 

inequality more broadly (Banzhaf et al. 2019; Cain et al. 2024). We show that heat 

disproportionately impairs the human capital accumulation of disadvantaged students, suggesting 

that they face not only greater exposure to climate risks but also greater vulnerability to these 

risks, both of which may contribute to the widening socioeconomic disparities among students.  

Second, this study contributes to the emerging literature linking environmental and 

economic inequalities (Diffenbaugh and Burke 2019; Gilli et al. 2024). As educational 

attainment and earnings are positively correlated (Chetty et al. 2011), our findings suggest that 

environmental inequality, which worsens educational inequality, could be a pathway through 
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which global warming accelerates economic inequality. Specifically, our sample (grades six and 

nine) comprises younger students compared with samples from other studies that focused more 

on students nearing high school graduation (Cho 2017; Park et al. 2020). Dynamic 

complementarities, in which human capital investment in early childhood may complement later 

investments (Cunha and Heckman 2007; Johnson and Jackson 2019), indicate that earlier heat 

shocks could have a more lasting impact on future economic outcomes.  

Third, this study contributes to the literature on temperature adaptation (Carleton et al. 

2022; Burke et al. 2024), addressing whether environmental hazards are unavoidable or can be 

mitigated using current technology.1 While evidence supports adaptation for heat-related 

mortality (Barreca et al. 2016; Cohen and Dechezleprêtre 2022) and violence (Colmer and 

Doleac 2023), findings on workplace injuries are mixed (Dillender 2021; Park et al. 2021b). 

Regarding educational outcomes, a seminal study by Park et al. (2020) demonstrated that school 

AC reduces the cumulative impact of heat on learning. Moving beyond the average impact, we 

examine its distributional effects, revealing how adaptation unequally benefits students. 

Finally, this study contributes to the debate on the effectiveness and efficiency of resource-

based education policies in relation to the accumulation of human capital (Baron 2022; Cellini et 

al. 2010; Jackson et al. 2015; Lafortune et al. 2018), particularly focusing on investments in 

school facilities (Lafortune and Schönholzer 2022; Martorell et al. 2016; Neilson and 

Zimmerman 2014). With a few exceptions, such as mold remediation and ventilation by Stafford 

(2015) and school air conditioning by Park et al. (2020), previous studies have not examined the 

impact of upgrades on specific school facilities. To the extent that policymakers are concerned 

about equity, the social returns on public investment in school infrastructure, particularly school 

AC, may be higher than previously recognized. 

The remainder of the paper is structured as follows: Section 2 offers a simple conceptual 

framework; Section 3 details the data; Section 4 outlines the econometric model; Section 5 

discusses the baseline findings on the cumulative effects of heat and cold on test scores as well as 

their distributional implications; Section 6 examines the offsetting impact of school air 

conditioning on these adverse effects; and finally, Section 7 concludes the study. 

 

2. Conceptual framework 

This section outlines a simple conceptual framework for the distributional impact of 

extreme temperatures, based on Hsiang et al. (2019) and Behrer et al. (2021). We discuss below 

how an empirical observation—that climate impacts are often greater for poor 

countries/regions/individuals—can mask two different explanations: differing exposure and/or 

                                                           

1 See, for example, Carleton et al. (2024) for a review of this literature. 
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vulnerabilities by socioeconomic conditions. 

Damage is defined as a function of two factors: the level of exposure to environmental 

stressors (e.g., heat, cold, and pollution) and vulnerability, both of which can correlate with SES 

(e.g., income, education, and occupation). Marginal damage, which is the slope of the damage 

function, can vary by SES for two reasons. First, as shown in panel A of Figure 1, nonlinearities 

in the exposure-damage relationship can lead to greater damage for low-SES individuals who 

experience more heat exposure than their high-SES counterparts.2 Alternatively (or additionally), 

as illustrated in panel B of Figure 1, the damage function itself may differ by SES due to factors 

such as baseline health or defensive investments correlating with SES. 

Distinguishing whether SES-based disparities in heat impact stem from a single nonlinear 

damage function with differential exposure or differing vulnerabilities is crucial for policy 

design. If the issue is differential exposure by SES, reducing direct contact with extreme heat 

(e.g., urban cooling, housing interventions, and warning systems) could help. Conversely, if 

vulnerability varies by SES, policies should prioritize targeted support to enhance adaptive 

capacity (e.g., subsidizing air conditioning and expanding medical programs to address heat-

related illnesses) or promote broader poverty reduction to strengthen the heat resilience of low-

SES individuals (Hsiang et al. 2019; Burke et al. 2024). 

However, distinguishing between exposure and vulnerability is difficult because both 

exposure and vulnerability are highly correlated with SES. For example, economic damages 

from hot temperatures are greater in poorer regions (Dell et al. 2012; Burke et al. 2015), which 

are also often hotter, reflecting both exposure and vulnerability (Behrer et al. 2021). This study is 

the first to rigorously isolate the impact of vulnerability from exposure. Using individual-level 

data from nationally representative exams, we analyze the distributional impact of temperature 

within schools, holding exposure constant, at least in the school environment where most 

learning is supposed to occur. If the reductions in test scores are greater for low-SES students 

than for their high-SES counterparts in the same school with identical heat exposure, this 

suggests that the difference in marginal damages likely arises from the varying vulnerabilities 

between these groups. 

 

3. Data  

We combine temperature data with nationwide test data of nearly 22.8 million students in 

Japan. Appendix B provides details of the data sources. We discuss the school AC penetration 

data in Section 6. 

 

                                                           

2 Park et al. (2018) demonstrated that the poor tend to live in hotter locations both within and across countries.  
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3.1. Test score 

We use data on the nationwide exams, called the National Assessment of Academic Ability 

(hereinafter referred to as “NAAA”), conducted by the Ministry of Education, Culture, Sports, 

Science and Technology (MEXT). The NAAA aims to monitor the academic performance and 

progress of students nationwide, and contribute to the improvement of educational policies 

(MEXT 2024a). The NAAA has been conducted annually since 2007, except in 2011, when the 

NAAA was completely canceled because of the Great East Japan Earthquake, and in 2010 and 

2012, when the NAAA was administered to a random subset of schools.3 

The NAAA is administered to students in their final years of public primary (grade six) and 

secondary school (grade nine).4 Both primary and secondary education are compulsory in Japan. 

Nearly 100% of public primary and secondary schools participated in the NAAA (NIER 2024). 

Although the subjects varied slightly over time, we focus on reading and mathematics, which are 

consistently assessed throughout our sample period. 

The NAAA is held on the 3rd or 4th Tuesday of April5, the month when the academic year 

begins in Japan. Consequently, the NAAA is designed to assess students’ understanding of the 

material covered until the previous academic year (NIER 2021).6 This timing aligns well with 

our research design on learning disruptions from the past summer and winter. Since the exam 

date is predetermined and the NAAA is centrally administered and graded, no room exists for 

endogenous choice in the timing of test-taking or score manipulation. 

The NAAA is not a high-stakes exam for students or schools. Students’ scores do not affect 

their promotion to higher grades or better schools. Furthermore, school performance has no 

direct consequences, such as reduced federal funding, unlike test-based accountability systems 

such as the No Child Left Behind Act in the United States. The only potential stakes are 

reputation concerns for schools (Morozumi and Tanaka 2023). 

We use 2007–2019 NAAA data with MEXT’s permission for the secondary use of 

confidential information. Appendix Table A1 details the number of participating schools and 

students each year. From 2007 to 2019, approximately 22.8 million students took the exams, 

with approximately 30,000 schools participating annually (excluding 2010 and 2012). See 

Appendix Figure A1 for the school locations. For statistical power, we combine both grades in 

the main analysis unless stated otherwise. Since the exams are administered to both grades on the 

                                                           

3 This is entirely due to political reasons. In 2009, a change of government occurred, and the new 
administration chose to cut the NAAA’s budget. 
4 In 2022, 1.3% of primary and 7.7% of secondary students attended private schools (MEXT 2022). Japan’s 
compulsory education includes six years of primary (ages 6–12) and three years of secondary (ages 12–15). 

School grades are strictly age-based due to rigid entry rules, rare grade retention, and consistent promotion 

rates (Shigeoka 2015). 
5 From 2019, it was held on Thursday instead of Tuesday. 
6 The NAAA is not designed to measure general intelligence or IQ.  



8 

 

same day, all students experience identical conditions, including cumulative heat exposure and 

test-day weather. 

Our primary outcome is the combined reading and math scores, although we also separately 

analyze each subject. Since exam difficulty varies by year, we calculate z-scores for each year 

and grade and multiply them by 100 for interpretation as percentage changes. Student-level data 

include limited demographics such as gender. The NAAA also conducts student surveys in every 

round and parental surveys in 2013 and 2017. Student surveys capture behaviors (e.g., after-

school study), while parental surveys (administered to about 4.8% of randomly selected 

schools)7 collect household information such as household income, father’s occupation, and 

parental education. Panel A of Appendix Table A2 provides descriptive statistics of the 

individual characteristics. 

 

3.2. Temperature 

We use daily temperature data for 2006–2018 from the Japan Automated Meteorological 

Data Acquisition System (AMeDAS) operated by the Japan Meteorological Agency. We utilize 

AMeDAS data from a subset of 899 weather stations that have daily temperature information 

available for at least 99% of the days from 2006 to 2018. To create a balanced panel, missing 

daily observations were imputed using the nearest station with complete data. Each school was 

then assigned to its nearest weather station to ensure that our estimates remain unaffected by 

changes in the number or location of the stations. 

Panel A of Appendix Figure A2 displays the locations of all 899 weather stations as of 

2018. The density of stations is high, given the country’s size.8 Panel B illustrates the cumulative 

distribution of the distance from the nearest station to each school. The mean (median) distance 

is 6.95 (6.48) km, compared with 15.6 km in the US (Park et al. 2020).  

Our primary measure of cumulative exposure to extreme temperatures is the number of hot 

and cold school days that a student experienced in the year leading up to the test in April (i.e., 

from April of the previous year to March of the test year). We use the daily maximum 

temperature, because it typically occurs during school hours. Following Park et al. (2020), we 

focus on temperatures during terms as school days and treat school break days and weekends 

during terms as separate non-school days.9 

                                                           

7 In 2013 and 2017, parental surveys covered 2,821 of 59,734 schools (4.72%) and 203,023 of 4,255,669 
students (4.77%), with an 84.9% response rate (172,418 responses). 
8 For example, the United States, which is 26 times larger than Japan, has only 3.3 times (nearly 3,000) valid 
weather stations nationwide (Park et al. 2020). 
9  School days, school break days, and weekends during the terms are mutually exclusive, averaging 212.6, 

85.1, and 67.6 days, respectively. Lacking a comprehensive national school calendar dataset, we assign each 
school a probable start and end date using the 2018 calendar of its prefectural capital (Appendix Figure A3). 

