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Abstract 

 

Distortions in credit allocation can slow technological progress by sustaining unproductive firms 

and generating congestion that crowds out innovation from otherwise healthy firms. We study 

this mechanism using Japan’s banking crisis of the 1990s, linking firm-level borrowing data to 

the universe of patent applications with more than fifteen years of historical citation outcomes. 

Innovation declines more in technology fields facing greater credit distortion, with effects 

substantially larger for forward citations than for patent counts. Firm-level evidence reveals 

persistently low innovation by zombie firms and reduced innovation by healthy firms operating 

in zombie-intensive industries, consistent with congestion effects. 
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“The banker makes possible the carrying out of new combinations, authorizes people, in the 

name of society as it were, to form them. He is the ephor of the exchange economy.” 

— Joseph A. Schumpeter, The Theory of Economic Development (1934) 

 

“Financial markets essentially involve the allocation of resources. They can be thought of as the 

‘brain’ of the entire economic system, the central locus of decision-making: if they fail, not only 

will the sector’s profits be lower than they otherwise would have been, but the performance of 

the entire economic system may be impaired.” 

— Joseph E. Stiglitz (1993) 

 

1. IntroducFon 

Two Josephs—Joseph Schumpeter and Joseph Stiglitz—writing six decades apart and 

from distinct intellectual traditions, both underscored the central role of the financial system in 

directing innovation and shaping broader economic outcomes. Yet in many economies, credit 

does not flow to its most productive uses. In particular, underdeveloped financial systems, 

often dominated by state-owned banks or institutions influenced by industrial elites, frequently 

channel preferential credit to insiders, connected incumbents, or otherwise unviable firms.1 

Such privileged access to finance gives incumbents a competitive edge in product markets. 

Having secured their dominant positions, they often act to resist further financial development 

(Rajan and Zingales 2003; Benmelech and Moskowitz 2010). 

There are two main channels through which persistent credit misallocation undermines 

technological progress. First, when financial systems favor unproductive firms, those with 

transformative ideas may be starved of the liquidity required to develop them. Second, in 

 
1 Credit misalloca.on has been a recurrent feature of financial systems across diverse ins.tu.onal and historical 
contexts. For example, in the United States, the Savings and Loan crisis of the 1980s illustrated how regulatory 
forbearance allowed insolvent thriEs to con.nue channeling funds into low-quality real estate and specula.ve 
assets, ul.mately amplifying eventual losses (Kane 1989). In South Korea, preferen.al access to finance under 
implicit state guarantees enabled large business groups (chaebols) to accumulate unsustainable debts, with the 
collapse of Daewoo in 1999 providing a salient example (Krueger and Yoo 2002; MineQ and Yun 2015). Similarly, in 
Mexico, related-party lending during the 1990s directed bank credit toward poli.cally connected or insider-owned 
firms, many of which subsequently defaulted (La Porta, López-de-Silanes, and Zamarripa 2003). See also Claessens 
et al. (2008), Faccio (2006), Carvalho (2014), and Morck et al. (2011). 
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Schumpeterian models of creative destruction, innovation is driven by the prospect of 

displacing incumbents and earning temporary monopoly rents (Aghion and Howitt 1992). 

When subsidized incumbents that should otherwise exit remain in the market, they congest 

product markets, depress prices, and erode the market share and profitability of more dynamic 

rivals, thereby reducing the expected returns to innovation.2 

While an extensive empirical literature documents the detrimental impact of financial 

underdevelopment on real economies,3 our understanding of credit dynamism and its 

consequences for technological progress remain incomplete. What are the implications of 

sustained impairment of credit dynamism for innovation?  We seek to answer this question 

through examination of Japan’s 1990s episode of widespread credit misallocation, commonly 

referred to as zombie lending, as a natural experiment (Hoshi 2006; Peek and Rosengren 2005; 

Caballero, Hoshi and Kashyap 2008).  

Why focus on Japan’s experience from more than thirty years ago, especially when 

zombie lending has also afflicted many economies since the Global Financial Crisis of 2008? 

While Japan’s institutional context is in some respects unique, the mechanisms we study, 

namely, delayed balance-sheet repair and the resulting credit subsidies to unproductive firms 

appear to be common across post-crisis banking systems (Baron et al. 2026). More importantly, 

Japan’s prolonged episode of financial zombification offers a rare empirical setting that helps 

overcome two central measurement challenges. First, detailed firm-level borrowing data allow 

us to directly identify impaired credit reallocation. Second, the long time horizon since the crisis 

enables the use of patent-based measures of innovation quality, particularly forward citation 

data, without the truncation bias that complicates analyses of more recent episodes. 

A first methodological challenge is that credit misallocation is difficult to observe and 

quantify systematically. Impaired credit dynamism typically involves lenders extending 

 
2 In effect, a large presence of financially protected incumbents can push the economy into a range where 
intensified compe..on weakens innova.on incen.ves by compressing margins and lowering the payoff to crea.ve 
destruc.on—a concern long emphasized in classical Schumpeterian theory (Schumpeter 1942). Moreover, when 
credit distor.ons deter entry by new firms, the diminished threat of entry further weakens incumbents’ incen.ves 
to innovate, consistent with the Arrow replacement effect (Arrow 1962). See Aghion et al. (2005) and Aghion et al. 
(2019) for subsequent work showing that both product market compe..on (Aghion et al. 2005) and access to 
finance (Aghion et al. 2019) affect innova.on and produc.vity in a non-monotonic way. 
3 See Levine (2005) for reviews of the literature. 
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subsidized loans to unviable borrowers, but the contractual terms of such loans (e.g., interest 

rates, collateral requirements, or renegotiation agreements) are rarely disclosed. Building on 

Caballero, Hoshi, and Kashyap (2008), we infer credit subsidies indirectly from firms’ financial 

statements by comparing their effective borrowing costs to benchmark rates for the highest-

credit-quality borrowers. This approach provides a systematic measure of zombie lending and 

allows us to trace the consequences of impaired credit reallocation during Japan’s lost decade. 

A second methodological challenge concerns the measurement of technological 

progress. Identifying mechanisms of creative destruction requires distinguishing between 

marginal improvements and transformative inventions that have the potential to disrupt entire 

industries. Patent statistics provide detailed, time-stamped information on inventive activity, 

but because patent quality is highly heterogeneous, forward citations are widely used as a 

proxy for innovation quality (Griliches 1990; Trajtenberg 1990; Hall, Jaffe, and Trajtenberg 

2005; Harhoff et al. 1999; Moser et al.  2016). A well-known limitation of citation-based 

measures, however, is truncation bias: more recent patents mechanically receive fewer 

citations because they have had less time to be cited (Hall, Jaffe, and Trajtenberg 2001). Recent 

work shows that this bias is non-random and can materially affect inference if not handled 

carefully (Dass, Nanda, and Xiao 2017; Lerner and Seru 2022). By focusing on patented 

inventions from the 1990s and observing more than fifteen years of subsequent citations, 

Japan’s early zombification episode allows us to credibly measure innovation quality—rather 

than patent counts alone—while minimizing concerns about truncation bias.4 

We construct two complementary patent datasets. The first covers the universe of 

patented inventions from 1992–2002, aggregated by technological field, with forward citation 

counts observed through 2018. The second links a subset of these patents to publicly listed 

 
4 Complementary measures of innova.on quality do not rely on the accumula.on of cita.ons over .me. Kelly et al. 
(2021) use textual analysis of patent documents to construct measures of technological novelty and impact that 
are immediately observable at the .me of paten.ng. Kogan et al. (2017) infer innova.on quality from stock market 
reac.ons to patent announcements, capturing investors’ assessments of economic value in real .me. Despite their 
very different construc.ons, both measures exhibit highly skewed distribu.ons, reflec.ng the empirical regularity 
that a small frac.on of inven.ons accounts for a dispropor.onate share of subsequent innova.on and economic 
value. Moreover, both are strongly correlated with forward cita.ons, reinforcing the interpreta.on of cita.ons as 
capturing the economic significance of new ideas. Unlike cita.on-based measures, however, these approaches do 
not require the passage of .me to assess patent quality, as market reac.ons and patent documents are 
immediately observable, whereas forward cita.ons can take decades to fully accumulate. 
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firms in the Nikkei NEEDS Financial Database. This firm-level linkage allows us not only to 

control for firm characteristics, but also to identify the mechanisms through which impaired 

credit reallocation affects innovation—distinguishing between mechanical effects driven by the 

low innovative activity of zombie firms themselves and equilibrium effects operating through 

congestion and competitive pressures within industries. 

Our analysis yields three main results. First, zombie lending is disproportionately 

concentrated in technological fields that were already less innovative prior to the rise of 

zombification, highlighting the importance of accounting for non-random selection across 

technologies. Separately, differences in baseline innovative intensity generate differential 

truncation in patent statistics: more innovative, low-zombie fields produce larger volumes of 

patents and citations and therefore experience more severe mechanical truncation for later 

application cohorts, whereas truncation is substantially less pronounced in technologically 

stagnant, high-zombie fields. Second, exploiting within-field variation over time, we find that 

greater exposure to zombie lending is associated with economically large declines in 

innovation. Notably, citation-weighted measures of innovation respond roughly twice as 

strongly to credit misallocation as simple patent counts, reinforcing the interpretation that 

impaired credit dynamism disproportionately undermines the creation of high-quality, 

potentially disruptive inventions central to creative destruction. Third, firm-level analyses 

reveal two reinforcing channels through which impaired credit reallocation depresses 

innovation. Zombie firms innovate substantially less than healthy firms, and—consistent with 

congestion effects—the innovative advantage of healthy firms erodes with increased zombie 

prevalence. Quantitatively, the estimated interaction effects imply that the innovation gap 

between non-zombie and zombie firms vanishes once the zombie share reaches roughly 35 

percent—a level well within the observed range in many industries during the late 1990s. 

We address three methodological concerns. First, how zombie lending is defined. 

Following Hoshi (2000) and Caballero, Hoshi, and Kashyap (2008), we identify zombie firms 

based on implicit credit subsidies inferred from borrowing costs rather than ex post 

performance. This approach focuses on distortions in credit allocation itself, rather than 

mechanically linking financial distress status to poor outcomes. To guard against potential 
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misclassification, we also consider a stricter definition that combines credit subsidies with 

balance-sheet indicators of financial distress, following Acharya et al. (2024). Second, because 

zombie lending is disproportionately concentrated in technological fields that were already less 

innovative, selection poses a serious concern. We address this issue using within-technology 

variation over time, extensive controls, and placebo tests based on non-corporate patenting 

activity, which responds to common technology shocks but is plausibly insulated from bank 

lending behavior. 

Finally, we confront concerns about truncation bias in patent citations. Because Japan’s 

zombification episode occurred earlier than post-GFC episodes studied elsewhere, our data 

allow us to observe more than fifteen years of forward citations for patents filed in the 1990s. 