Colder regions tend to have shorter summer and longer winter breaks, while warmer regions show the reverse.  
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We also use weather station data to construct both cumulative and test-date measures for 

rainfall, wind speed, and relative humidity. We also include pollution data from the nearest 

monitoring station, as it is known to impact short-term cognition (e.g., Ebenstein et al. 2016). 

Panel B of Appendix Table A2 presents the descriptive statistics of the weather conditions in our 

main sample.  

 

4. Econometric model 

4.1. Estimation of the average of marginal damages 

We exploit year-to-year variations in the number of hot and cold school days to identify the 

causal impact of exposure to extreme temperatures on human capital accumulation. Specifically, 

we compare the test scores of students in the same school who experienced hotter summers or 

cooler winters with those exposed to milder conditions.  

Figure 2 shows the spatial variation in the mean daily maximum temperature of the previous 

year (panel A) and temporal variation in school days within each temperature bin from last April 

to March of the test year (panel B). Panel A highlights significant climate differences across 

regions, whereas panel B reveals considerable year-to-year variations in both cold and hot school 

days.10 

To reduce the computational burden, we collapse the data into school-year cells and weigh 

all estimates by the number of students in each cell. Specifically, we estimate the following 

specifications.  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠  + 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠 , [1] 

where the dependent variable is the average z-score for school s in year t. 𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘  represents the 

number of school days in the prior year where the maximum temperature falls into one of nine 

bins k: below 6°C, 6–10°C, 10–14°C, 14–18°C, 22–26°C, 26–30°C, 30–34°C, and above 34°C, 

with 18–22°C as the reference, the optimal range for test performance. Since exams are held at 

the beginning of the academic year to assess material from the previous academic year, 

considering hot and cold days from the previous summer and winter is reasonable because they 

may disrupt the learning environment.  

This specification enabled us to flexibly capture the nonlinear temperature effects. The 

coefficient of interest are 𝛽𝛽𝑘𝑘. 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑠𝑠 are school FE and year FE, respectively. 𝑋𝑋𝑠𝑠𝑠𝑠′  includes 

other time-varying school-level controls, such as precipitation, humidity, and pollution. Standard 

errors are clustered at the weather station level (N=889) to account for potential serial 

correlations reflecting the underlying variation in our treatment variable (Abadie et al. 2023). 

                                                           

10 Extremely hot school days are rarer than cold ones since the summer break (typically in August) effectively 

prevents attendance during peak heat. 
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The underlying assumption for 𝛽𝛽𝑘𝑘 to reflect the causal impact of temperature is that the temporal 

and geographic variations in prior-year temperature are uncorrelated with unobserved 

determinants of student learning.  

Identifying variation—. To visualize the identifying variation underlying the baseline 

specification, we plot residuals from a regression of the number of school days below 6°C and 

above 34°C against school fixed effects. Figure 3 illustrates the interquartile and interdecile 

ranges of the residual variations by prefecture and year. These distributions confirm ample 

variation in the number of extreme-temperature school days within each prefecture and each 

year, ensuring that our estimates are not driven by variations in a specific region or year. 

 

4.2. Estimating heterogeneous marginal damages 

This study’s main contribution is that it moves beyond the effect of temperature on average 

test scores (Equation [1]) and examines its distributional impacts. Using individual test scores 

linked to school IDs, we assess the effect of the temperature by the score rank within schools. 

Specifically, for each school, we compute the z-scores at the 10th, 25th, 50th, 75th, and 90th 

percentiles within schools. We then run each value separately as the outcome as follows.  𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴 𝐴𝐴𝑎𝑎 𝑋𝑋 𝑝𝑝𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝐴𝐴 (𝑋𝑋 = 10, 25, 50, 75,𝐴𝐴𝑝𝑝𝑎𝑎 90)𝑠𝑠𝑠𝑠 
= ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠+ 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠, [2] 

We occasionally use the test score gap at different percentiles (e.g., the 90th-10th test gap) as the 

outcome.  

What does the within-school rank capture? The 2013 and 2017 NAAA surveys of parents in 

a subset of schools show a strong positive correlation between student rank and socioeconomic 

background. Figure 4 illustrates this monotonic relationship with household income (panel A), 

father’s occupation (panel B), and parents’ education (panels C and D). For example, the income 

gap between the 90th and 10th percentiles is 1.79 million yen (approximately 17.9K USD), while 

the gap in fathers’ university education is 30.4 percentage points. Overall, we posit that a 

student’s within-school rank is largely indicative of their socioeconomic status. 

Finally, we demonstrate that the variation in scores within schools reflects most of the 

variation in scores at the national level. Figure 5 shows the within-school score distribution by 

school rank, grouping schools into ventiles based on each year’s average scores. While higher-

ranked schools have more compressed score distributions, considerable within-school variations 

exist across all ranks. This addresses the concern that within-school test score variations are 
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small and potentially missing larger national-level variations in test scores.11  

5. Baseline results 

5.1. Average effects 

First, we present graphical evidence of the average effects of cumulative exposure to heat 

and cold on test scores. Figure 6 shows 𝛽𝛽𝑘𝑘 from equation [1] with 95% confidence intervals, 

where test scores are measured in hundredths of a standard deviation. The figure indicates that 

test scores decline as the number of hot or cold school days increases. The extremely hot days at 

the right end of the figure (above 34°C) and extremely cold days at the left end (below 6°C) are 

especially harmful to student learning, highlighting the nonlinear impact of temperature on 

learning. 

This aligns with the well-documented “U-shaped” mortality-temperature relationship (or 

“inverse-U” in our case, as damage is negative), where both hot and cold days increase mortality 

globally (e.g., Barreca et al. 2016; Carleton et al. 2022; Cohen and Dechezleprêtre 2022; Heutel 

et al. 2021). While some studies have examined the cumulative effects of heat (Cho 2017; Park 

et al. 2020, 2021a) and cold (Johnston et al. 2021) on test scores separately, we are the first to 

show that both extremes in the same country impair students’ learning environments and hinder 

teachers’ abilities to teach by causing distractions and a loss of concentration. 

In terms of magnitude, one additional school day below 6°C or above 34°C in the previous 

year (compared with 18–22°C) reduces test scores by 0.13% SD and 0.19% SD, respectively (p < 

0.01). These estimates align with prior research on the effects of cumulative exposure to heat or 

cold on test scores (see Appendix Table A3 for details). However, differences in institutions 

across countries (such as teacher quality, class size, and AC availability), along with variations in 

climate, necessitate caution when making international comparisons. For comparison, Cho 

(2017) found that in Korea, one extra day above 34°C (vs. 28–30°C) reduces math and English 

scores by 0.42% and 0.64% SD, respectively, for G12 students. In the US, Park et al. (2020) 

reported score declines of 0.07% SD for days above 100°F (37.8°C) and 0.05% SD for days 

above 90°F (32.2°C) (vs. 60s°F) for G10/11 students. Park et al. (2021a) showed that one extra 

day above 80°F (26.7°C) (vs. 60–69°F) lowers test scores by 0.10% SD for G3–G5 and 0.03% 

SD for G6–G8. Regarding cold exposure, Johnston et al. (2021) found that one additional day 

below 60°F (15.6°C) (vs. 65–75°F) decreases test scores by 0.12% SD in Australia. 

 

5.2. Distributional impact 

Next, we examine whether the negative impacts of extreme temperatures significantly 

                                                           

11 The decomposition of the variation in test scores shows that as much as 91–93% occurs within schools rather 
than between schools over the years, likely due to the relatively uniform quality of public schools compared to 

private ones. Furthermore, the school curriculum is uniformly determined by the MEXT’s Course of Study. 
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varies among students across different score distributions. Figure 7 presents 𝛽𝛽𝑘𝑘 from Equation 

[2], where z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within schools (in 0.01σ) 
are the outcomes. This figure clearly indicates that the negative effects of extreme temperatures 

are significantly greater for lower-performing students. Appendix Table A4 provides the 

corresponding estimates.  

One additional hot day above 34°C lowers scores by 0.09% SD for students in the top 10th 

percentile (i.e., 90th percentile), while the impact on the bottom 10th percentile is 0.30% SD, 

which is approximately three times larger. Adverse effects consistently increase as the rank 

decreases. Similarly, an extra cold day below 6°C leads to a negligible reduction of 0.03% SD 

for students in the top 10th percentile (not statistically significant), while the bottom 10th 

percentile experiences a decline of 0.26% SD. Consequently, both the extremely hot and cold 

conditions widen the test score gap between the 90th and 10th percentiles by 0.22% and 0.23% 

SD, respectively. Given the strong link between academic performance and SES (Figure 4), these 

results suggest that exposure to extreme temperatures exacerbates pre-existing academic 

inequality by SES among children.  

Source of varying vulnerability—. Importantly, since we compare temperature effects 

within schools (with school FE), keeping “exposure” at school constant, our results are not 

driven by school resources (e.g., class size, teacher quality, or AC). Instead, they likely reflect 

“vulnerability”—individual or household adaptations outside school (e.g., private tutoring). This 

study’s main goal is to uncover the presence of socioeconomic disparities in vulnerability to 

extreme temperatures. Consequently, it is beyond the scope of this study to fully explore the 

underlying sources of such heterogeneity in vulnerability owing to limited data on detailed 

student and household behaviors during the hot and cold days of the previous summer and 

winter. 

Nevertheless, Appendix Figure A4 shows that higher-SES students tend to study longer 

after school, spend more money on education, and are more likely to attend cram school. 

Additionally, Appendix Table A5 suggests that longer after-school study hours may mitigate the 

negative effects of heat exposure.12 However, other factors such as better baseline health among 

higher-SES students (Case et al. 2002), may also contribute to the observed heterogeneity. 

Understanding the specific sources of these unequal vulnerabilities is an avenue for future 

research. 

 

                                                           

12 Educational spending and cram school attendance data are limited to parental surveys from 2014 and 2017, 
covering only 4.7% of students. Thus, unlike after-school hours from student surveys available for all years, 

they cannot be included as mediators.  
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6. The impact of AC 

6.1. Average effects of school AC 

Air conditioning (AC) is the main technology for adapting to heat (Barreca et al. 2016), but 

its widespread adoption in public primary and secondary schools in Japan has occurred only 

recently. During the sample period from 2006 to 2018, AC coverage in public primary and 

secondary schools increased from approximately 10% to 50%, reaching nearly 100% by 2022.13 

Unfortunately, the government began reporting the penetration rates of school AC in public 

primary and secondary schools at the municipal level only in 2017 (MEXT 2024b). The school 

council of each municipality determines the installation of AC in public schools within the 

municipality.14 Using this data in 2018, the last year of the sample period, we categorize schools 

into municipalities with 0% (“schools without AC”), 100% (“schools with AC”), and 

intermediate AC penetration. Thus, schools without AC had no AC throughout the entire period 

of 2006–2018 without any measurement error. Conversely, schools with AC only indicate full 

availability at some point during the sample period, likely leading to an underestimation of the 

positive impact of AC on test scores. 

Figure 8 maps municipalities with 100% (“schools with AC”), 0% (“schools without AC”), 

and partial (>0% & <100%) AC penetration. Clearly, schools without AC are more common in 

the cooler northern region, while both with and without AC are widely distributed in central 

Honshu, Japan’s main and largest island. 

One concern is that school AC penetration may correlate with many factors at the school or 

municipal levels that could directly impact test scores. However, Figure 9 shows that after 

controlling for the average temperature, the AC penetration rate in 2018 is not strongly linked to 

taxable income per capita (panel A) or the student-to-teacher ratio, a measure of per-pupil 

educational expenditure at school (panel B). School AC could still correlate with other adaptive 

technologies or resources that could independently enhance student learning; therefore, the 

results below should be interpreted with caution. 

We now examine the average impact of access to school AC on test scores. Figure 10 

illustrates 𝛽𝛽𝑘𝑘 from Equation [1] separately for schools with and without AC. Strikingly, all the 

negative effects of heat are concentrated in schools that lack AC throughout the sample period. 

Conversely, AC largely mitigates the adverse impact on learning if taken causally. 

To assess how effectively school AC mitigates the impact of heat on learning, we conduct a 

formal regression analysis. Specifically, we interact the cross-sectional measure of AC 

penetration in 2018 (“school AC” dummy) with the number of school days in each temperature 

                                                           

13 Source: https://www.mext.go.jp/content/20240930-mxt_sisetujo01-000013462_02.pdf  
14 A total of 1,724 municipalities exist as of April 1, 2019.  

https://www.mext.go.jp/content/20240930-mxt_sisetujo01-000013462_02.pdf


14 

 

bin and include them in our baseline specification [1]. To highlight the effect of AC availability, 

we focus on schools in municipalities with either 0% or 100% AC (56.9% of school-year 

observations). However, as Appendix Figure A5 shows, results remain robust when including 

schools from municipalities with partial AC (>0% & <100%) in the “with AC” category. 

Specifically, we estimate 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + ∑ 𝛾𝛾𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 ∗ 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑝𝑝 𝐴𝐴𝐴𝐴 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠+ 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠, [3] 

where the coefficient 𝛽𝛽𝑘𝑘 now measures the impact of heat on a school without AC, while 𝛾𝛾𝑘𝑘 

represents the difference in that impact compared to a fully air-conditioned school. Table 1 

reports 𝛽𝛽𝑘𝑘 and 𝛾𝛾𝑘𝑘 from Equation [3]. Column (1) shows that school AC largely offsets the 

negative effects of extreme heat (above 34°C). Without AC, test scores drop by 0.56% SD, but 

the interaction with the AC dummy reduces this by 0.41% SD, suggesting that AC mitigates 

approximately 73% of the adverse impact of heat on learning. 

The offsetting effect of school AC may reflect other factors that correlate with AC 

availability. To address this concern, column (2) controls for interactions between temperature 

bins, municipality-level taxable income per capita, and the student-teacher ratio. The results 

remain robust and consistent with Figure 9, which shows that school AC is not strongly 

correlated with these variables. Column (3) further controls for the home AC share, although its 

measurement at the prefecture level contains significant measurement errors. Nevertheless, the 

school AC effect persists, suggesting that it does not merely capture the effect of home AC 

availability. 

Other robustness—. Appendix Table A6 presents additional robustness checks. The 

estimates for the days above 34°C and their interaction with the school AC dummy are reported 

due to their greatest relevance to global warming. Column (1) shows baseline estimates with only 

school and year fixed effects. Columns (2) and (3) add test-day temperature and weather 

conditions (precipitation, wind speed, and humidity), yet estimates remain stable, confirming that 

they do not reflect contemporaneous weather effects. This is expected because the weather in 

April in Japan is relatively mild. Column (4) includes the test-day air pollution (SO2, NO, NO2, 

CO, OX, and PM10) for 2009–2019, the available period. Column (5) adds cumulative weather 

conditions beyond temperature; however, the estimates remain largely unchanged. Columns (6) 

and (7) control for hot days during non-school periods (school break days and weekends), 

following Park et al. (2020). The results remain unchanged, indicating that our estimates of 

cumulative heat are not mainly driven by the heat experienced during non-school periods. 

Finally, to minimize the measurement error in heat exposure, column (8) limits the sample to 

schools within 10 km of a weather station (72.5% of the sample); however, the estimates remain 

largely unaffected. 
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Heterogeneity—. Appendix Figure A6 and Table A7 explore the heterogeneous effects of 

heat above 34℃ and the mitigating role of school AC across grades (6th vs. 9th), subjects (math 

vs. reading), gender (girls vs. boys), question difficulty (basic vs. advanced),15 and climate (cool 

vs. warm regions). Overall, the impact of heat and offsetting effect of AC appear to be consistent 

across contexts, indicating that the underlying mechanism linking heat exposure to test scores 

may be generalizable across various contexts. A few notable exceptions are that heat above 34°C 

affects 6th graders more than 9th graders (-0.731 vs. -0.443) and boys more than girls (-0.755 vs. 

-0.467) by approximately 50%, suggesting greater vulnerability to heat in younger children and 

boys. Notably, school AC offset the effect on basic but not advanced questions, aligning with its 

stronger benefit for lower-achieving students, as shown next. 

 

6.2. Distributional impact of school AC 

Finally, we analyze how the impact of school AC availability differs among students across 

various score distributions. Figure 11 presents 𝛽𝛽𝑘𝑘 from Equation [2], separately for schools 

without AC (panel A) and with AC (panel B). In schools without AC, heat still 

disproportionately harms lower-ranked students, whereas in schools with AC, nearly all the 

negative effects disappear across ranks. Notably, the benefit is progressive, favoring lower-

performing students over their higher-performing peers. As expected, school AC does not affect 

performance under extremely cold conditions (below 6°C). However, panel A, without school 

AC, shows that heat is much more likely to exacerbate pre-existing academic inequalities than 

cold, without any intervention. 

To formally assess how school AC mitigates heat-driven inequality in learning, we estimate 

a variant of the Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 

90th percentiles within schools (measured in 0.01σ). Table 2 presents the estimates for the 10th 

and 90th percentile test scores as outcomes in columns (1) and (2) along with the 90th–10th 

score gap in column (3). The complete table showing the results from the other percentile test 

scores can be found in Appendix Table A8. 

Column (1) shows that high temperatures (above 34°C) without AC reduce scores at the 

10th percentile by 0.93% SD. Since these schools lack AC, the estimates reflect the “pure” 

negative impact of heat without reflecting any offsetting effects.16 However, the interaction term 

                                                           

15 Both math and reading included basic and advanced questions (until 2018), with basic skills practically 
applied to advanced ones. For example, in 6th grade math, a basic question asks for simple multiplication, 

while an advanced one requires using it to find a square’s area (Appendix Figure A7). The two scores are 

highly correlated, with correlations of 0.90 (average), 0.83 (math), and 0.85 (reading) for 6th graders. 
16 Conversely, the distributional impact of a cold day below 6°C is similar for schools with and without school 

AC.  
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is positive and as large as 0.69% SD (p < 0.01), indicating that school AC significantly offset the 

damage from heat exposure. Conversely, column (2) of Table 2 shows that high temperatures 

above 34°C reduce scores at the 90th percentile only by 0.22% SD (p < 0.01), while the 

offsetting effect of AC is 0.14% SD, though not statistically significant. Consequently, column 

(3) indicates that without AC, extreme heat widens the 90th–10th score gap by 0.71% SD, 

whereas school AC reduces this widening gap by 0.55% SD.17 

We demonstrate that school facilities (i.e., school AC) help reduce the widening test score 

gap between advantaged and disadvantaged students caused by heat. This suggests that the 

widening gap in the absence of school AC is not primarily caused by differences in outside-of-

school heat exposure (such as longer commutes for disadvantaged students); if this were the case, 

we would not expect school AC to counteract the widening of the achievement gap. 

Simultaneously, school AC did not fully offset the growing gap, likely because of measurement 

errors in the AC penetration measure and/or remaining outside-of-school adaptations by 

socioeconomic background (e.g., access to clam school).18  

This finding suggests that public investment in school AC, rather than household-level 

adaptation, can largely reduce heat’s inequality-enhancing negative effects. Thus, adequate 

investment in school infrastructure can mitigate unevenly distributed damage caused by heat to 

student learning. This is particularly encouraging because both primary and secondary education 

are mandatory in Japan, as in many other countries, where public investment plays a vital role. 

However, it should be emphasized that while school AC largely offsets the widening of 

socioeconomic inequalities, pre-existing socioeconomic disparities persist. 

 

7. Conclusion 

Many studies have investigated the average impact of extreme temperatures. However, the 

distributional impact of these temperatures across different socioeconomic statuses remains 

poorly understood. Even less explored is how different socioeconomic groups adapt to 

environmental stressors such as heat. Using nationwide exam data from Japan between 2007 and 

2019, we find that extreme temperatures disproportionately hinder the human capital 

accumulation of low-achieving students, deepening academic and social inequalities. However, 

school air conditioning largely offsets these negative effects, highlighting the potential for public 

                                                           

17 Appendix Table A9 confirms that the impact of school AC on the 90th–10th score gap remains robust when 

controlling for interactions with municipality-level taxable income per capita, the student-teacher ratio, and 
prefecture-level home AC share. 
18 We cannot entirely dismiss the possibility that this persistent widening gap stems from differing outside-of-

school exposure, resulting in varying in-school vulnerabilities. For example, limited access to AC at home 
deteriorates sleep quality (outside-of-school exposure), which in turn leads to diminished focus and 

concentration at school (in-school vulnerability), even within the same classroom environment. 
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infrastructure investments to reduce heat-related learning disparities. 