We exploit this long horizon to conduct extensive robustness checks that vary citation windows 

and sample definitions, following the recommendations of Dass, Nanda, and Xiao (2017) and 

Lerner and Seru (2022). In addition, to ensure that our results are not driven by differential 

truncation associated with surges in patenting, we re-estimate our main specifications after 

excluding industries and technology classes that experienced unusually rapid growth in 

patenting activity. Beyond addressing truncation concerns, this restriction also mitigates 

selection issues by avoiding comparisons between rapidly innovating fields—where zombie 

lending is rare—and chronically low-innovation technologies. These exercises confirm that our 

findings are not artifacts of right-censoring, unequal citation exposure, or non-random selection 

across technologies. 

Related Literature 

Our paper contributes to several strands of the literature on finance, credit allocation, 

and innovation. Foundational work on finance and economic growth emphasizes that financial 

development promotes growth primarily by improving capital allocation and total factor 

productivity rather than by expanding the quantity of investment (Beck, Levine, and Loayza 

2000; Wurgler 2000). Conventional measures of financial development, however, largely 

capture the scale of intermediation rather than the quality or dynamism of credit allocation. 

Closely related studies examine settings in which policy-induced changes improved the 

efficiency of credit reallocation. A prominent example is the literature on US banking 
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deregulation, which shows that the removal of state branching restrictions accelerated credit 

flows from low- to high-quality firms and facilitated Schumpeterian creative destruction, 

leading to productivity growth (Jayaratne and Strahan 1996; Black and Strahan 2002; Cetorelli 

and Strahan 2006; Kerr and Nanda 2009; Bai, Carvalho, and Phillips 2018; Herrera, Minetti, 

Schaffer 2025).5 While this literature highlights the importance of credit reallocation, isolating 

its effects on innovation is challenging because banking deregulation are multifacted and 

affects financial markets through multiple channels simultaneously, including competition, firm 

entry, and organizational structure.6 

Our paper is most closely related to the literature on zombie lending and productivity 

slowdowns. Caballero, Hoshi, and Kashyap (2008) show that subsidized lending to distressed 

firms during Japan’s 1990s stagnation distorted resource allocation and depressed productivity 

growth by impeding reallocation and exit.7 We build on this framework by studying innovation 

as a distinct and complementary channel through which impaired credit dynamism affected 

Japan’s long-run economic performance.8  

Recent and concurrent work examines the effects of post–Global Financial Crisis 

zombification on innovation in Europe. Schmidt et al. (2024) and Ascani and Balachandran Nair 

(2025) study Spain and Italy, respectively, documenting declines in patenting activity following 

the rise of zombie firms. Our approach differs in two important respects. First, we follow 

Caballero, Hoshi, and Kashyap (2008) in defining zombie firms based on implicit credit subsidies 

 
5 Others also examine financial liberaliza.on or banking reform in other countries as a quasi-experimental seQng to 
iden.fy credit alloca.on efficiency (e.g., Bertrand, Schoar, and Thesmar 2007, Varela 2018). 
6 The effects of banking deregula.on on innova.on are nuanced. Amore, Schneider, and Žaldokas (2013) find that 
interstate banking deregula.on increases both the quan.ty and quality of innova.on by public manufacturing 
firms. In contrast, Cornaggia et al. (2015) show that while deregula.on reduces innova.on by public firms at the 
state level, it increases innova.on by private firms, as greater bank compe..on improves credit access and allows 
small, innova.ve firms to remain independent. Chava et al. (2013) dis.nguish between intrastate and interstate 
branching deregula.on, finding that the former reduces, while the lager increases, the level and riskiness of 
innova.on by young and private firms. Hombert and Matray (2017) further document that intrastate deregula.on 
dampens innova.on among small firms by weakening lending rela.onships and limi.ng inventor mobility with ligle 
effect on large firms. 
7 Others build on the seminal work of Caballero, Hoshi and Kashyap (2008) to examine Japan’s zombifica.on 
episode (e.g., Kwon, Narita, and Narita (2015), Imai (2016), Cheung and Imai (2024), and Sakai and Uesugi (2024). 
8 Related work applying the Caballero–Hoshi–Kashyap framework to post-GFC Europe includes Banerjee and 
Hofmann (2022), McGowan, Andrews, and Millot (2017), and Acharya et al. (2024). See Acharya et al. (2022) for a 
review of the literature. 
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rather than balance-sheet distress, allowing us to capture distortions in credit allocation rather 

than poor performance per se. Second and more importantly, Japan’s earlier zombification 

episode provides a much longer horizon, enabling us to measure innovation quality—rather 

than patent counts alone—using unusually long forward citation data. This distinction is crucial 

for identifying creative destruction, as simple patent counts conflate trivial inventions with 

transformative innovations that drive industry disruption. 

The remainder of the paper is organized as follows. Section 2 describes the institutional 

background of credit misallocation in Japan and outlines our measure of zombie 

lending. Section 3 presents the patent data and discusses their construction and key 

measurement issues. Section 4 links credit misallocation to patent outcomes by technology 

class and describes the key features of the linked data. Section 5 formally presents aggregate 

evidence on the innovation effects of impaired credit dynamism using technology-field–level 

analyses. Section 6 provides firm-level evidence on congestion externalities and heterogeneous 

responses to zombie lending. Section 7 concludes. 

2. Credit MisallocaFon in Japan 

2.1. InsFtuFonal Background 

The phenomenon of zombie lending emerged after the burst of Japan’s asset-price 

bubble in 1990–91, which triggered a sharp decline in land and stock prices. Because real estate 

served as collateral for much of bank lending—and because banks themselves held large equity 

and property positions—the collapse destroyed bank capital and rendered many firms 

insolvent. Loan growth and investment contracted sharply (Peek and Rosengren 1998, 2000; 

Imai and Takarabe 2011; Amiti and Weinstein 2011, 2018; Gan 2007a, 2007b). At the same 

time, under-capitalized banks, reluctant to recognize losses, rolled over loans to failing 

borrowers to keep them nominally current, allowing “zombie firms” to survive not through 

profitability but through banks’ willingness to continue lending on favorable terms (Peek and 

Rosengren 2005; Caballero, Hoshi, and Kashyap 2008).9  

 
9 The main bank system—with its long-term rela.onships, cross-shareholdings, and managerial .es—reinforced 
these incen.ves by making banks hesitant to abandon long-standing clients (Hoshi, Kashyap, and Scharfstein 1990; 
Morck and Nakamura 1999; Aoki and Patrick 1994). 
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As Imai (2019) emphasizes, zombie lending reflected not only weak bank balance sheets 

but also a regulatory and political environment that suppressed market discipline and favored 

forbearance to avoid widespread bankruptcies and unemployment.10 The government’s 

reluctance to force recognition of loan losses reflected broader efforts to contain the political 

and fiscal costs of full-scale restructuring. Only with the Takenaka Plan (2002–2005) did the 

government impose stricter accounting standards and begin to compel banks to recognize 

losses. Japan’s experience thus illustrates how regulatory forbearance and moral hazard—

amplified by political incentives to conceal losses—can transform a temporary asset-price 

collapse into a decade-long episode of capital misallocation.11 

2.2. Measuring Credit Misallocation 

How should one identify credit misallocation? By nature, misallocation is rarely 

transparent to outside observers with banks rolling over or restructuring loans to otherwise 

insolvent borrowers. This opacity is compounded by the fact that banks possess private 

information about borrower viability and may deliberately obscure the extent of evergreening, 

making it difficult to distinguish between efficient liquidity support and inefficient forbearance. 

Moreover, assessing its macroeconomic consequences requires disentangling these effects 

from contemporaneous shocks to productivity, demand, or financial conditions. These 

challenges underscore the need for detailed micro-level data and creative empirical strategies. 

One can identify zombie lending based on the prevalence of financially distressed or 

insolvent firms.12 While convenient, such performance-based definitions risk circularity: by 

 
10 The government’s 1996 blanket deposit guarantee shielded creditors from losses, weakening depositor 
monitoring (Imai 2006). Regulators tolerated “regulatory capital arbitrage,” allowing banks to meet Basel standards 
with deferred tax assets and subordinated debt rather than genuine equity (Hoshi and Kashyap 2004). Poli.cal 
connec.ons and amakudari appointments of former officials to bank boards further delayed correc.ve ac.on 
(Horiuchi and Shimizu 2001). 
11 Across countries, a common mechanism behind delayed bank resolu.on is the incen.ve of regulators—and 
ul.mately poli.cians—to avoid upfront fiscal costs. Closing insolvent banks or recapitalizing healthy ones requires 
immediate cash outlays to repay depositors or inject public capital, ac.ons that make losses explicit to taxpayers. A 
large body of work shows that these fiscal and poli.cal incen.ves encourage regulatory forbearance, allowing weak 
banks to evergreen loans to distressed borrowers and crea.ng the condi.ons for zombie lending. This pagern is 
documented in the U.S. thriE crisis (Kroszner and Strahan 1996) and the European banking sector (Acharya et al. 
2020).  
12 “Zombie firms” are frequently iden.fied as mature firms exhibi.ng persistently weak financial performance—
oEen measured using the interest coverage ra.o (ICR), Tobin’s q, leverage, or sales growth. An ICR below one over 
mul.ple years signals chronic weakness and dependence on forbearance. 
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construction, they equate poor performance with zombie status. This endogeneity motivates 

identifying distortions in lending behavior directly, as in Caballero, Hoshi, and Kashyap (2008). 

Caballero, Hoshi, and Kashyap (2008) detect subsidized credit in two steps. First, they 

establish a conservative lower bound for required interest payments by combining prevailing 

short- and long-term prime rates with the lowest coupon rates on convertible bonds observed 

in the preceding five years—benchmarks attainable only by the most creditworthy firms. They 

then compare actual interest payments to this benchmark, normalizing by total borrowing to 

construct an “interest rate gap.” Firms whose observed payments fall below this bound are 

classified as zombies, indicating bank subsidization through evergreening or restructuring. 

Because this approach relies on loan terms rather than ex post firm performance, it isolates 

distortions in credit allocation without mechanically conflating them with low profitability or 

productivity. Our analysis uses their approach.13 

Our primary data source, Nikkei Financial QUEST, provides detailed financial statements 

for all firms listed on Japanese stock exchanges, including the over-the-counter market. This 

coverage is considerably broader than that of Caballero, Hoshi, and Kashyap (2008), who 

restricted their sample to firms listed on the first and second sections of the Tokyo Stock 

Exchange. Thus, we provide a more comprehensive measure of credit misallocation. From this 

database, we obtain information on each firm’s short-term bank loans (maturity of less than 

one year), long-term bank loans (maturity exceeding one year), and total bonds outstanding, 

including both convertible bonds (CBs) and warrant-attached bonds. To measure the degree of 

credit subsidization, we complement these data with prime lending rates published by the Bank 

of Japan (https://www.boj.or.jp/statistics/dl/loan/prime/primeold2.htm) and subscriber yields 

for convertible bonds collected from various issues of Kin’yu Nenpo (Annual Report on Finance) 

published by the Ministry of Finance. 