This study offers several avenues for future research. First, it is essential to determine 

whether the inequality-enhancing effects of heat exposure on learning persist across different 

contexts and environments. Second, although we focus on heat damage because of its relevance 

to global warming, understanding how to mitigate the adverse effects of cold exposure, although 

smaller, may be important in specific situations. Third, while we highlight the presence of social 

disparities in vulnerabilities, understanding the sources of these differential vulnerabilities, 

supported by more comprehensive data on individual and household behaviors, is the key to 

addressing social disparities. Finally, it is also important to examine whether the inequality-

enhancing effects of heat exposure on learning translate into inequalities in long-term economic 

outcomes such as wages and income.  

 

References 

Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey Wooldridge. 2023. “When 

Should You Adjust Standard Errors for Clustering?” The Quarterly Journal of Economics, 

138(1): 1–35. 

Banzhaf, Spencer, Lala Ma, and Christopher Timmins. 2019 “Environmental justice: The 

economics of race, place, and pollution.” Journal of Economic Perspectives, 33 (1): 185–208. 

Baron, E. Jason. 2022. “School Spending and Student Outcomes: Evidence from Revenue Limit 

Elections in Wisconsin.” American Economic Journal: Economic Policy, 14(1): 1–39. 

Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, and Joseph S. Shapiro. 

2016. “Adapting to Climate Change: The Remarkable Decline in the US Temperature-

Mortality Relationship over the Twentieth Century.” Journal of Political Economy, 124(1): 

105–159. 

Behrer, A. Patrick, Jisung Park, Gernot Wagner, Colleen Golja, and David Keith. 2021. 

“Heat has larger impacts on labor in poorer areas.” Environmental Research 

Communications, 3(9): 095001. 

Blanden, Jo, Matthias Doepke, and Jan Stuhler. 2023. “Educational Inequality.” Chapter 6 in 

Handbook of the Economics of Education, Vol. 6, edited by Eric A. Hanushek, Stephen 

Machin, and Ludger Woessmann. 

Burke, Marshall, Solomon M. Hsiang, and Edward Miguel. 2015. “Global Non-Linear Effect 

of Temperature on Economic Production.” Nature, 527(7577): 235. 

Burke, Marshall, Mustafa Zahid, Mariana C. M. Martins, Christopher W. Callahan, 

Richard Lee, Tumenkhusel Avirmed, Sam Heft-Neal, Mathew Kiang, Solomon M. 

Hsiang, and David Lobell. 2024. “Are We Adapting to Climate Change?” NBER Working 

Paper No. 32985. 

Cain, Lucas, Danae Hernandez-Cortes, Christopher Timmins, and Paige Weber. 2024. 

“Recent findings and methodologies in economics research in environmental justice.” Review 

of Environmental Economics and Policy, 18(1): 116–142. 

Carleton, Tamma, Esther Duflo, Kelsey Jack, and Guglielmo Zappalà. 2024. “Adaptation to 

climate change.” Handbook of the Economics of Climate Change (eds. Lint Barrage and 



18 

 

Solomon Hsiang), Chapter 4: 143-248, Elsevier. 

Carleton, Tamma, Amir Jina, Michael Delgado, Michael Greenstone, Trevor Houser, 

Solomon Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E. McCusker, Ishan Nath, 

James Rising, Ashwin Rode, Hee Kwon Seo, Arvid Viaene, Jiacan Yuan, and Alice 

Tianbo Zhang. 2022. “Valuing the Global Mortality Consequences of Climate Change 

Accounting for Adaptation Costs and Benefits.” The Quarterly Journal of Economics, 

137(4): 2037–2105. 

Case, Anne, Darren Lubotsky, and Christina Paxson. 2002. “Economic Status and Health in 

Childhood: The Origins of the Gradient.” American Economic Review, 92(5): 1308–1334.  

Cellini, Stephanie Riegg, Fernando Ferreira, and Jesse Rothstein. 2010. “The Value of 

School Facility Investments: Evidence from a Dynamic Regression Discontinuity Design.” 

The Quarterly Journal of Economics, 125(1): 215–261. 

Chetty, Raj, John N. Friedman, Nathaniel Hilger, Emmanuel Saez, Diane Whitmore 

Schanzenbach, and Danny Yagan. 2011. “How Does Your Kindergarten Classroom Affect 

Your Earnings? Evidence from Project STAR.” The Quarterly Journal of Economics, 126(4): 

1593–1660. 

Cho, Hyunkuk. 2017. “Effect of Summer Heat on Test Scores: A Cohort Analysis.” Journal of 

Environmental Economics and Management, 83: 185–196. 

Cohen, François, and Antoine Dechezleprêtre. 2022. “Mortality, Temperature, and Public 

Health Provision: Evidence from Mexico.” American Economic Journal: Economic Policy, 

14(2): 161–192. 

Colmer, Jonathan, and Jennifer L Doleac. 2023. “Access to guns in the heat of the moment: 

more restrictive gun laws mitigate the effect of temperature on violence.” The Review of 

Economics and Statistics, 1–40. 

Cunha, Flavio, and James Heckman. 2007. “The Technology of Skill Formation.” American 

Economic Review, 97(2): 31–47. 

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. 2012. “Temperature Shocks and 

Economic Growth: Evidence from the Last Half Century.” American Economic Journal: 

Macroeconomics, 4(3): 66–95. 

Diffenbaugh, Noah S., and Marshall Burke. 2019. “Global warming has increased global 

economic inequality.” PNAS, 116(20): 9808–9813. 

Dillender, Marcus. 2021. “Climate Change and Occupational Health: Are There Limits to Our 

Ability to Adapt?” Journal of Human Resources, 56(1): 184–224. 

Ebenstein, Avraham, Victor Lavy, and Sefi Roth. 2016. “The Long-Run Economic 

Consequences of High-Stakes Examinations: Evidence from Transitory Variation in 

Pollution.” American Economic Journal: Applied Economics, 8(4): 36–65. 

Garg, Teevrat, Maulik Jagnani, and Vis Taraz. 2020. “Temperature and Human Capital in 

India.” Journal of the Association of Environmental and Resource Economists, 7(6): 1113–

1150. 

Gilli, Martino, Matteo Calcaterra, Johannes Emmerling, and Francesco Granella. 2024. 

“Climate change impacts on the within-country income distributions.” Journal of 

Environmental Economics and Management, 127: 103012. 

Graff Zivin, Joshua, Solomon M. Hsiang, and Matthew Neidell. 2018. “Temperature and 

Human Capital in the Short and Long Run.” Journal of the Association of Environmental and 

Resource Economists, 5(1): 77–105. 



19 

 

Graff Zivin, Joshua, Yingquan Song, Qu Tang, and Peng Zhang. 2020. “Temperature and 

high-stakes cognitive performance: Evidence from the national college entrance examination 

in China.” Journal of Environmental Economics and Management, 104: 102365. 

Hanushek, Eric A., Charles Ka Yui Leung, and Kuzey Yilmaz. 2003. “Redistribution through 

education and other transfer mechanisms.” Journal of Monetary Economics, 50(8): 1719–

1750. 

Heutel, Garth, Nolan H. Miller, David Molitor. 2021. “Adaptation and the Mortality Effects of 

Temperature across U.S. Climate Regions.” The Review of Economics and Statistics, 103(4): 

740–753. 

Hsiang, Solomon, Paulina Oliva, and Reed Walker. 2019. “The Distribution of Environmental 

Damages.” Review of Environmental Economics and Policy, 13(1): 83–103. 

Ireland, Andrew, David Johnston, and Rachel Knott. 2023. “Heat and Worker Health.” 

Journal of Health Economics, 91: 102800. 

Jackson, C. Kirabo, Rucker C. Johnson, and Claudia Persico. 2015. “The Effects of School 

Spending on Educational and Economic Outcomes: Evidence from School Finance 

Reforms.” The Quarterly Journal of Economics, 131(1): 157–218. 

Johnston, David W., Rachel Knott, Silvia Mendolia, and Peter Siminski. 2021. “Upside-

Down Down-Under: Cold Temperatures Reduce Learning in Australia.” Economics of 

Education Review, 85: 102172. 

Johnson, Rucker C., and C. Kirabo Jackson. 2019. “Reducing Inequality through Dynamic 

Complementarity: Evidence from Head Start and Public School Spending.” American 

Economic Journal: Economic Policy, 11(4): 310–349. 

Lafortune, Julien, Jesse Rothstein, and Diane Whitmore Schanzenbach. 2018. “School 

Finance Reform and the Distribution of Student Achievement.” American Economic Journal: 

Applied Economics, 10 (2): 1–26. 

Lafortune, Julien, and David Schönholzer. 2022. “The Impact of School Facility Investments 

on Students and Homeowners: Evidence from Los Angeles.” American Economic Journal: 

Applied Economics, 14(3): 254–289. 

Martorell, Paco, Kevin Stange, and Isaac McFarlin, Jr. 2016. “Investing in Schools: Capital 

Spending, Facility Conditions, and Student Achievement.” Journal of Public Economics, 

140: 13–29. 

MEXT (Ministry of Education, Culture, Sports, Science, and Technology). 2022. “Basic 

Data on Private Schools and School Organization.” (in Japanese) 

https://www.mext.go.jp/a_menu/koutou/shinkou/main5_a3_00003.htm#topic3 (accessed 

May 16, 2024). 

MEXT (Ministry of Education, Culture, Sports, Science, and Technology). 2024a. 

“Overview of the National Assessment of Academic Ability.” (in Japanese) 

https://www.mext.go.jp/a_menu/shotou/gakuryoku-chousa/zenkoku/1344101.htm (accessed 

May 16, 2024). 

MEXT (Ministry of Education, Culture, Sports, Science, and Technology). 2024b. 

“Installation of air conditioning equipment in public school facilities.” (in Japanese) 

https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html (accessed May 16, 2024). 

Morozumi, Atsuyoshi, and Ryuichi Tanaka. 2023. “School Accountability and Student 

Achievement: Neighboring Schools Matter.” RIETI Discussion Paper Series 23-E-004. 

Mullins, Jamie T., and Corey White 2020. “Can Access to Health Care Mitigate the Effects of 

https://www.mext.go.jp/a_menu/koutou/shinkou/main5_a3_00003.htm#topic3
https://www.mext.go.jp/a_menu/shotou/gakuryoku-chousa/zenkoku/1344101.htm
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html


20 

 

Temperature on Mortality?” Journal of Public Economics, 191: 104259. 

Neilson, Christopher A., and Seth D. Zimmerman. 2014. “The Effect of School Construction 

on Test Scores, School Enrollment, and Home Prices.” Journal of Public Economics, 120: 

18–31. 

NIER (National Institute for Educational Policy Research). 2021. “Survey Questions, Sample 

Correct Answers, and Explanatory Materials for the 2021 National Survey of Academic 

Performance and Learning.” (in Japanese) https://www.nier.go.jp/21chousa/21chousa.htm 

(accessed May 16, 2024). 

NIER (National Institute for Educational Policy Research). 2024. “NAAA aggregate results.” 

(in Japanese) https://www.nier.go.jp/tyousakekka/04shou_shuukeikekka_zenkoku.htm 

(accessed May 16, 2024). 

Park, R. Jisung. 2022. “Hot Temperature and High-Stakes Performance.” Journal of Human 

Resources, 57(2): 400–434. 

Park, Jisung, Mook Bangalore, Stephane Hallegatte, and Evan Sandhoefner. 2018. 

“Households and Heat Stress: Estimating the Distributional Consequences of Climate 

Change.” Environment and Development Economics, 23(3): 349–368. 

Park, R. Jisung, A. Patrick Behrer, and Joshua Goodman. 2021a. “Learning is inhibited by 

heat exposure, both internationally and within the United States.” Nature Human Behaviour, 

5: 19–27. 

Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. “Heat and 

Learning.” American Economic Journal: Economic Policy, 12(2): 306–339. 

Park, R. Jisung, Nora Pankratz, and A. Patrick Behrer. 2021b. “Temperature, Workplace 

Safety, and Labor Market Inequality.” IZA DP No. 14560. 

Rowland, Thomas. 2008. “Thermoregulation during exercise in the heat in children: old 

concepts revisited.” Journal of Applied Physiology, 105: 718–724. 

Stafford, Tess M. 2015. “Indoor Air Quality and Academic Performance.” Journal of 

Environmental Economics and Management, 70: 34–50. 

Suzuki, Mizuhiro. 2024. “Winter weather on exam dates and matriculation for a prestigious 

university in Japan.” Economics Letters, 237: 111631. 

Shigeoka, Hitoshi. 2015. “School Entry Cutoff Date and the Timing of Births.” NBER Working 

Paper No. 21402. 

Zhang, Xin, Xi Chen, and Xiaobo Zhang. 2024. “Temperature and Low-Stakes Cognitive 

Performance.” Journal of the Association of Environmental and Resource Economists, 11(1): 

75–96. 

 

https://www.nier.go.jp/21chousa/21chousa.htm
https://www.nier.go.jp/tyousakekka/04shou_shuukeikekka_zenkoku.htm


21 
 

Figure 1—Heterogeneity in marginal damages from two different explanations 

A. Single nonlinear damage functions B. Differing vulnerability 

  

Notes: Adapted from Hsiang et al. (2019, Figure 1), this figure presents two different explanations for the empirically 
observed heterogeneity in marginal damages between high and low socioeconomic status (SES): a single nonlinear 
damage function, illustrated in panel A, or different damage functions (i.e., differential vulnerability) related to SES 
that correlate with exposure levels, as shown in panel B. 

 

Figure 2—Spatial and temporal variation in prior year temperature 

A. Average temperature B. Number of school days 

 

 

 

 

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figures illustrate the spatial variation 
in the mean daily maximum temperature in the year preceding the test year (panel A) and temporal variation in the 
number of school days within a given maximum temperature bin from last April to March of the test year, as 
experienced by students on school days (panel B). 
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Figure 3—Identifying variation of prior year temperature 

A. Number of days below 6°C B. Number of days above 34°C 

By prefecture By prefecture 

 

 

 

 
By year By year 

  
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. This figure illustrates the interquartile 
and interdecile ranges of the residual variation, net of school fixed effects, in the number of school days below 6°C 
in the year prior to the test date (panel A) and the number of school days above 34°C in the year prior to the test date 
(panel B), by prefecture and year. Japan has a total of 47 prefectures. The estimates are weighted by the number of 
students in each school. 
 



23 
 

Figure 4—Within-school student rank and socioeconomic status  

A. Household income B. Father’s occupation: Manager or professional 

  
C. Father’s education: ≥University graduate D. Mother’s education: ≥University graduate 

  

Notes: The data are from parent surveys in 2013 and 2017 NAAA. The bin scatter plot illustrates the relationship 
between within-school student rank and various measures of students’ socioeconomic status, net of school fixed 
effects, specifically household income (panel A), proportion of fathers in managerial or professional occupations 
(panel B), fathers with education at or above a 4-year university/college degree (panel C), and mothers with education 
at or above a 4-year university/college degree (panel D). Household income (panel A) is reported in hundreds of 
thousands of yen, with US$1 equal to approximately 100 yen. We transform the median of each household income 
bin into a continuous variable. 
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Figure 5—Within-school score distribution across school ranks  

 
Notes: The data are from the 2007–2019 NAAA. This figure illustrates the variation in within-school score 
distribution across school ranks based on the average school scores. Specifically, we group schools into ventiles based 
on their average scores each year, and plot the average interquartile and interdecile ranges of the within-school score 
distribution for every ventile. 

 

Figure 6—Cumulative heat/cold exposure and test performance  

 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figure plots 𝛽𝛽𝑘𝑘 from an estimating 
Equation [1], where the average z-score (measured in 0.01𝜎𝜎) is regressed on the number of school days within a 
given maximum temperature bin in the year prior to the test date, along with the 95% confidence intervals. The 

omitted category is the temperature range between 18–22℃.  
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Figure 7—Distributional impact of cumulative heat/cold exposure 

 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figure plots 𝛽𝛽𝑘𝑘 from an estimating 
Equation [2], where z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within schools (measured in 0.01𝜎𝜎) 
are regressed separately on the number of school days within a given maximum temperature bin from the year prior 
to the test date, along with the 95% confidence intervals. The omitted category is the temperature range between 18–
22°C. 
 

Figure 8—Map of the school AC penetration 

 
Notes: This figure displays the locations of municipalities according to the degree of school AC penetration rate. 
Using school AC penetration rates for public primary and secondary schools at the municipal level in 2018 (the last 
year of the sample period), schools are categorized into municipalities with a 0% share (in white), a 100% share (in 
dark blue), and the remaining (in light blue) of school AC penetration as of 2018. Schools with a 0% share (“without 
school AC”) indicate that school AC was not available throughout the entire 2006-2018 sample period (without any 
measurement error), while schools with a 100% share (“with school AC”) indicate that school AC became fully 
available at some point during the sample period. 
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Figure 9—Correlation with school AC penetration rates 

A. Taxable income per capita B. Student-teacher ratio 

  

Notes: The binscatter plot illustrates the cross-sectional relationship between school AC penetration rates at the 
municipality level and taxable income per capita (panel A) as well as the student-teacher ratio (panel B) for 2018, 
after controlling for the average temperature between 2006 and 2018. Both taxable income per capita and the student-
teacher ratio were averaged over the period from 2006 to 2018. 
 
 

Figure 10—Cumulative heat/cold exposure and test performance 

(with and without school AC) 

 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figure plots 𝛽𝛽𝑘𝑘 from estimating 
Equation [1], separately for schools with and without school AC in 2018, along with the 95% confidence intervals. 
Figure 8 shows the locations of the schools within each AC penetration category. The omitted category is the 
temperature range between 18–22℃. 
 



27 

 

Figure 11—Distributional impact of cumulative heat/cold exposure 

(with and without school AC) 
 

A. Without school AC B. With school AC 

  
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figures plot 𝛽𝛽𝑘𝑘 from estimating Equation [2], separately for schools with AC in panel 
A and schools without AC in 2018 in panel B, along with the 95% confidence intervals. Figure 8 shows the locations of the schools within each AC penetration category. 
The omitted category is the temperature range between 18–22℃.  
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Table 1—The average impact of school AC 

  (1)   (2)   (3) 

Outcomes: Average Z-score  Average Z-score  Average Z-score 

    × school AC     × school AC     × school AC 

Days 6℃≤ -0.216*** 0.068   -0.235*** 0.061   -0.080 -0.109 
  (0.069) (0.090)   (0.077) (0.097)   (0.061) (0.082) 

Days 6-10℃ -0.158*** 0.114   -0.111** -0.007   -0.063 0.010 
  (0.053) (0.076)   (0.056) (0.074)   (0.052) (0.074) 

Days 10-14℃ -0.098* 0.046   -0.082 -0.059   -0.041 -0.044 
  (0.054) (0.084)   (0.059) (0.073)   (0.047) (0.082) 

Days 14-18℃ -0.040 0.031   -0.020 -0.040   0.043 -0.080 
  (0.041) (0.057)   (0.050) (0.064)   (0.043) (0.053) 

Days 22-26℃ -0.024 -0.043   -0.042 0.019   -0.115*** 0.069 
  (0.039) (0.063)   (0.043) (0.057)   (0.042) (0.081) 

Days 26-30℃ -0.134*** 0.050   -0.140*** 0.125*   -0.243*** 0.187*** 
  (0.046) (0.066)   (0.050) (0.067)   (0.048) (0.069) 

Days 30-34℃ -0.177*** 0.097   -0.209*** 0.202*   -0.298*** 0.310*** 
  (0.061) (0.073)   (0.071) (0.113)   (0.065) (0.084) 

Days 34℃> -0.562*** 0.413***   -0.565*** 0.476***   -0.623*** 0.501*** 
  (0.112) (0.145)   (0.121) (0.141)   (0.107) (0.153) 
                  

Interaction with       
taxable income   X   

student-teacher ratio   X   

home AC share     X 

R-squared 0.751    0.752    0.751  

Observations 190,210    188,911   190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. The dependent variable is the average test score at the school-year level, measured in 0.01𝜎𝜎. Column (1) presents 
the estimates from Equation [3], along with standard errors clustered at the weather station level in parentheses. 
School AC is a dummy variable that equals one if an air conditioner was available at the school in 2018. Figure 8 
shows the locations of the schools within each AC penetration category. Column (2) adds to column (1) the interaction 
of municipality-level taxable income per capita and the student-teacher ratio in 2018 with the number of school days 
within a given maximum temperature bin in the year prior to the test date. Column (3) adds to column (1), with the 
interaction of prefecture-level home AC shares in 2014 with the number of school days within a given maximum 
temperature bin in the year before the test date. The estimates are weighted by the number of students in each school 
-year. The omitted category is the temperature range between 18–22℃. 
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Table 2—The distributional impact of school AC 