Using these data, we construct annual measures of the share of zombie firms in Japan’s 

corporate sector. Figure 1 replicates the original analysis of Caballero, Hoshi, and Kashyap 

(2008, Figure 1, p. 1945) using our expanded firm coverage and updated data and reveals a 

 
13 See Online Appendix for a detailed descrip.on of the zombie-firm iden.fica.on method developed by Caballero, 
Hoshi, and Kashyap (2008). 
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remarkably similar pattern. After the collapse of the asset-price bubble in the early 1990s and 

the sharp recession of 1992–93, the share of zombie firms rises sharply beginning around 1993. 

In the top panel of Figure 1, where firms are weighted equally, the zombie share fluctuates 

between 5 and 15 percent during the late 1980s and early 1990s, then accelerates through the 

mid-1990s, exceeding 25 percent and reaching roughly 30 percent by the early 2000s. Notably, 

much of this increase occurs during a period of economic stabilization and partial recovery 

beginning in 1994–95, indicating that the expansion of zombie lending was not merely a 

transitory response to recession but persisted well into the recovery phase. This persistence 

underscores the enduring nature of Japan’s credit misallocation problem and the slow pace of 

financial restructuring. 

From the standpoint of congestion spillovers, however, a size-weighted measure is 

arguably more relevant. The bottom panel of Figure 1, which weights firms by total assets, 

displays a similar time pattern but at lower levels, indicating that approximately 15 percent of 

corporate assets were tied up in zombie firms during the late 1990s. Both measures are 

substantially lower throughout the 1980s and the early phase of the post-bubble downturn. 

When we disaggregate the analysis by industry (Figure 2), our results continue to closely 

mirror those reported by Caballero, Hoshi, and Kashyap (2008). Following their approach, we 

group firms into six broad sectors—manufacturing, construction, real estate, trade, services, 

and all firms combined—and compute the asset-weighted share of zombie firms within each 

sector. The resulting industry-level series closely replicate the time-series patterns in their 

Figure 3 (p. 1951): zombie prevalence rises sharply in the early 1990s and remains elevated 

across all sectors for the remainder of the sample. Consistent with their findings, the problem is 

more pronounced in nonmanufacturing industries—particularly construction, real estate, and 

services—where zombie asset shares increase substantially following the bubble’s collapse. In 

contrast, the manufacturing sector exhibits a more modest rise, likely reflecting greater 

exposure to international competition and fewer opportunities for banks to sustain unviable 

borrowers through domestic protection. The purpose of replicating these figures is twofold 
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purposes: to validate the consistency of our data with earlier studies and to establish a 

benchmark for interpreting our subsequent analysis.14 

3. Patent Data and the Measurement of Innovation 

Measuring technological knowledge is inherently difficult, but patent data provide one 

of the few standardized and widely used sources for observing innovative activity (Griliches 

1990; Hall, Jaffe, and Trajtenberg 2001). Patent records contain rich, time-stamped information 

on the technological content and ownership of inventions, including application and grant 

dates, technology classifications, and references to prior patents and non-patent literature. At 

the same time, the informativeness of patent statistics depends critically on the institutional 

environment in which patents are examined and recorded. 

This section first describes truncation bias in the widely used NBER patent database for 

the United States as a benchmark, then explains the construction and institutional features of 

the Japanese patent data, and finally highlights key features of the data that are central for 

interpreting patent-based measures of innovation and assessing truncation bias across settings. 

3.1. Truncation Bias in the NBER Patent Database 

Truncation bias in the NBER patent database has been extensively documented (Hall, 

Jaffe, and Trajtenberg 2001, 2005; Harhoff et al. 1999; Dass, Nanda, and Xiao 2017; Lerner and 

Seru 2022). The issue arises because the NBER database contains only granted patents. While 

inventive activity is often dated by application year to better capture the timing of innovation, 

applications still pending at the end of the sample are unobserved, generating truncation that 

becomes more severe for later cohorts. 

A related problem arises in citation data. Because citations can be observed only from 

patents granted within the sample window, even older patents have incomplete citation 

counts, with missing citations becoming increasingly severe for patents closer to the cutoff 

 
14 Using the same data and zombie defini.ons, we also replicate the central empirical findings of Caballero, Hoshi, 
and Kashyap (2008) regarding the real effects of zombie lending. In par.cular, we confirm that otherwise healthy 
firms exhibit lower employment and investment in industries with higher zombie prevalence, consistent with 
conges.on and compe..ve spillovers opera.ng through product and factor markets (results not shown to 
conserve space). These findings closely mirror those reported in Caballero, Hoshi, and Kashyap (2008, Table 3) and 
provide further valida.on that our data and measurement strategy capture the same underlying phenomenon 
documented in their study. 
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year. As a result, patents near the end of the sample mechanically appear less influential, not 

because they are of lower quality, but because future citing patents fall outside the dataset. 

These features generate systematic truncation bias in citation-based measures of innovation 

quality. 

Recent work demonstrates that these biases are large, non-random, and consequential. 

Dass, Nanda, and Xiao (2017) show that truncation in the NBER-2006 data leads to severe 

understatement of both patenting activity and citations for cohorts in the early 2000s, even 

after applying standard corrections based on historical grant-lag distributions. Lerner and Seru 

(2022) extend this analysis using a longer observation window and show that both patent and 

citation truncation vary systematically across technologies, firms, and regions. Importantly, 

they document that commonly used adjustment methods correct only a small fraction of the 

bias and that the resulting measurement error is correlated with firm characteristics such as 

size, R&D intensity, and financial constraints. As a result, empirical studies may spuriously 

attribute patterns in patenting or citations to economic mechanisms when they instead reflect 

truncation-induced measurement error. 

3.2. Institutional Features of the Japanese Patent System 

A defining institutional feature of the Japanese patent system is pre-grant publication. 

All patent applications are automatically disclosed eighteen months after filing, regardless of 

whether they are subsequently examined or registered. As a result, researchers can observe 

application activity directly, in principle avoiding truncation associated with grant lags. In 

practice, however, application data alone are not a reliable measure of realized innovative 

output. 

This limitation arises from Japan’s request-for-examination system, introduced in 1971. 

Unlike the U.S. system, in which all patent applications are examined automatically, applicants 

in Japan must affirmatively request substantive examination within a specified period after 

filing—currently within three years, and up to seven years prior to 2001. Because filing fees are 

relatively low, firms may file applications strategically before the economic value or novelty of 

an invention is fully established and subsequently choose not to pursue examination. As a 
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consequence, only a subset of applications is examined, and an even smaller subset is 

ultimately registered as patents. 

For this reason, patent grants—rather than applications—remain the appropriate unit 

for measuring realized inventive activity, paralleling standard practice in the NBER-based U.S. 

patent literature. At the same time, the ability to observe applications in the Japanese data is 

valuable for diagnosing truncation patterns and for selecting sample endpoints that ensure 

sufficient post-application observation. 

The request-for-examination system also implies that the lag between application and 

registration is both long and highly variable. Median application-to-registration lags are on the 

order of three to four years, and a nontrivial share of patents experience lags of five to eight 

years or longer, particularly in technologically crowded fields (Goto and Motohashi 2007; 

Nagaoka, Motohashi, and Goto 2010). These institutional features play a central role in shaping 

truncation patterns in Japanese patent data and motivate careful choices regarding innovation 

timing and sample windows in empirical analysis.15 

3.3. Institute of Intellectual Property (IIP) Patent Database 

Our patent data come from the Institute of Intellectual Property (IIP) Patent Database, 

developed under the leadership of Akira Goto. The IIP Patent Database was designed to provide 

a structured, research-ready version of Japanese patent records based on the Japan Patent 

Office’s standardized administrative data (“Seiri-Hyojunka Data”) to facilitate empirical research 

on innovation (Goto and Motohashi 2007; Nagaoka, Motohashi, and Goto 2010). While the 

underlying JPO records extend back to the early twentieth century, the IIP database focuses on 

applications from 1964 onward, reflecting the availability of consistent bibliographic fields and 

International Patent Classification (IPC) codes. The first public release, covering 1964–2004 and 

approximately nine million applications, became available in 2005; subsequent releases extend 

 
15 The request-for-examina.on system, and the longer median applica.on-to-registra.on lags that result, are not 
unique to Japan. For example, under the European Patent Conven.on, European patent applica.ons are typically 
published at 18 months aEer filing or priority, and applicants must file a request for examina.on and pay an 
examina.on fee within a fixed period aEer publica.on of the European search report for the applica.on to proceed 
toward grant. These parallels underline that trunca.on and varia.on in applica.on-to-grant .ming are common 
features in mul.ple advanced patent systems, reinforcing the importance of carefully aligning .ming and 
measurement when using patent data to study innova.on. 
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coverage forward in time. We use the 2020 release, whose documentation is the most 

complete and which covers all published patent applications and registered patents through 

September 16, 2019. 

The IIP database reflects key institutional features of the Japanese patent system by 

recording information separately for applications, examination requests, and registrations. It 

includes application dates, IPC-based technology classifications, applicant and inventor 

information, examination request dates, and registration dates for granted patents. Citation 

information in the IIP Patent Database is compiled from search reports prepared by patent 

examiners rather than by applicants themselves, mitigating concerns about strategic citation 

behavior—a feature shared with the European patent system. Substantial effort was devoted to 

cleaning and harmonizing applicant identities, as the original JPO data do not contain stable 

applicant identifiers and include numerous name variants—an issue analogous to that 

documented for raw USPTO data (Goto and Motohashi 2007; Lerner and Seru 2022). 

Do the IIP patent data exhibit truncation patterns similar to those documented for the 

NBER patent database? To address this question, we replicate the diagnostic exercises 

proposed by Lerner and Seru (2022). Their analysis of the NBER-2006 patent database plots: (i) 

the number of patents by grant year, (ii) the number of successful patent applications—defined 

as applications that eventually result in grants—by application year, (iii) the total number of 

applications (successful plus unsuccessful), and (iv) forward citations per patent by application 

year. Together, these panels provide a clear visual diagnosis of truncation arising from grant 

lags and finite citation windows. 

Figure 3 replicates these diagnostics using the IIP Patent Database. When patents are 

organized by grant (registration) year, patent counts evolve smoothly over time, with no 

evidence of a sharp end-of-sample decline (Panel A). By contrast, when granted patents are 

reorganized by application year, the series declines sharply toward the end of the sample, 

approaching zero (Panel B). This decline begins around 2015—approximately three years before 

the end of the observation window—consistent with median application-to-registration lags of 

three to four years and substantially longer lags for a nontrivial share of patents under Japan’s 

request-for-examination system. 
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Citation-based measures exhibit an even earlier and more pronounced truncation 

pattern. Forward citations per patent, when plotted by application year, peak for relatively 

early cohorts and then decline steadily, with citation intensity for recent cohorts falling close to 

zero (Panel D). This decline begins around 2001—roughly eighteen years before the end of the 

citation window—reflecting the compounded lags associated with the registration of cited 

patents, the subsequent grant of citing patents, and the finite observation window for citations. 

Panel C plots the total number of patent applications, defined as the sum of successful 

and unsuccessful applications. In contrast to the U.S. data, where total applications continue to 

rise through the end of the sample, the IIP data exhibit a sharp decline beginning in 2018. This 

decline is fully mechanical and reflects Japan’s eighteen-month pre-grant publication rule: 

because the IIP database used in this study was compiled in September 2019, applications filed 

after early 2018 had not yet reached the publication stage and are therefore unobserved (Goto 

and Motohashi 2007). 