 (1)  (2)  (3) 

Outcomes: 10th percentile score  90th percentile score  90th-10th score gap 

    × school AC     × school AC     × school AC 

Days 6℃≤ -0.320*** 0.040   -0.099** 0.050   0.222** 0.011 
  (0.101) (0.124)   (0.047) (0.076)   (0.086) (0.110) 

Days 6-10℃ -0.207** 0.088   -0.075* 0.104*   0.132* 0.016 
  (0.083) (0.103)   (0.040) (0.059)   (0.078) (0.089) 

Days 10-14℃ -0.196** 0.043   -0.047 0.067   0.149** 0.025 
  (0.082) (0.108)   (0.035) (0.053)   (0.074) (0.088) 

Days 14-18℃ -0.027 -0.039   -0.046 0.067   -0.019 0.106 
  (0.062) (0.083)   (0.030) (0.042)   (0.052) (0.078) 

Days 22-26℃ -0.034 -0.070   -0.000 -0.042   0.034 0.028 
  (0.057) (0.083)   (0.026) (0.043)   (0.050) (0.068) 

Days 26-30℃ -0.218*** 0.075   -0.030 -0.024   0.188*** -0.099 
  (0.063) (0.087)   (0.035) (0.046)   (0.053) (0.075) 

Days 30-34℃ -0.271*** 0.136   -0.065 0.020   0.207*** -0.116 
  (0.085) (0.102)   (0.049) (0.058)   (0.076) (0.094) 

Days 34℃> -0.932*** 0.690***   -0.223*** 0.139   0.709*** -0.551*** 
  (0.176) (0.201)   (0.085) (0.108)   (0.170) (0.184) 

                  

R-squared 0.669    0.603    0.552  

Observations 190,210    190,210    190,210  

Notes: The data are from the 2007–2019 NAAA and the 2006–2018 AMeDAS. The unit of observation is the school 
-year. Columns (1) and (2) present the estimates from the variant of the Equation [3], where the outcomes are z-
scores at the 10th and 90th percentiles within schools (measured in 0.01σ), along with standard errors clustered at the 
weather station level in parentheses. School AC is a dummy variable that equals one if an air conditioner was available 
at the school in 2018. Figure 8 shows the locations of the schools within each AC penetration category. The complete 
table showing the results for the other percentiles is presented in Appendix Table A7. Column (3) presents the estimate 
of the score gap between the 90th and 10th percentiles within the school measured at 0.01𝜎𝜎. The estimates are weighted 
by the number of students in each school-year. The omitted category is the temperature range between 18–22℃. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix A: Additional figures and tables 

 

Figure A1—Location of schools 

A. Primary schools (grade 6) B. Secondary schools (grade 9) 

  

Notes: Panels A and B illustrate the locations of primary schools (grade 6) and secondary schools (grade 9) as of 
April 2019. There are 19,304 primary schools and 9,776 secondary schools. 
 
 

Figure A2—Weather stations 

A. Location of weather stations B. Distance to the weather stations 

 
 

Notes: Panel A displays the locations of all 899 weather stations as of 2019. Panel B shows the cumulative distribution 
of the distances from schools to the nearest weather stations. The mean (median) distances from the weather stations 
are 6.95 (6.48) km. 
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Figure A3—School days by region  

 
Notes: The figure displays the academic calendar of the prefectural capital in the school’s prefecture for 2018. A total 
of 47 prefectures exist in Japan. The academic calendar mostly comprises three terms: spring, fall, and winter.  
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Figure A4—Socioeconomic status and studying after school 
 

A. Household income and studying after school 

 
B. Household income and education expenses C. Household income and clam school 

  
Notes: The data come from parent surveys in the 2013 and 2017 NAAA, except for the fraction of students who study 
for more than 1 hour or 2 hours in panel A, which comes from student surveys in the 2013 and 2017 NAAA. The 
binscatter plot illustrates the relationship between students’ socioeconomic status, as indicated by household income, 
and various study-related variables after school, net of school fixed effects. Specifically, it shows the proportion of 
students studying after school for more than 1 hour or more than 2 hours (panel A), monthly education expenses 
(panel B), and the proportion of students attending cram schools (panel C). Household income (panels A-C) is 
presented in hundreds of thousands of yen, while monthly education expenses (panel B) are presented in thousands 
of yen, with US$1 being approximately equal to 100 yen. For both variables, we use the median of each household 
income/monthly education expense bin to transform them into continuous variables. 
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Figure A5—Cumulative heat/cold exposure and test performance 
(school AC 0% vs. AC>0%) 

 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The figure displays 𝛽𝛽𝑘𝑘  from an 
estimating Equation [1], separately for schools in municipalities with a positive share of AC and those in 
municipalities with 0% AC availability in 2018, along with the 95% confidence intervals. The omitted category is 
the temperature range between 18–22℃. Figure 8 shows the locations of schools for each school AC penetration 
category.  
 

Figure A6—Heterogeneity: Cumulative heat/cold exposure and test performance 

(with and without school AC) 

A. By grade 

Grade 6 Grage 9 

  
B. By subjects 

Math Reading 
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C. By gender 

Girls Boys 

 
 

 
 

D. By difficulty 

Basic Advanced 

  
 

E. By region 

Cold region Warm region 

 

 

 

Notes: The data are from the 2007–2019 NAAA and the 2006–2018 AMeDAS. The figures plot 𝛽𝛽𝑘𝑘  from an 
estimating Equation [1], separately for schools with and without AC in 2018, along with the 95% confidence intervals. 
Figure 8 shows the locations of schools for each school AC penetration category. The omitted category is the 
temperature range between 18–22℃. Panel A divides the sample by grade (grade 6 vs. grade 9). Panel B divides the 
sample by subject (math vs. reading). Panel C divides the sample by student gender (girls vs. boys). Panel D divides 
the sample by the difficulty level of the test questions (basic vs. advanced). Finally, panel E divides the sample into 
cool and warm regions by the national median temperature between 2006 and 2018. 
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Figure A7—Examples of basic and advanced questions (math for grade 6)  
 

Basic Advanced 

 

 

Notes: The examples are from mathematics for grade 6 in the NAAA.  
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Table A1—Number of participating schools and students in NAAA 

  N of schools   N of students 

Year Total Grade 6 Grade 9   Total Grade 6 Grade 9 

2007 31,899  21,523  10,376    2,203,309  1,115,808  1,087,501  

2008 32,095  21,670  10,425    2,243,391  1,162,311  1,081,080  

2009 31,835  21,498  10,337    2,264,473  1,153,059  1,111,414  

2010 9,866  5,421  4,445    708,995  271,004  437,991  

2011 - - -  - - - 

2012 9,545  5,177  4,368    703,244  262,114  441,130  

2013 30,560  20,468  10,092    2,207,777  1,124,018  1,083,759  

2014 30,233  20,221  10,012    2,162,765  1,097,584  1,065,181  

2015 29,962  20,030  9,932    2,136,316  1,076,832  1,059,484  

2016 29,125  19,397  9,728    2,076,404  1,037,066  1,039,338  

2017 29,174  19,375  9,799    2,047,892  1,018,505  1,029,387  

2018 29,248  19,431  9,817    2,012,527  1,041,474  971,053  

2019 28,989  19,252  9,737    2,025,844  1,046,722  979,122  

Total 322,531  213,463  109,068    22,792,937  11,406,497  11,386,440  

Notes: This table shows the number of schools and students participating in the National Assessment of Academic 
Ability (NAAA) each year. We exclude schools that are observed only once during the sample period, along with 
their corresponding students, and those without math and reading scores (0.24% of schools and 1.59% of students). 
The NAAA has been conducted annually across the nation by the Ministry of Education, Culture, Sports, Science, 
and Technology (MEXT) since 2007. Exceptions occurred in 2011, when the NAAA was entirely canceled because 
of the Great East Japan Earthquake, and in 2010 and 2012, when it was administered to a random subset of schools: 
approximately 25% of sixth graders and 40% of ninth graders. 
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Table A2—Descriptive statistics 

Variable: 
N of 

schools 
Mean Std. dev. Min Max 

N of 
station 

Period 

Panel A. Student information               

Student survey:               

  Female 301,821 0.48 0.08 0 1 - 2007-2019 

  Study time after school: >1 hour 323,144 0.65 0.13 0 1 - 2007-2019 

  Study time after school: >2 hours 323,144 0.31 0.13 0 1 - 2007-2019 

Parent survey:               

  Household income 2,624 62.26 31.68 10  150  - 2013, 2017 

  Father’s occup: Manager/Professional 1,949 0.40 0.49 0  1  - 2017  

  Father’s educ: ≥University graduate 2,779 0.31 0.46 0  1  - 2013, 2017 

  Mother’s educ: ≥University graduate 2,784 0.13 0.33 0  1  - 2013, 2017 

  Education expenses 2628 17.03 14.48 0  50  - 2013, 2017 

  Attending a cram school 1,952 0.33 0.47 0  1  - 2017  

Regional information:               

 School AC 322,962 0.60 0.46 0 1 - 2018  

 Taxable income per capita 323,153 32.29 5.86 18.89 126.67 - 2007-2019 

 Student-teacher ratio 321,263 15.63 3.06 0.09 25.05 - 2007-2019 

 Home AC 323,153 0.90 0.15 0.27 0.99 - 2014  

                  

Panel B. Weather condition               

Number of school days               

  6℃≤ 322,531 11.02 16.83 0 194 891 2007-2019 

  6-10℃ 322,531 22.59 8.37 0 53 891 2007-2019 

  10-14℃ 322,531 30.93 8.78 0 60 891 2007-2019 

  14-18℃ 322,531 27.20 5.80 0 58 891 2007-2019 

  18-22℃ 322,531 32.42 6.34 0 71 891 2007-2019 

  22-26℃ 322,531 38.37 8.51 0 88 891 2007-2019 

  26-30℃ 322,531 32.95 9.58 0 97 891 2007-2019 

  30-34℃ 322,531 14.87 8.90 0 79 891 2007-2019 

  34℃> 322,531 2.25 2.95 0 20 891 2007-2019 

Mean precipitation (mm) 322,531 4.53 1.37 0.82 21.48 1,165  2007-2019 

Mean wind speed (m/s) 322,531 2.51 0.91 0.26 8.75 887 2007-2019 

Mean relative humidity 322,531 68.44 4.92 58.39 82.94 153 2007-2019 

Notes: Panel A provides descriptive statistics of student information aggregated at the school level. Gender information 
for grade 6 was not collected in 2015. Household income is presented in hundreds of thousands of yen, while monthly 
education expenses are shown in thousands of yen, with US$1 being approximately equal to 100 yen. For both variables, 
we calculate the median household income and monthly education expense bin to convert them into continuous variables. 
For school and home AC, data from 2018 and 2014, respectively, are applied to all years. Panel B displays the descriptive 
statistics of the cumulative weather conditions from last April to March of the test year, as experienced by students on 
school days.  
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Table A3—Comparison with previous studies of cumulative exposure to heat or cold on test scores 

Study Country 

(period) 
Exam type Stakes Grades Representation Exam Days Effect size by one additional day 

Our Study Japan 
(‘07-’19) 

Achievement 
test 

Low G6 and G9 All students in 
public schools 

3rd or 4th 
Tuesday in 
April 

Reference: 18–22°C 
Above 34°C ↓ 0.19% SD 
Below 6° ↓ 0.13% SD 

Cho  
(2017) 

Korea 
(‘09-’13) 

College 
entrance 
exam 

High G12   Takers of 
university 
entrance exam 

2nd Thursday 
in November 

Reference: 28–30°C 
Above 34°C ↓ 0.42% SD (Math)  ↓ 0.64% SD (English) 

Park et al.  
(2020) 

US 
(’01-’14) 

PSAT Intermediate G10 or G11 Takers of PSAT 
at least twice 

3rd week of 
October 

Reference: 60–69°F (15.6-20.6°C) 
Above 100°F (37.8°C) ↓ 0.07% SD 
Above 90°F (32.2°C)  ↓ 0.05% SD 

Park et al.  
(2021) 

US 
(’09-’15) 

State-specific 
exams 

Intermediate G3 to G8 12,000 US school 
districts 

Spring 
(differ by 
state) 

Reference: 60–69°F (15.6-20.6°C) 
Above 80°F (26.7°C)  ↓ 0.10% SD (G3–G5) ↓ 0.03% SD (G6–G8) 

Johnston et al. 
(2021) 

Australia 
(’09-’18) 

Achievement 
test 

Low G3, G5, G7 
and G9 

All students in 
public schools in 
New South Wales 

2nd week of 
May 

Reference: 65–75°F (18.3-23.9°C) 
Below 60°F (15.6°C) ↓ 0.15% SD 

References: 

Cho, Hyunkuk. 2017. “Effect of Summer Heat on Test Scores: A Cohort Analysis.” Journal of Environmental Economics and Management, 83: 185–196. 

Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. “Heat and Learning.” American Economic Journal: Economic Policy, 12(2): 306–339. 

Park, R. Jisung, A. Patrick Behrer, and Joshua Goodman. 2021. “Learning is inhibited by heat exposure, both internationally and within the United States.” Nature Human 

Behaviour, 5: 19–27. 

Johnston, David W., Rachel Knott, Silvia Mendolia, and Peter Siminski. 2021. “Upside-Down Down-Under: Cold Temperatures Reduce Learning in Australia.” Economics 

of Education Review, 85: 102172. 
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Table A4—Distributional impact of cumulative heat/cold exposure 

  (1) (2) (3) (4) (5)   (6) (7) (8) 

Outcomes:  10th  25th  50th  75th  90th    Resulting score gap 

  percentile percentile percentile percentile percentile   90th-10th 90th-50th 50th-10th 

Days 6℃≤ -0.260*** -0.185*** -0.117** -0.066 -0.028 
  

0.231*** 0.089*** 0.142*** 
  (0.053) (0.052) (0.050) (0.042) (0.032)   (0.042) (0.026) (0.036) 

Days 6-10℃ -0.177*** -0.144*** -0.105** -0.050 -0.008 
  

0.169*** 0.097*** 0.072** 
  (0.047) (0.046) (0.044) (0.037) (0.027)   (0.037) (0.023) (0.032) 

Days 10-14℃ -0.187*** -0.133** -0.074 -0.028 -0.007 
  

0.180*** 0.067*** 0.113*** 
  (0.049) (0.052) (0.048) (0.037) (0.026)   (0.036) (0.026) (0.027) 

Days 14-18℃ -0.079** -0.047 -0.033 -0.028 -0.018 
  

0.060* 0.015 0.046* 
  (0.037) (0.036) (0.031) (0.027) (0.021)   (0.036) (0.019) (0.027) 

Days 22-26℃ -0.075* -0.062 -0.052 -0.036 -0.028 
  

0.047 0.024 0.022 
  (0.040) (0.039) (0.035) (0.030) (0.022)   (0.031) (0.019) (0.023) 

Days 26-30℃ -0.108*** -0.089** -0.068* -0.041 -0.034* 
  

0.074** 0.033 0.040* 
  (0.041) (0.041) (0.035) (0.029) (0.021)   (0.034) (0.021) (0.024) 

Days 30-34℃ -0.124** -0.118** -0.095** -0.063* -0.032 
  

0.092** 0.063** 0.029 
  (0.051) (0.050) (0.045) (0.035) (0.027)   (0.043) (0.027) (0.029) 

Days 34℃> -0.303*** -0.231*** -0.209*** -0.120* -0.087** 
  

0.216*** 0.123*** 0.093** 
  (0.079) (0.080) (0.075) (0.062) (0.044)   (0.062) (0.043) (0.047) 

                    

R-squared 0.648 0.687 0.691 0.647 0.573   0.531 0.532 0.359 

Observations 322,531  322,531  322,531  322,531  322,531    322,531  322,531  322,531  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. Columns (1)–(5) present the estimates from Equation [2], where the outcome is the z-scores at the 10th, 25th, 
50th, 75th, and 90th percentiles within school (measured in 0.01𝜎𝜎), along with standard errors clustered at the weather 
station level in parentheses. Columns (6)–(8) present the estimate of the score gap between the 90th and 10th 
percentiles, 90th and 50th percentiles, and 50th and 10th percentiles within the school, measured in 0.01𝜎𝜎. The estimates 
are weighted by the number of students in each school-year. The omitted category is the temperature range between 
18–22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table A5—The impact of studying after school  

  (1)  (2) 

Outcomes: Average Z-score  Average Z-score 

    
× study  

over 1 hour 
    

× study  
over 2 hour 

Days 6℃≤ -0.117*** 0.151***   -0.126*** -0.042 
 (0.041) (0.038)   (0.041) (0.049) 

Days 6-10℃ -0.064* 0.376***   -0.095** 0.599*** 
 (0.036) (0.047)   (0.037) (0.060) 

Days 10-14℃ -0.080** 0.331***   -0.084** 0.316*** 
 (0.039) (0.053)   (0.039) (0.058) 

Days 14-18℃ -0.052** 0.415***   -0.047* 0.188** 
 (0.026) (0.063)   (0.025) (0.080) 

Days 22-26℃ -0.053 0.039   -0.047 0.007 
 (0.032) (0.040)   (0.031) (0.045) 

Days 26-30℃ -0.075** 0.288***   -0.077** 0.212*** 
 (0.030) (0.042)   (0.030) (0.051) 

Days 30-34℃ -0.094** 0.248***   -0.101*** 0.149** 
 (0.037) (0.069)   (0.038) (0.070) 

Days 34℃> -0.186*** 0.403**   -0.206*** 0.150 
 (0.060) (0.170)   (0.062) (0.201) 
           

R-squared 0.748    0.737  
Observations 322,523    322,523  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-

year. The dependent variable is the average test score at the school-year level, measured in 0.01𝜎𝜎. Estimates from a 
variant of Equation [1], which additionally includes the interaction between the fraction of students studying after 
school for more than 1 hour (column 1) and for 2 hours (column 2), with the number of days in each temperature bin 
during school days from the previous year, are reported along with standard errors clustered at the weather station 
level in parentheses. Note that both the fractions of students studying after school for more than one hour (column 1) 
and for 2 hours (column 2) are demeaned by the average between the 2007–2019 NAAA. The interaction terms in 
columns (1) and (2) reflect the offsetting effect of studying after school, as the fraction of students studying for more 
than 1 or 2 hours after school increased from 0% to 100%. The estimates are weighted by the number of students in 
each school-year. The omitted category is the temperature range between 18–22℃. Significance levels: *** p<0.01, 
** p<0.05, * p<0.10. 
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Table A6—Robustness on the impact of heat 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Outcomes: Average Z-score 

Days above 34℃ -0.562*** -0.568*** -0.557*** -0.278*** -0.503*** -0.493*** -0.482*** -0.551*** 
 (0.112) (0.113) (0.111) (0.105) (0.113) (0.105) (0.130) (0.123) 

                 

Days above 34℃ × school AC 0.413*** 0.425*** 0.421*** 0.401*** 0.363** 0.386*** 0.409** 0.440*** 
 (0.145) (0.145) (0.139) (0.126) (0.146) (0.130) (0.164) (0.150) 

                 

R-squared 0.751 0.751 0.751 0.772 0.751 0.751 0.751 0.759 

Observations 190,210  190,210  190,210  145,769  190,210  190,210  190,210  141,733  

Sample period Full Full Full 2009-2019 Full Full Full Full 

Temperature (test day)  X       

Weather (test day)   X      

Pollution (test day)    X  
   

Weather (cumulative)     X    

Temperature (school holidays)      X   

Temperature (weekend)       X  

Stations within 10 km 
    

   X 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. The dependent variable is the average test score 
at the school-year level, measured in 0.01𝜎𝜎. The estimates come from Equation [3], along with the standard errors clustered at the weather station level in parentheses. 