To further illustrate citation truncation, Figure 4 plots the distribution of forward 

citations by citation lag for patents applied for in different years. Earlier cohorts (e.g., 1990 and 

1995) exhibit long citation tails, with meaningful citation activity extending beyond twenty 

years after application. By contrast, for more recent cohorts (notably 2005 and 2010), citations 

drop sharply after relatively short lags and approach zero within ten years. This pattern reflects 

a finite observation window rather than faster technological obsolescence. Accordingly, our 

baseline analysis restricts attention to patent applications filed no later than 2002, ensuring 

sufficiently long post-application horizons for measuring innovation quality.16 

4. Creation of Linked Patent–Zombie Datasets 

To examine how credit misallocation affects innovative activity, we construct two 

complementary datasets that link patent outcomes to measures of zombie lending. Zombie 

lending is measured at the industry-year level following Caballero, Hoshi, and Kashyap (2008), 

while innovation outcomes are observed at the firm and technology levels. Because these 

objects are defined at different levels of aggregation, empirical analysis requires mapping 

 
16 Robustness to alterna.ve applica.on and cita.on windows is later examined. 
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industry-level credit distortions into the domains where innovation is observed. This mapping 

underlies both datasets used in our analysis. 

4.1 Linking Patent Applicants to Firms 

We begin by linking patent records from the Institute of Intellectual Property Patent (IIP) 

Database to firm-level financial information from the Nikkei NEEDS Financial Quest (FQ) 

database. This task is nontrivial because patent applicants are not recorded using stable firm 

identifiers. The same firm may appear under multiple names due to variation in spelling, 

abbreviations, character sets (Japanese, Chinese, and Roman), typographical conventions, and 

organizational changes such as mergers, spin-offs, and rebranding (Yamashita and Yamauchi 

2019). 

To address these challenges, we rely on a company name dictionary compiled by the 

National Institute of Science and Technology Policy (NISTEP). The 2019 version of this dictionary 

assigns unique firm identifiers (NISTEP IDs) and standardized names to major patent 

applicants—defined as firms that have filed at least 100 patent applications since 1970—which 

together account for more than 90 percent of corporate patent applications in Japan. Crucially, 

the dictionary records historical organizational changes, allowing past firm names to be linked 

to current identifiers. 

Using NISTEP IDs as the primary key, we match patent applicants to firms in the Nikkei 

FQ database. We further refine this matching using information on company names, security 

codes, and headquarters locations at the municipal level. Because firm names in the Nikkei FQ 

database can be reliably traced back only to 1997, we identify earlier name changes using 

the Handbook of the Tokyo Stock Exchange. This procedure allows us to match approximately 

76 percent of patent applications filed by firms with NISTEP IDs, corresponding to about 60 

percent of all patent applications in the IIP database. 

4.2 Sample Period 

Our baseline patent sample consists of applications filed between 1992 and 2002. The 

start year is chosen to avoid the unusual macroeconomic and policy environment of the early 

1990s, when tight monetary policy by the Bank of Japan and regulatory restrictions on 

commercial real estate lending precipitated the collapse of the asset price bubble and a deep 
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recession (Okina, Shirakawa, and Shiratsuka 2001; Sonoda and Sudo, forthcoming). Because this 

episode represents a sharp macroeconomic regime break rather than a stable pre-crisis 

baseline, earlier years do not provide an appropriate counterfactual. The end year is chosen to 

mitigate truncation bias in forward patent citations (Section 3).17 

4.3 Firm-Level Dataset 

Using the matched data, we first construct a firm-level dataset by restricting attention 

to patents whose applicants can be linked to publicly listed firms in the Nikkei FQ database. For 

these firms, we aggregate patent counts and forward citations to the firm-application year level 

and merge them with balance-sheet information and measures of zombie status. This dataset 

allows us to study firm-level innovation behavior and congestion externalities in section 6. 

A limitation of this firm-level analysis is that it necessarily excludes patents granted to 

firms that are not publicly listed and therefore do not appear in the Nikkei FQ database. 

Because credit misallocation affects the broader corporate sector, including private firms and 

other entities for which firm-level financial data are unavailable, analyses restricted to listed 

firms may understate the aggregate impact of impaired credit reallocation on innovative 

activity. 

4.4 Technology-Class–Level Dataset 

To address this limitation, we exploit the fact that all patents in the IIP database are 

assigned to detailed technology classes based on their International Patent Classification (IPC) 

codes, regardless of the ownership or listing status of the applicant. This feature allows us to 

construct a technology-class–level dataset that includes the universe of patented inventions, 

encompassing patents by listed firms, unlisted firms, and other corporate entities (excluding 

patents with foreign applicants). 

The primary dataset for our aggregate analysis is therefore constructed at the 

technology-class level. Each patent is assigned to one of 120 technology classes based on its 

primary IPC code. For each technology class, we aggregate patent counts and forward citations 

 
17 Japan experienced a severe banking crisis in 1997–98, marked by major financial ins.tu.on failures and 
government interven.ons. While our baseline sample extends through 2002, our results do not hinge on including 
the late-1990s crisis period. In robustness checks, we re-es.mate all specifica.ons using a sample ending in 1997, 
prior to the banking crisis, and obtain qualita.vely similar results. 
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by application year using the universe of patents filed between 1992 and 2002. This dataset 

enables us to estimate the aggregate effects of credit misallocation on innovation across 

technological fields, rather than only the responses of a selected subset of publicly listed 

firms.18 

4.5 Mapping Industry-Level Credit Misallocation into Technology Fields 

Because zombie lending is measured at the industry-year level and varies over time, 

while patents are classified by technology rather than industry, we translate industry-level 

credit misallocation into technology-level exposure using a shift–share approach. Using the 

firm-patent linkage described above, we identify the industries in which patenting firms 

operate and compute, for each technology class 𝑘 and industry 𝑗, the share of patents 

originating from industry 𝑗, denoted 𝑤!". 

These weights are computed using the full matched patent–firm sample pooled over 

1991–2001—one year prior to the estimation window—and are held fixed over time, reflecting 

the long-run industry composition of innovation within each technology class. Fixing the 

weights avoids mechanically linking contemporaneous patenting outcomes to exposure 

measures and follows standard practice in shift–share designs.19  

We then define technology-level zombie exposure in year 𝑡 as: 

𝑧!# =(𝑤!"
"

𝑧"# , 

where 𝑧"# denotes the asset-weighted share of zombie firms in industry 𝑗 in year 𝑡. 
Under this construction, variation in technology-level exposure arises solely from changes in 

 
18 Nano-technology (IPC B82), one of the 120 technology classes, is only defined and available star.ng in 1997, but 
our technology-class level panel data are virtually balanced with 1,314 technology-class–year observa.ons (119 x 
11 + 5 = 1314). 
19 Online Appendix Table A1 provides transparency on the industry–technology mapping underlying the 
construc.on of our exposure measures. For each of the 120 IPC technology classes, the table reports the two 
industries with the largest paten.ng shares, 𝑤!". Patent ac.vity within technology classes is highly concentrated: 

only 13 industries ever appear as the dominant paten.ng sector, and this set expands to just 16 industries when 
second-ranked sectors are included. Electric machinery is by far the most pervasive industry, appearing among the 
top two paten.ng sectors in 71 technology classes, followed by non-electric machinery and chemicals. Overall, the 
implied mappings are economically intui.ve—for example, machinery-related technologies are primarily associated 
with manufacturing industries, while construc.on- and real-estate-related technologies draw dispropor.onately 
from nonmanufacturing sectors—confirming that the exposure measures capture meaningful industry–technology 
linkages rather than mechanical ar.facts of aggrega.on. 
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industry-level zombie prevalence over time, while the mapping from industries to technologies 

remains stable.20 

5. Zombie Lending Exposure and Innovation across Technology Classes 

5.1. Descriptive Patterns 

We begin by documenting several descriptive patterns in the technology class–level 

data that motivate our empirical strategy and underscore the importance of accounting 

for selection across technologies, differential truncation in citation data, and heterogeneous 

underlying innovation trends. 

Figure 5 plots average patent grants (top panel) and average forward citations (bottom 

panel) over 1992–2002 against the industry-weighted average zombie exposure of each 

technology class, computed using one-year-lagged values over 1991–2001. Each point 

corresponds to one of the 120 IPC technology classes. The figure reveals a clear negative cross-

sectional relationship: technology classes more exposed to zombie lending exhibit substantially 

lower patenting activity and fewer citations on average. At face value, this pattern suggests that 

innovation is weaker in technological fields associated with industries characterized by 

persistent credit misallocation. 

However, these cross-sectional correlations also highlight an important selection 

issue. Figure 6 plots total patent grants (top panel) and total forward citations (bottom panel) 

by application year for technology classes with low versus high exposure to zombie lending, 

where technology classes are classified based on whether their industry-weighted average 

zombie share over 1991-2001 lies below or above the median. Low-zombie technology classes 

are substantially more innovative throughout the sample period, both in terms of patenting 

volume and citation intensity, mirroring the pattern in Figure 5. Importantly, these differences 

in innovative output were already visible well before zombie lending became a prominent 

feature of Japan’s banking system in the early 1990s. That is, technology classes with high 

 
20 This approach is closely related to that used by Autor et al. (2020), who study the effects of trade shocks on 
innova.on by weigh.ng industry-level shocks by the industry composi.on of paten.ng within each technology, and 
by Hombert and Matray (2017), who map financial shocks into technology-level innova.on outcomes using patent 
data. As in these studies, our objec.ve is not to assign each technology to a single industry, but to translate 
industry-level credit distor.ons into technology-level exposure measures based on observed pagerns of 
innova.on. 
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zombie exposure are not simply those that subsequently “fell behind,” but rather those that 

were already characterized by lower innovative dynamism. This pre-existing heterogeneity 

cautions against interpreting the cross-sectional patterns in Figure 5 as causal effects of 

zombification on innovation. 

At the same time, Figure 6 reveals a closely related pattern that raises additional 

econometric concerns, closely connected to the non-classical measurement error and 

endogeneity issues emphasized by Dass, Nanda, and Xiao (2017) and Lerner and Seru (2022). 

Forward citations in low-zombie technology classes rise sharply during the 1990s and then 

decline rapidly in the early 2000s, whereas citation activity in high-zombie fields remains 

comparatively flat throughout. Part of this divergence reflects mechanical truncation, as 

discussed in Section 3: more innovative fields generate larger volumes of patents and citations 

and therefore experience more severe end-of-sample citation truncation. At the same time, the 

pronounced rise in citations during the 1990s suggests that some low-zombie technology 

classes might have been “hot” fields whose innovative activity surged for reasons unrelated to 

credit conditions—for example, due to underlying technological breakthroughs or shifts in 

demand. 

As a result, selection, heterogeneous innovation trends in the 1990s, and subsequent 

citation truncation in the early 2000s interact in ways that can be misleading. Absent careful 

treatment, naive comparisons across technology classes or over time could lead to faulty causal 

interpretations—for example, that low-zombie fields performed strongly in the 1990s only to 

stagnate in the 2000s, suggesting that credit misallocation has only transitory effects on 

innovation—when, in fact, the observed pattern may simply reflect a relative surge in 

innovation in a subset of low-zombie technologies whose patents have yet to receive most of 

their citations because truncation is more severe in technologically dynamic fields. 

These considerations motivate several features of our empirical design. First, we exploit 

within-technology variation over time while controlling for technology fixed effects, thereby 

accounting for time-invariant differences in innovative capacity across fields. Second, we 

restrict the baseline analysis to patent applications filed no later than 2002, for which citation 

windows are sufficiently long. Third, we construct technology-level zombie exposure measures 
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that vary only through changes in industry-level zombie prevalence, holding the industry–

technology mapping fixed. Finally, we conduct robustness checks that explicitly address the 

possibility that results are driven by “hot” technology fields by excluding technologies that 

experienced surges in patenting or citations during the 1990s. The regression analysis that 

follows is structured to address these intertwined concerns of selection, truncation, and latent 

technological trends highlighted by Figures 5 and 6. 

5.2. Baseline Regression Specification 

Our baseline specification relates innovation outcomes in technology class 𝑘 and 

application year 𝑡 to exposure to zombie lending as follows: 

𝑦!# = 𝛽𝑧!#$% + 𝛼! + 𝛾# + 𝜀!# , 
where 𝑦!# denotes an innovation outcome—such as the log number of granted patents or the 

log number of forward citations associated with patent applications in technology class 𝑘 and 

year 𝑡. The key explanatory variable, 𝑧!#$%, is the industry-weighted zombie share for 

technology class 𝑘 in year 𝑡 − 1, constructed using the long-run industry composition of 

patenting within each technology class, as described in Section 4.5. Standard errors are 

clustered by the industry with the largest patenting share for each technology class (13 

clusters). 

The specification includes technology-class fixed effects (𝛼!), which absorb time-

invariant differences in innovative capacity across fields. Year fixed effects (𝛾#) capture 

aggregate trends in patenting, changes in patent-office practices, and macroeconomic shocks 

common to all technologies. 

This within-technology design directly addresses the selection concerns highlighted in 

Section 4. Technology classes that are more exposed to zombie lending are systematically less 

innovative in the cross section, even prior to the rise of zombie lending. By comparing each 

technology class to itself over time, the regression framework isolates changes in innovation 

associated with changes in exposure to credit misallocation, rather than relying on comparisons 

between inherently high- and low-innovation fields. At the same time, year fixed effects ensure 

that identification comes from differential exposure to zombie lending across technologies 

within a given year, rather than from secular trends in innovative activity. 
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Patent grants and forward citations are inherently count variables and exhibit highly 

skewed distributions, with a small number of technology classes accounting for a 

disproportionate share of innovative activity. A common approach in the innovation literature 

is to estimate log-linear models using the logarithm of one plus the count of patents or 

citations, which allows zeros to be included while compressing the right tail of the distribution. 

While this transformation is convenient, it treats zero outcomes in an ad hoc manner and 

distorts proportional effects at low counts. We therefore complement log-linear specifications 

with Poisson regressions, which model the conditional mean of count outcomes directly and 

accommodate zeros naturally. 21 

5.3. Baseline Results 

Table 1 reports baseline estimates of the baseline model relating innovation outcomes 

at the technology-class level to exposure to zombie lending. Panel A presents specifications that 

include year fixed effects but exclude technology-class fixed effects, while Panel B adds 

technology-class fixed effects and therefore exploits only within-technology variation over time. 

In each panel, we report results for patent grants and forward citations using both log-linear 

OLS specifications and Poisson count models. 

Panel A reveals a strong negative cross-sectional relationship between zombie exposure 

and innovation. Technology classes that are more exposed to zombie lending exhibit 

substantially lower patenting and citation activity on average, regardless of whether innovation 

is measured using log outcomes or Poisson counts. The estimated coefficients are large in 

magnitude and highly statistically significant across all four specifications. These results mirror 

the raw patterns documented in Section 4 and confirm that zombie lending is 

disproportionately concentrated in technological fields characterized by persistently low 

innovative activity. 

 
21 Log-linear specifica.ons using log(1 + y) yield qualita.vely similar pagerns. However, recent work shows that log 
transforma.ons in the presence of zeros can distort magnitudes and inference, whereas Poisson es.mators deliver 
more reliable semi-elas.ci.es for count and count-like outcomes (Santos Silva and Tenreyro 2006; Cohn, Liu, and 
Wardlaw 2022; Chen and Roth 2024). Accordingly, we emphasize Poisson es.mates when discussing economic 
magnitudes. 
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Panel B introduces technology-class fixed effects, absorbing time-invariant differences in 

innovative capacity across technological fields. Once these fixed effects are included, the 

magnitude of the estimated coefficients declines sharply but remains negative and statistically 

significant. This attenuation indicates that a substantial portion of the unconditional correlation 

between zombie exposure and innovation reflects selection: industries and technologies with 

chronically low innovative dynamism are more likely to experience persistent credit 

misallocation. At the same time, the remaining within-technology estimates suggest that 

increases in exposure to zombie lending within a given technological field are associated with 

meaningful reductions in innovative activity. 

In Poisson specifications with technology-class fixed effects, the results show that a 10 

percentage point increase in the zombie share faced by a technology class is associated with 

roughly a 10 percent reduction in patent grants and a 20 percent reduction in forward citations. 

Thus, the quantitative impact on citation-based measures is roughly twice as large as that on 

patent counts. Because forward citations proxy for the economic and technological significance 

of inventions,  the larger effect on citations implies that impaired credit dynamism is 

particularly damaging to the generation of high-impact innovations that drive creative 

destruction. 

5.4. Robustness Check 

5.4.1. Alternative Measures of Zombie Lending 

Our baseline measure of zombie lending, used in Table 1, follows Hoshi (2006) and 

Caballero, Hoshi, and Kashyap (2008) and identifies zombie firms solely on the basis of whether 

they appear to receive subsidized credit. This approach deliberately avoids defining zombies 

using profitability, productivity, or growth outcomes. As emphasized by Caballero, Hoshi and 

Kashyap (2008), performance-based definitions risk hard-wiring the very correlations one seeks 

to study: if zombies are identified by poor operating performance, then industries with many 

zombies will mechanically appear unproductive and slow-growing. By contrast, a subsidy-based 

definition permits an evaluation of whether distortions in credit allocation—rather than ex post 

firm outcomes—predict subsequent innovative activity. 
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While this definition is therefore well suited for isolating the role of credit misallocation, 

it may misclassify some financially healthy firms as zombies if they face legitimately low 

borrowing costs due to low risk. To address this concern, we implement a more stringent 

alternative definition based on Acharya et al. (2024). Under this definition, firms are classified 

as receiving zombie credit only if they both (i) appear to receive a credit subsidy and (ii) exhibit 

balance-sheet characteristics indicative of financial fragility—specifically, above-median 

leverage and below-median interest coverage. This refinement narrows attention to firms that 

are not only beneficiaries of unusually favorable financing terms but also unlikely to sustain 

those terms absent creditor forbearance. Figure A1 in the Online Appendix documents the 

evolution of zombie prevalence under this alternative definition. 

Table 2 reports the results of re-estimating the baseline technology-class regressions 

with both technology-class fixed effects and application-year fixed effects using this stricter 

measure of zombie exposure. The estimates are qualitatively similar to those in Table 1 (Panel 

B) but are uniformly larger in magnitude and more precisely estimated. Across all specifications, 

greater exposure to zombie lending is associated with significantly lower patenting and citation 

activity, regardless of whether innovation is measured using log specifications or Poisson 

models. 

The strengthening of the estimates under the stricter definition admits two, not 

mutually exclusive, interpretations. On the one hand, incorporating balance-sheet indicators 

may sharpen the measurement of zombie lending by excluding genuinely healthy firms that 

happen to face low borrowing costs, thereby reducing attenuation bias in the baseline 

estimates. On the other hand, because the alternative definition conditions on financial 

distress, it may reintroduce some degree of endogeneity: sectors with more fragile firms may 

both receive forbearance lending and experience weaker innovative performance for reasons 

unrelated to credit allocation per se. In this sense, the larger coefficients in Table 2 may reflect 

a combination of credit distortions and underlying sectoral distress. 

For this reason, we view the subsidy-based measure used in Table 1 as our preferred 

specification for causal interpretation. The results in Table 2 nonetheless serve an important 
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robustness role: they demonstrate that the negative relationship between zombie exposure 

and innovation is not driven by the inclusion of financially healthy firms among zombies and, if 

anything, becomes stronger when attention is restricted to firms that are both subsidized and 

financially fragile. 

5.4.2 Addressing Endogeneity Concerns 

A central concern in interpreting the baseline results is that exposure to zombie lending 

may be correlated with latent differences in innovative potential across technological fields. For 

example, industries with weaker growth prospects or lower-quality firms may both attract 

greater creditor forbearance and exhibit persistently lower innovation, generating spurious 

correlations between zombie exposure and patenting outcomes. While no single test can fully 

resolve such endogeneity concerns, we provide several complementary pieces of evidence 

suggesting that our results are not driven by omitted variables related to business conditions or 

average firm quality. 

Table 3 augments the baseline technology-class regressions with additional controls 

commonly used in the zombie-lending literature. Following Caballero, Hoshi, and Kashyap 

(2008), we include industry-weighted sales growth to proxy for differences in business 

opportunities across sectors. We also control for the industry-weighted share of financially 

fragile firms—defined as firms with above-median leverage and below-median interest 

coverage ratios—following Acharya et al. (2022, 2024), to account for variation in the 

underlying quality of firms operating within a technology class. 

Across all specifications in both Panel A (patent grants) and Panel B (forward citations), 

exposure to zombie lending remains negatively and statistically significantly associated with 

innovative activity. Importantly, the magnitude of the zombie exposure coefficient changes 

little when these additional controls are included. This stability indicates that the baseline 

relationship is not driven solely by differences in contemporaneous business conditions or by 

the concentration of low-quality firms in particular technological fields. 

The control variables themselves behave as expected. Greater exposure to financially 

fragile firms is associated with lower patenting and citation activity, consistent with weaker 

innovative capacity in sectors dominated by distressed firms. In contrast, sales growth has 
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limited explanatory power once technology-class and year fixed effects are included. Echoing 

the findings of Caballero, Hoshi, and Kashyap (2008) that variation in business opportunities 

alone cannot account for patterns of zombie lending. Taken together, these results suggest that 

the negative association between zombie lending exposure and innovation reflects more than 

simple selection on firm quality or demand conditions. Instead, they are consistent with the 

view that credit misallocation—over and above underlying sectoral weakness—plays an 

independent role in shaping innovative outcomes.  

A remaining concern is that the negative association between zombie exposure and 

innovation reflects unobserved, technology-specific shocks that simultaneously depress 

patenting activity and financial conditions, rather than a causal effect of zombie lending on 

corporate innovation. To address this possibility, we conduct a placebo test using patenting 

activity by non-corporate applicants. 