The estimates for the number of school days above 34℃ and their interaction with the school AC dummy are reported, while the estimates for days in other temperature 

ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was available at the school in 2018. Figure 8 shows 
the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school year. The omitted category is 
the temperature range between 18–22℃. Full-year mean from 2007–2019. Column (1) presents the baseline estimate without any controls other than school and year 
fixed effects, as reported in column (1) of Table 1. Column (2) adds the test-day temperature and column (3) includes additional test-day weather conditions 
(precipitation, wind speed, and relative humidity). Column (4) includes test-day air pollution (SO2, NO, NO2, CO, OX, and PM10) for the 2009-2019 period, as pollution 
data are only available for this period. Column (5) includes other cumulative weather conditions (precipitation, wind speed, and relative humidity). Columns (6) and 
(7) control the number of days during school break days and weekends, respectively, within a given maximum temperature bin from the year prior to the test date. 
Finally, column (8) restricts the sample to schools located within 10 km of the weather stations. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table A7—Heterogeneous impacts of heat 

  (1) (2)   (3) (4)   (5) (6)   (7) (8)   (9) (10) 

Outcomes: Average Z-score  Average Z-score  Average Z-score  Average Z-score  Average Z-score 

  By grade  By subject  By gender  By difficulty  By region 

  6th 9th   Math Reading   Girls Boys   Basic Advanced   Cool Warm 

Days above 34℃ -0.731*** -0.443***   -0.523*** -0.504***   -0.467*** -0.755***   -0.588*** -0.465***   -0.530*** -0.520*** 

  (0.180) (0.109)   (0.111) (0.118)   (0.123) (0.145)   (0.123) (0.108)   (0.128) (0.178) 

                              

Days above 34℃ × school AC 0.378* 0.495***   0.309** 0.431***   0.356** 0.581***   0.395*** 0.132   0.470*** 0.312 

  (0.210) (0.148)   (0.145) (0.142)   (0.153) (0.176)   (0.153) (0.141)   (0.142) (0.220) 

                              

R-squared 0.682 0.807   0.742 0.712   0.676 0.679   0.741 0.753   0.721 0.778 

Observations 115,312  74,898    190,210  190,210    176,297  176,169    173,005  173,005    105,672  84,538  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. The dependent variable is the average test score 

at the school-year level, measured in 0.01𝜎𝜎. The estimates come from Equation [3], along with the standard errors clustered at the weather station level in parentheses. 

The estimates for the number of school days above 34℃ and their interaction with the school AC dummy are reported, while the estimates for days in other temperature 

ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was available at the school in 2018. Figure 8 shows 
the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school-year. The omitted category is 
the temperature range between 18–22℃. Columns (1) and (2) present the estimates by grade (grade 6 vs. grade 9). Columns (3) and (4) show estimates by subject area 
(math vs. reading). Columns (5) and (6) show estimates by student gender (girls vs. boys). Columns (6) and (7) present the estimates based on the difficulty of the test 
questions (basic vs. advanced). Finally, Columns (9) and (10) divide the sample into cool and warm regions based on the national median of the average temperature 
from 2006 to 2018. Note that the number of observations is at the school-year level; therefore, we observe the average test score of each school-year for each subject, 
gender, and question difficulty, while we observe only one test score for each grade and each region, as they are mutually exclusive. Thus, the sum of the observations 
in columns (1) and (2) and the sum of the observations in columns (9) and (10) is 190,210, which is equal to the number of school-year in columns (3) and (4). The 
slightly smaller observations for columns (5) and (6), compared with columns (3) and (4), are because gender information was not collected for grade 6 in 2015. 
Similarly, the slightly smaller observations in columns (7) and (8) compared to those in columns (3) and (4) are due to the absence of such a distinction in 2019. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A8—Distributional impact of school AC (full) 

  (1)   (2)   (3)   (4)   (5) 

Outcomes: 10th percentile score  25th percentile score  50th percentile score  75th percentile score  90th percentile score 

    × school AC     × school AC     × school AC     × school AC     × school AC 

Days 6℃≤ -0.320*** 0.040   -0.293*** 0.112   -0.257*** 0.143   -0.152** 0.044   -0.099** 0.050 
  (0.101) (0.124)   (0.092) (0.113)   (0.080) (0.107)   (0.062) (0.090)   (0.047) (0.076) 

Days 6-10℃ -0.207** 0.088   -0.187*** 0.098   -0.206*** 0.166*   -0.124** 0.115   -0.075* 0.104* 
  (0.083) (0.103)   (0.072) (0.097)   (0.061) (0.091)   (0.051) (0.076)   (0.040) (0.059) 

Days 10-14℃ -0.196** 0.043   -0.113 0.001   -0.117* 0.081   -0.059 0.064   -0.047 0.067 
  (0.082) (0.108)   (0.074) (0.109)   (0.065) (0.102)   (0.049) (0.077)   (0.035) (0.053) 

Days 14-18℃ -0.027 -0.039   -0.009 -0.017   -0.047 0.050   -0.053 0.064   -0.046 0.067 
  (0.062) (0.083)   (0.057) (0.080)   (0.045) (0.067)   (0.037) (0.053)   (0.030) (0.042) 

Days 22-26℃ -0.034 -0.070   -0.044 -0.049   -0.045 -0.019   -0.013 -0.036   -0.000 -0.042 
  (0.057) (0.083)   (0.054) (0.082)   (0.049) (0.075)   (0.037) (0.061)   (0.026) (0.043) 

Days 26-30℃ -0.218*** 0.075   -0.187*** 0.056   -0.150*** 0.077   -0.083* 0.041   -0.030 -0.024 
  (0.063) (0.087)   (0.061) (0.089)   (0.056) (0.079)   (0.047) (0.065)   (0.035) (0.046) 

Days 30-34℃ -0.271*** 0.136   -0.274*** 0.149   -0.187** 0.108   -0.110* 0.057   -0.065 0.020 
  (0.085) (0.102)   (0.081) (0.097)   (0.074) (0.090)   (0.062) (0.074)   (0.049) (0.058) 

Days 34℃> -0.932*** 0.690***   -0.813*** 0.624***   -0.610*** 0.461***   -0.341*** 0.262*   -0.223*** 0.139 
  (0.176) (0.201)   (0.151) (0.186)   (0.133) (0.171)   (0.113) (0.149)   (0.085) (0.108) 

                              

R-squared 0.669    0.708    0.714    0.673    0.603  

Observations 190,210    190,210    190,210    190,210    190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. Columns (1)–(5) present the estimates from the 
variant of the Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within schools (measured in 0.01σ), along with standard 
errors clustered at the weather station level in parentheses. School AC is a dummy variable that equals one if an air conditioner is available at the school in 2018. 
Figure 8 shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school-year. The 
omitted category is the temperature range between 18–22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A9—Robustness: The impact of school AC on academic inequality 

  (1)   (2)   (3) 

Outcomes: 90th-10th score gap  90th-10th score gap  90th-10th score gap 

    × school AC     × school AC     × school AC 

Days 6℃≤ 0.222** 0.011   0.225*** 0.025   0.154 0.107 
 (0.086) (0.110)   (0.086) (0.110)   (0.094) (0.123) 

Days 6-10℃ 0.132* 0.016   0.121 -0.015   0.052 0.122 
 (0.078) (0.089)   (0.077) (0.089)   (0.086) (0.102) 

Days 10-14℃ 0.149** 0.025   0.134* 0.065   0.115 0.081 
 (0.074) (0.088)   (0.074) (0.088)   (0.079) (0.099) 

Days 14-18℃ -0.019 0.106   -0.054 0.130*   -0.051 0.146 
 (0.052) (0.078)   (0.056) (0.078)   (0.063) (0.089) 

Days 22-26℃ 0.034 0.028   0.029 0.037   0.063 -0.008 
 (0.050) (0.068)   (0.053) (0.070)   (0.057) (0.078) 

Days 26-30℃ 0.188*** -0.099   0.185*** -0.137*   0.233*** -0.154* 
 (0.053) (0.075)   (0.054) (0.072)   (0.058) (0.081) 

Days 30-34℃ 0.207*** -0.116   0.213*** -0.143   0.257*** -0.213** 
 (0.076) (0.094)   (0.078) (0.098)   (0.082) (0.107) 

Days 34℃> 0.709*** -0.551***   0.629*** -0.402**   0.714*** -0.584*** 
  (0.170) (0.184)   (0.172) (0.191)   (0.169) (0.199) 
                  

Interaction with       

taxable income   X   

student-teacher ratio   X   

home AC share     X 
R-squared 0.552    0.553    0.552  
Observations 190,210    188,911   190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. Columns (1)–(3) present the estimates from the variant of Equation [2], which additionally includes the 
interaction of the number of school days within a given maximum temperature bin in the year prior to the test date 
and the school AC dummy, along with standard errors clustered at the weather station level in parentheses. School 
AC is a dummy variable that equals one if an air conditioner is available at the school in 2018. Figure 8 shows the 
locations of the schools within each AC penetration category. The outcome is the gap between the 90th and 10th 
percentile scores within the school, measured at 0.01𝜎𝜎. Column (1) replicates the estimates in column (3) of Table 2. 
The estimates are weighted by the number of students in each school-year. The omitted category is the temperature 
range between 18–22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix B: Data Appendix 

 

Data Source 

National 
Assessment of 
Academic 
Ability 
(NAAA) 

Years: 2007–2019 
Data description: Reading and math scores for grades 6 and 9, after-school study 
participation (student survey), and students’ socioeconomic status (parent survey, 
conducted only in 2013 and 2017) 
Source: The National Institute for Educational Policy Research 
https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html  
 

Weather Years: 2006–2019 
Data description: daily temperature (maximum, average, minimum) 
Source: Japan Automated Meteorological Data Acquisition System (AMeDAS)  
operated by the Japan Meteorological Agency (JMA) 
https://www.data.jma.go.jp/obd/stats/etrn/ 
 

Pollution Years: 2009 April–2019 March 
Data description: hourly SO2, NO, NO2, CO, OX, PM10 

Source: National Institute for Environmental Studies 
https://tenbou.nies.go.jp/download/  
 

Taxable 
income 

Years: 2006–2018 
Data description: taxable income per capita at the municipality level 
Source: Survey on Municipal Taxation Status (Shichōsonzei kazeijōky tou no shirabe) 
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html 
 

Student-
teacher ratio 

Years: 2006–2018 
Data description: student-teacher ratio at municipality level 
Source: School Basic Survey 
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm 
 

School AC 
penetration 
rate 

Year: 2018 
Data description: school AC penetration rate for public primary and secondary schools 
at the municipality level 
Source: Survey of Air Conditioning Installation Status in Public School Facilities 
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html 
 

Home AC 

share 

Year: 2014 
Data description: home AC share at the prefecture level 
National Survey of Family Income and Expenditure 
https://www.stat.go.jp/data/zensho/2014/index.html  

 
 

https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html
https://www.data.jma.go.jp/obd/stats/etrn/
https://tenbou.nies.go.jp/download/
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html
https://www.stat.go.jp/data/zensho/2014/index.html
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