We classify patents into corporate and non-corporate applicants, where the latter 

include individuals, academic institutions, and public research entities. These applicants are 

unlikely to be directly affected by bank forbearance, creditor incentives, or the congestion 

effects emphasized in the zombie-lending literature. At the same time, non-corporate patenting 

is plausibly exposed to the same underlying technological opportunities and scientific advances 

that shape corporate innovation.22 

We then replicate the baseline technology-level regressions using non-corporate patent 

outcomes as dependent variables. Table 4 reports the results. While zombie exposure is weakly 

negatively associated with non-corporate patenting in specifications without technology-class 

fixed effects, this relationship disappears once fixed effects are included. Across all 

specifications—with innovation measured using either log outcomes or Poisson models—the 

estimated coefficients are statistically indistinguishable from zero. This absence of a systematic 

relationship stands in sharp contrast to the robust negative effects observed for corporate 

patents. Taken together, these placebo tests strengthen the interpretation that zombie lending 

 
22 We verify that patent grants and cita.ons by corporate and non-corporate applicants are strongly and posi.vely 
correlated across technology classes, even aEer controlling for technology-class and year fixed effects. This pagern 
indicates that both types of paten.ng respond to common technology shocks, valida.ng the use of non-corporate 
patents as a meaningful placebo. See Table A2 in Online Appendix. 
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causally impedes corporate innovation rather than merely reflecting unobserved technology-

level shocks or latent differences in technological opportunity across fields. 

5.4.3. Truncation Bias 

5.4.3.1. Excluding “hot” technology fields 

The presence of rapidly innovating (“hot”) technology fields raises two distinct concerns. 

First, these fields may generate spurious correlations if low zombie exposure simply reflects 

strong underlying technological opportunities and economic viability, rather than differences in 

credit allocation. Second, and more subtly, technology classes experiencing rapid innovation 

are precisely those for which forward citations are most severely truncated near the end of the 

sample (Lerner and Seru 2022). In such fields, patenting activity accelerates sharply, while 

observed citation counts decline mechanically toward the end of the sample because a 

substantial share of citations arrives with long delays. This asymmetry is particularly relevant in 

our setting because hot technology fields tend to exhibit relatively low exposure to zombie 

lending. 

As a result, observed citation counts may substantially understate the true quality of 

innovations in low-zombie technology classes, especially during periods when credit 

misallocation intensifies elsewhere. Importantly, this pattern implies that truncation bias is 

more likely to attenuate the estimated negative relationship between zombie exposure and 

innovation than to generate it spuriously. 

To address these concerns, we conduct a robustness check that excludes the ten 

technology classes exhibiting the fastest growth in patent grants over the 1992–2002 period 

and re-estimate our baseline specifications using both log-linear OLS and Poisson models. If the 

baseline relationship were driven primarily by unobserved heterogeneity in technological 

opportunity correlated with zombie exposure, or by differential truncation in rapidly growing 

fields, the estimated effects should weaken once these classes are excluded. 

Table 5 reports the results. Across all specifications, including log-linear models for 

patent grants, the coefficient on zombie exposure remains negative and statistically significant. 

Moreover, relative to the baseline estimates reported in Table 3, the magnitude of the 
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coefficient generally increases. This pattern is consistent with the interpretation that truncation 

bias in high-growth technology fields attenuates the estimated effect of zombie lending on 

innovation, and that excluding these fields reduces this bias rather than driving the results. 

5.4.3.2. Robustness to Alternative Sample Periods and Citation Windows 

To further assess whether truncation bias remains a concern despite our use of long (15-

plus-year) citation windows, we follow the recommendations of Lerner and Seru (2022) and 

conduct a series of robustness checks that vary both the patent application period and the 

length of citation exposure. The underlying logic is simple: if truncation bias were driving our 

results, then altering the timing of patent cohorts or restricting citation windows should 

materially weaken the estimated relationship between zombie lending and innovation. 

We conduct three sets of exercises. First, we vary the application window—shortening 

the sample to 1992–1998 or extending it to 1992–2007—while continuing to measure forward 

citations through 2018 (Table 6). Second, holding the application period fixed at 1992–2002, we 

truncate the citation data earlier—ending in 2010 or 2015—thereby mechanically increasing 

the severity of right-censoring (Table 7, Panels A and B).23 Third, we impose a fixed 15-year 

citation window for all patents (Table 7, Panel C), ensuring equal citation exposure across 

application cohorts. 

Across all specifications in Tables 6 and 7, zombie exposure is consistently associated 

with significantly lower forward citations. Notably, as shown in Table 7, the magnitude and 

statistical significance of the estimates are remarkably stable when we vary citation windows, 

including under aggressive truncation that limits citation exposure to as little as seven years. In 

sum, across technologies and over time, increases in exposure to zombie lending predict 

meaningful declines in both the quantity and the quality of innovation, and these patterns are 

robust to extensive checks for selection and truncation. 

6. Firm-Level Analysis 

 
23 Trunca.ng the cita.on data at 2010 (or 2015) means that any cita.ons received aEer that year are not counted, 
even if the patent con.nues to be cited thereaEer. This construc.on mechanically increases the degree of right-
censoring in measured forward cita.ons, par.cularly for patents applied for later in the sample period. 
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The technology-class analysis establishes a robust aggregate relationship: greater 

exposure to zombie lending is associated with slower innovation, particularly in citation-

weighted measures of quality. By construction, however, these reduced-form results cannot 

distinguish whether innovation declines because zombie firms themselves innovate less, or 

because zombie lending undermines creative destruction by distorting competition and 

weakening innovation incentives for otherwise healthy firms. Distinguishing between these 

channels requires moving from aggregate technological fields to firm-level behavior. 

We therefore turn to a firm-level dataset that links patent outcomes to publicly listed 

firms with detailed balance-sheet information from the Nikkei Financial QUEST database. 

Although this analysis necessarily focuses on a subset of patent applicants that can be reliably 

matched to listed firms, it offers a key advantage: it allows us to directly identify zombie and 

non-zombie firms and to examine how healthy firms respond when they operate in industries 

with high zombie prevalence. This granularity enables us to separate a direct effect—zombie 

firms innovate less than comparable non-zombies—from a congestion effect, whereby non-

zombie firms reduce innovation in response to distorted competition. The firm-level evidence 

thus provides the mechanism-level link between impaired credit dynamism and slower creative 

destruction. 

6.1. Baseline Specification 

To examine the spillover effects of zombie lending on the innovative activity of healthy 

firms, we follow the empirical framework of Caballero, Hoshi, and Kashyap (2008) and estimate 

the following firm-level specification: 24 

𝑦&"# = 𝛽% NonZombie&"#$% + 𝛽' NonZombie&"#$% × ZombieShare"#$% + 𝜃𝑠&"# + 𝜂"# + 𝜀&"# ,	
 

where 𝑦&"# denotes an innovation outcome for firm 𝑖 operating in industry 𝑗 in year 𝑡. 
Our primary outcomes are measures of inventive activity based on patent data, including the 

number of patent grants and the number of forward citations associated with patent 

applications filed by firm 𝑖 in year 𝑡. To mitigate concerns about truncation bias in forward 

 
24 Acharya et al. (2022, 2024) follow the same regression model to examine conges.on effects in the US and 
European data, respec.vely. 
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citation data, the baseline firm-level analysis focuses on patent applications filed no later than 

2002, mirroring the technology-class–level analysis in Section 5. 

The indicator variable NonZombie&"#$% equals one if firm 𝑖 is not classified as a zombie in 

year 𝑡 − 1 and zero otherwise. The variable ZombieShare"#$% measures the asset-weighted 

share of zombie firms in industry 𝑗 at time 𝑡 − 1. Industry–year fixed effects 𝜂"# absorb all 

industry-specific shocks and time-varying demand or productivity conditions common to firms 

within the same industry each year. As a consequence, the specification does not identify the 

aggregate effect of changes in zombie prevalence at the industry level. Instead, identification 

comes entirely from differential innovation responses of zombie and non-zombie firms within 

the same industry–year, allowing us to isolate congestion effects while abstracting from 

industry-wide movements in innovation. Accordingly, the firm-level estimates should be 

interpreted as capturing within-industry reallocative effects rather than aggregate innovation 

losses. 25 

The coefficient 𝛽% captures the baseline innovation advantage of non-zombie firms 

relative to zombie firms when industry-level zombie prevalence is negligible. A positive 

estimate of 𝛽% indicates that, in the absence of severe congestion from zombies, financially 

healthy firms are more innovative than their zombie counterparts. The interaction 

coefficient 𝛽' captures how this innovation advantage varies with the prevalence of zombie 

firms in the industry. A negative 𝛽'implies that as zombie lending becomes more widespread, 

the innovation gap between non-zombie and zombie firms narrows, consistent with congestion 

effects that depress innovation incentives for otherwise healthy firms. 

A potential concern in interpreting the interaction coefficient 𝛽' as evidence of 

congestion effects is that industry-level zombie prevalence may proxy for underlying industry 

conditions. In particular, 𝛽' could be negative if non-zombie firms are more sensitive than 

zombies to adverse industry shocks. Caballero, Hoshi, and Kashyap (2008) address this concern 

 
25 Moreover, because the firm-level analysis is restricted to publicly listed firms that can be matched to patent 
records, the es.mates should not be interpreted as capturing aggregate innova.on effects for the corporate sector 
as a whole, but rather as mechanism-level evidence on how impaired credit dynamism distorts innova.on 
incen.ves among observable incumbent firms. 
 



 

 32 

by controlling for firm-level sales growth as a proxy for business opportunities, while 

acknowledging that such controls may attenuate estimates if congestion operates precisely by 

reducing healthy firms’ growth prospects. Following their approach, we include sales 

growth 𝑠&"# in selected specifications as a robustness check; its coefficient 𝜃 is expected to be 

positive. 

Standard errors are clustered at the industry level to account for correlated shocks and 

common exposure to industry-wide financial conditions. 

6.2. Firm-Level Results: Innovation Gaps and Congestion Effects 

Tables 8 and 9 report firm-level estimates of the impact of zombie lending on 

innovation, using the subsidy-based zombie definition of Caballero, Hoshi, and Kashyap (2008) 

and a stricter definition that additionally incorporates balance-sheet weakness following 

Acharya et al. (2019). All specifications include industry–year fixed effects, so identification 

comes from comparisons between zombie and non-zombie firms operating within the same 

industry and year. 

Across all specifications, non-zombie firms are significantly more innovative than zombie 

firms. This result holds for both patent grants and forward citations and is robust across 

functional forms and zombie definitions. In Poisson specifications without interaction terms, 

the estimated coefficient on the non-zombie indicator implies that healthy firms produce 

roughly 150 percent more patents and citations than zombies on average—an innovation gap 

that is substantial even when averaged over heterogeneous competitive environments. 

Allowing the innovation gap to vary with industry-level zombie prevalence yields two 

further insights. First, once the interaction between non-zombie status and zombie share is 

included, the coefficient on the non-zombie indicator increases markedly. In the Poisson 

specifications, this coefficient rises to approximately 2.5, implying that in industries with 

negligible zombie presence, healthy firms are 250 percent more innovative than zombies. This 

contrast highlights that unconditional estimates mask considerable heterogeneity: the 

innovation advantage of healthy firms is largest precisely where credit allocation is least 

distorted. 
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Second, and central to our mechanism, the interaction between non-zombie status and 

zombie share is negative and precisely estimated across all specifications. As zombie prevalence 

rises, the innovation advantage of healthy firms erodes, consistent with congestion effects 

whereby subsidized incumbents weaken the incentives and returns to innovation for otherwise 

productive competitors. Formally, the expected innovation gap between non-zombie and 

zombie firms is 

𝐸[𝑦 ∣ NonZombie = 1] − 𝐸[𝑦 ∣ NonZombie = 0] = 𝛽% + 𝛽' × ZombieShare. 
Using the Poisson estimates, this gap closes at zombie-share levels of approximately 35 

percent (− (#

($
= '.*

+
= .35), well within the range observed in some industries in Japan during 

the 1990s as seen in Figure 2. In sufficiently distorted industries, healthy firms thus become as 

non-innovative as zombies despite retaining access to unsubsidized credit. 

Sales growth enters positively in the Poisson specifications, consistent with stronger 

business conditions supporting innovative activity. Importantly, including sales growth has little 

effect on the magnitude or significance of the interaction term, indicating that the estimated 

congestion effects are not driven by differential exposure to industry-wide shocks affecting 

healthy firms. The firm-level evidence, thus, confirms that impaired credit dynamism depresses 

innovation not only because zombie firms innovate less, but because their continued presence 

undermines the incentives of otherwise productive competitors. 

6.3. Truncation and Hot-Sector Robustness 

Just as in the technology-class analysis, firm-level patent outcomes may be affected by 

non-uniform truncation and by the presence of technologically dynamic sectors that experience 

rapid growth in patenting and citations and subsequent undercounting in forward citations. We 

therefore conduct a parallel set of robustness checks to assess whether the firm-level 

congestion results are driven by (i) dominant “hot” sectors or (ii) the timing of patent 

application cohorts and citation windows. 

6.3.1. Excluding Rapid-Growth Technologies 

We first address the concern that the baseline firm-level results may be 

disproportionately influenced by a small number of technologically dominant sectors. In the 

Japanese data, electrical machinery stands out as the single largest contributor to patenting 
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and citation growth during the 1990s and early 2000s. This sector accounts for roughly 10 

percent of firm-level observations and experienced the sharpest increase in patenting activity, 

making it a natural candidate for both sector-specific technological shocks and more severe 

citation truncation. 

Table 10 reports firm-level regressions excluding all firms in the electrical machinery 

sector. Reassuringly, removing this technologically dynamic sector leaves the key results 

essentially unchanged. Across both patent grants and forward citations, the coefficient on the 

interaction between non-zombie status and industry-level zombie share remains negative, 

precisely estimated, and similar in magnitude to the baseline estimates. The innovation 

advantage of non-zombie firms persists, and the erosion of this advantage as zombie 

prevalence rises is virtually identical to that observed in the full sample. 

These findings reinforce the mechanism-based interpretation of the firm-level results. 

The estimated congestion effects do not hinge on the behavior of a single high-innovation 

sector, nor do they reflect sector-specific technological booms. Instead, they are consistent 

with a broader pattern in which impaired credit dynamism weakens innovation incentives for 

healthy firms through distorted competition. Moreover, because electrical machinery is also 

the sector most exposed to potential differential citation truncation, its exclusion provides an 

especially stringent robustness check. 

6.3.2. Robustness to Alternative Sample Periods and Citation Windows 

We next examine whether the firm-level congestion effects are sensitive to the timing of 

patent application cohorts or the length of citation exposure, following the same logic as in 

Section 5.4.3.2. If truncation bias were driving the results, altering application windows or 

shortening citation horizons should materially weaken the estimated interaction effects. 

Table 11 varies the patent application window while continuing to measure forward 

citations through 2018. Panel A restricts the sample to applications filed between 1992 and 

1998, while Panel B extends the window to 1992–2007. Despite substantial changes in sample 

size and effective citation horizons, the results remain qualitatively unchanged. The interaction 

between non-zombie status and zombie share remains negative and statistically significant, 

indicating that healthy firms’ innovation advantage erodes as zombie prevalence rises. As 
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expected, the shorter application window yields larger standard errors due to fewer 

observations, but the estimated magnitudes remain comparable to the baseline. 

Table 12 directly varies citation exposure while holding the application period fixed at 

1992–2002. Panels A and B truncate citations in 2010 and 2015, respectively, thereby 

mechanically increasing the severity of right-censoring, especially for later cohorts. Even under 

these more aggressive truncation schemes, the estimated congestion effects are remarkably 

stable. We impose a fixed 15-year citation window for all patents (Panel C), ensuring equal 

citation exposure across application cohorts. The interaction coefficients retain both their sign 

and economic magnitude across all specifications. 

Taken together, Tables 10–12 demonstrate that the firm-level results are not artifacts of 

dominant technology sectors, application timing, or unequal citation exposure. As in the 

technology-class analysis, Japan’s early zombification episode provides sufficiently long citation 

horizons to verify directly that the key mechanism—erosion of healthy firms’ innovation 

incentives in zombie-dominated industries—persists even when truncation concerns are 

deliberately exacerbated. 

7. Conclusion 

This paper studies how impaired credit dynamism—the failure to reallocate capital from 

unproductive incumbents to innovative firms—affects technological progress. Using Japan’s 

experience with widespread zombie lending in the 1990s, we combine detailed firm-level 

financial data with the universe of patented inventions and unusually long citation horizons to 

examine both aggregate and micro-level innovation outcomes. 

We document three main findings. First, credit misallocation is systematically 

concentrated in technological fields that were already less innovative prior to the rise of zombie 

lending, highlighting the importance of accounting for selection across technologies. Second, 

exploiting within-technology variation over time, we show that increases in exposure to zombie 

lending are associated with economically meaningful declines in patenting activity, especially 

when measured with forward citations. Third, firm-level evidence reveals the mechanism 

underlying these aggregate patterns: zombie firms innovate less, and crucially, healthy firms 
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innovate less when they are forced to compete in industries dominated by zombies. As zombie 

prevalence rises, the innovation advantage of healthy firms erodes and can vanish entirely. 

Our results underscore that the costs of zombie lending extend beyond the 

misallocation of capital toward unproductive firms. By distorting competition and weakening 

the rewards to innovation, impaired credit dynamism slows creative destruction and depresses 

the quality of technological progress economy-wide. These findings complement existing work 

on productivity and reallocation by highlighting innovation as a distinct and powerful channel 

through which financial frictions shape long-run economic performance. 

More broadly, the paper illustrates the value of combining detailed micro-level financial 

data with long-horizon patent information. While zombie lending has reemerged in many 

economies following recent financial crises, Japan’s early experience provides a uniquely 

informative historical setting in which truncation and selection issues can be addressed directly. 

The evidence suggests that policies delaying restructuring and sustaining unviable firms may 

impose long-lasting costs on innovation, even after macroeconomic conditions stabilize. 
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Figure 1: Prevalence of Firms Receiving Subsidized Loans in Japan 

 
This figure reports the share of listed firms classified as zombies—firms receiving subsidized 

loans—constructed following Caballero, Hoshi, and Kashyap (2008). Panel A shows the 

unweighted fracBon of zombie firms, treaBng each firm equally. Panel B shows the asset-

weighted fracBon, weighBng firms by total assets. Zombie prevalence rises sharply in the early 

1990s and remains elevated thereaXer, indicaBng the persistence of subsidized lending well 

beyond the iniBal post-bubble recession. 
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This figure reports the asset-weighted share of zombie firms by industry, constructed following 

Caballero, Hoshi, and Kashyap (2008). Firms are grouped into six sectors: manufacturing, 

construcBon, real estate, trade, services, and all firms combined. Zombie prevalence rises 

sharply in the early 1990s and remains elevated thereaXer, parBcularly in nonmanufacturing 

sectors such as construcBon, real estate, and services. 
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Figure 2: Cross-Industry Incidence of Asset Weighted Zombie Percentage



 

 
Panel A reports the number of registered patents by grant (registraBon) year. Panel B reports 

the number of registered patents by applicaBon year. Panel C reports the total number of 

published patent applicaBons, defined as the sum of successful and unsuccessful applicaBons. 

Panel D reports forward citaBons per patent by applicaBon year. The sharp end-of-sample 

declines in Panels B and D reflect truncaBon arising from long and variable applicaBon-to-

registraBon lags and finite citaBon windows. The decline in Panel C beginning in 2018 reflects 

Japan’s 18-month pre-grant publicaBon rule and the September 2019 data cutoff. 
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Figure 4: DistribuBon of Forward CitaBon Lags for Selected Cohorts: 1990, 1995, 2000, 2005 and 

2010 

 
The figure plots the distribuBon of forward citaBons by citaBon lag (in years) for patents applied 

for in different years. Earlier cohorts display long citaBon tails, while more recent cohorts exhibit 

mechanically truncated distribuBons due to the finite observaBon window.  
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Figure 5. Technology-Level InnovaBon and Exposure to Zombie Lending 

  
This figure plots average patent grants (top panel) and average forward citaBons (bobom panel) 

over 1992–2002 against industry-weighted average zombie lending exposure for each of the 120 

IPC technology classes. Zombie exposure is constructed as a weighted average of industry-level 

zombie shares over 1991–2001, using the long-run industry composiBon of patenBng within 

each technology class. Each point represents one technology class. Technology classes more 

exposed to zombie lending exhibit substanBally lower patenBng and citaBon acBvity on average. 

These cross-secBonal correlaBons moBvate the analysis but, as discussed in the text, reflect 

substanBal pre-exisBng heterogeneity in innovaBve intensity across technological fields rather 

than causal effects of zombificaBon. 
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Figure 6: InnovaBon Dynamics in Technology Classes with High and Low Zombie Exposure 

 
Notes: This figure plots total patent grants (top panel) and total forward citaBons (bobom 

panel) by applicaBon year for technology classes with low versus high exposure to zombie 

lending. Technology classes are classified based on whether their industry-weighted average 

zombie share over 1991–2001 is below or above the median. Low-zombie technology classes 

are substanBally more innovaBve throughout the sample period, including prior to the rise of 

zombie lending in the early 1990s. The sharp post-2000 decline—especially pronounced for 

citaBons in low-zombie fields—reflects mechanical truncaBon arising from finite citaBon 

windows rather than real declines in invenBve acBvity. The figure illustrates how truncaBon 

interacts with pre-exisBng differences in innovaBve intensity across technologies, moBvaBng our 

focus on early applicaBon cohorts and within-technology variaBon in the regression analysis. 
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Table 1. Zombie Exposure and Innovation Across Technology Classes

Panel A: Without technology class fixed effects

(1) (2) (3) (4)

Dependent variable ln(1+Grants) Grants ln(1+Citations) Citations

Estimation method OLS Poisson OLS Poisson

Zombie exposure -14.11** -22.01*** -16.09** -24.73***

(4.693) (7.582) (5.777) (9.335)

Technology class fixed effects No No No No

Year fixed effects Yes Yes Yes Yes

Observations 1,314 1,314 1,314 1,314

Panel B: With technology class fixed effects

(1) (2) (3) (4)

Dependent variable ln(1+Grants) Grants ln(1+Citations) Citations

Estimation method OLS Poisson OLS Poisson

Zombie exposure -0.911** -1.198* -1.606** -2.082***

(0.350) (0.622) (0.542) (0.492)

Technology class fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Observations 1,314 1,314 1,314 1,314

This table reports technology-class–level regressions of innovative activity on exposure to 

zombie lending. The unit of observation is a technology class–year, based on 120 IPC 

technology classes observed over the period 1992–2002. Panel A presents specifications 

without technology-class fixed effects, while Panel B includes technology-class fixed 

effects. The dependent variable is the number of granted patents or forward citations, 

measured using ln(1 + y) in log-linear OLS specifications or in levels using Poisson 

regressions, as indicated in the column headers.

Zombie exposure is the industry-weighted zombie share for technology class k in year t-1, 

constructed using the long-run industry composition of patenting within each 

technology class, as described in Section 4.5. All specifications include application-year 

fixed effects; specifications with technology-class fixed effects absorb time-invariant 

differences in innovative capacity across fields. Standard errors are clustered by the 

industry with the largest patenting share for each technology class (13 clusters) and are 

reported in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 

percent levels, respectively.



Table 2. Zombie Exposure and Innovation Using a Stricter Zombie Definition (Credit Subsidy + Balance-Sheet Weakness)

(1) (2) (3) (4)

Dependent variable ln(1+Grants) Grants ln(1+Citations) Citations

Estimation method OLS Poisson OLS Poisson

Zombie exposure (credit subsidy + balance-sheet weakness) -1.500** -2.734*** -1.769** -3.267***

(0.557) (0.488) (0.692) (0.705)

Technology class fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Observations 1,314 1,314 1,314 1,314
This table reproduces the specifications in Panel B of Table 1 using an alternative, more stringent definition of zombie 

firms. The unit of observation is a technology class–year, based on 120 IPC technology classes observed over the period 

1992–2002.

The dependent variable is the number of granted patents or forward citations, measured using ln(1 + y) in log-linear OLS 

specifications (columns (1) and (3)) or in levels using Poisson regressions (columns (2) and (4)). Zombie exposure is 

constructed following Acharya et al. (2024) and classifies firms as zombies only if they both receive subsidized credit and 

exhibit balance-sheet indicators of financial fragility, defined as above-median leverage and below-median interest 

coverage.

All specifications include technology-class fixed effects and application-year fixed effects. Standard errors are clustered 

by the industry with the largest patenting share for each technology class (13 clusters) and are reported in parentheses. 

***, **, and * denote statistical significance at the 1, 5, and 10 percent levels, respectively.



Table 3. Zombie Exposure and Innovation: Controlling for Firm Quality and Business Conditions

Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Grants) ln(1+Grants) ln(1+Grants) Grants Grants Grants

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -0.911** -1.036*** -0.977*** -1.198* -1.235*** -1.122**

(0.350) (0.277) (0.313) (0.622) (0.444) (0.482)

Low-quality firm share -1.017*** -1.000*** -1.020*** -0.983***

(0.226) (0.220) (0.305) (0.345)

Sales growth 0.362 0.444

(0.433) (0.585)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1,314 1,314 1,314 1,314 1,314 1,314

Panel B: Forward Citations

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.606** -1.720*** -1.650*** -2.082*** -2.229*** -2.030***

(0.542) (0.512) (0.538) (0.492) (0.408) (0.411)

Low-quality firm share -0.928** -0.908** -0.853** -0.785**

(0.352) (0.317) (0.363) (0.388)

Sales growth 0.432 0.891

(0.638) (0.572)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1,314 1,314 1,314 1,314 1,314 1,314

This table augments the baseline technology-class–level regressions in Panel B of Table 1 by adding controls for firm quality 

and business conditions. The unit of observation is a technology class–year, based on 120 IPC technology classes observed 

over the period 1992–2002. Panel A reports results for patent grants, and Panel B reports results for forward citations.

Low-quality firm share is the industry-weighted fraction of firms with above-median leverage and below-median interest 

coverage, following Acharya et al. (2022, 2024), and captures average financial fragility within a technology class. Sales 

growth is the industry-weighted sales growth rate and proxies for differences in business opportunities, following Caballero, 

Hoshi, and Kashyap (2008).

Zombie exposure is defined as in the baseline analysis. The dependent variable is measured using ln(1 + y) in log-linear OLS 

specifications or in levels using Poisson regressions, as indicated in the column headers. All specifications include technology-

class fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting 

share for each technology class (13 clusters) and are reported in parentheses. ***, **, and * denote statistical significance at 

the 1, 5, and 10 percent levels, respectively.



Table 4. Placebo Test Using Non-Corporate Patents

Panel A: Without technology class fixed effects

(1) (2) (3) (4)

Dependent variable ln(1+Grants) Grants ln(1+Citations) Citations

Estimation method OLS Poisson OLS Poisson

Zombie exposure -3.555 -2.009 -6.611* -7.244

(2.539) (3.262) (3.310) (4.785)

Technology class fixed effects No No No No

Year fixed effects Yes Yes Yes Yes

Observations 1,314 1,314 1,314 1,314

Panel B: With technology class fixed effects

(1) (2) (3) (4)

Dependent variable ln(1+Grants) Grants ln(1+Citations) Citations

Estimation method OLS Poisson OLS Poisson

Zombie exposure 0.0937 -2.207 -0.481 -3.799

(1.060) (1.901) (1.365) (2.563)

Technology class fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Observations 1,314 1,314 1,314 1,314
This table reports placebo regressions that replicate the baseline technology-class–level 

specification (Table 1) using patenting outcomes by non-corporate applicants, including 

individuals, universities, and public research institutions. The unit of observation is a 

technology class–year. Panel A reports specifications without technology-class fixed effects, 

while Panel B includes technology-class fixed effects.

Zombie exposure is defined as in the baseline analysis. The dependent variable is measured 

using ln(1 + y) in log-linear OLS specifications or in levels using Poisson regressions, as 

indicated in the column headers. Standard errors are clustered by the industry with the 

largest patenting share for each technology class (13 clusters) and are reported in 

parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent levels, 

respectively.



Table 5. Zombie Exposure and Innovation: Excluding Rapid-Growth Technology Classes

Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Grants) ln(1+Grants) ln(1+Grants) Grants Grants Grants

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.161*** -1.264*** -1.240** -1.436*** -1.419*** -1.320***

(0.351) (0.393) (0.419) (0.487) (0.400) (0.392)

Low-quality firm share -0.903*** -0.897*** -1.189*** -1.157***

(0.229) (0.231) (0.280) (0.317)

Sales growth 0.141 0.377

(0.432) (0.536)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1,204 1,204 1,204 1,204 1,204 1,204

Panel B: Forward Citations

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.793*** -1.872*** -1.875*** -2.413*** -2.514*** -2.345***

(0.543) (0.562) (0.599) (0.381) (0.338) (0.243)

Low-quality firm share -0.696** -0.697** -1.135*** -1.077***

(0.252) (0.236) (0.275) (0.310)

Sales growth -0.0170 0.740

(0.616) (0.515)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1,204 1,204 1,204 1,204 1,204 1,204
This table replicates the technology-class–level regressions in Table 3 after excluding the ten technology classes that experienced 

the largest growth in patenting activity between 1992 and 2002.

Zombie exposure is defined as in the baseline analysis. The dependent variable is measured using ln(1 + y) in log-linear OLS 

specifications or in levels using Poisson regressions, as indicated in the column headers. All specifications include technology-class 

fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting share for 

each technology class (13 clusters) and are reported in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 

percent levels, respectively.



Panel A: Short Application Window (1992–1998)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.961*** -1.900** -2.035** -1.868*** -1.953*** -2.093***

(0.624) (0.650) (0.707) (0.614) (0.592) (0.632)

Low-quality firm share 0.403 0.363 -0.370 -0.375

(0.461) (0.428) (0.659) (0.600)

Sales growth -0.672 -0.519

(0.518) (0.416)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 833 833 833 833 833 833

Panel B: Extended Application Window (1992–2007)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -0.870** -0.928** -0.907** -1.646*** -1.623*** -1.523***

(0.379) (0.366) (0.375) (0.508) (0.520) (0.455)

Low-quality firm share -0.165 -0.130 0.130 0.233

(0.255) (0.293) (0.160) (0.188)

Sales growth 0.332 0.831

(0.542) (0.540)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1,914 1,914 1,914 1,914 1,914 1,914

Table 6. Zombie Exposure and Forward Citations: Alternative Application Windows

This table replicates the forward-citation specifications in Panel B of Table 3 using alternative patent application windows. 

Panel A restricts the sample to patent applications filed between 1992 and 1998, while Panel B extends the application 

window to 1992–2007. In both panels, forward citations are measured through 2018.

Zombie exposure is defined as in the baseline analysis. The dependent variable is measured using ln(1 + y) in log-linear OLS 

specifications or in levels using Poisson regressions, as indicated in the column headers. All specifications include technology-

class fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting 

share for each technology class (13 clusters) and are reported in parentheses. ***, **, and * denote statistical significance at 

the 1, 5, and 10 percent levels, respectively.



Table 7. Zombie Exposure and Forward Citations: Alternative Citation Windows

Panel A: Citations Ending in 2010 (≈7–18 years of exposure)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.657*** -1.761*** -1.694*** -2.209*** -2.395*** -2.192***

(0.458) (0.436) (0.441) (0.521) (0.447) (0.433)

Low-quality firm share -0.844* -0.825* -0.996** -0.937**

(0.417) (0.383) (0.399) (0.428)

Sales growth 0.412 0.866

(0.735) (0.613)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1314 1314 1314 1314 1314 1314

Panel B: Citations Ending in 2015 (≈12–23 years of exposure)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.641*** -1.757*** -1.691*** -2.112*** -2.264*** -2.068***

(0.524) (0.490) (0.511) (0.498) (0.411) (0.410)

Low-quality firm share -0.948** -0.929** -0.884** -0.817**

(0.350) (0.316) (0.348) (0.373)

Sales growth 0.409 0.872

(0.618) (0.560)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1314 1314 1314 1314 1314 1314

Panel C: Fixed 15-Year Citation Window

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Zombie exposure -1.600*** -1.704*** -1.632*** -2.004*** -2.145*** -1.989***

(0.469) (0.436) (0.449) (0.471) (0.358) (0.378)

Low-quality firm share -0.853** -0.832*** -0.765** -0.706*

(0.302) (0.266) (0.367) (0.400)

Sales growth 0.443 0.724

(0.624) (0.567)

Technology class fixed effects YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES

Observations 1314 1314 1314 1314 1314 1314

This table replicates the forward-citation specifications in Panel B of Table 3 using alternative citation windows, while holding the 

patent application period fixed at 1992–2002 throughout. Panel A truncates citation data in 2010. Panel B truncates citation data in 

2015. Panel C imposes a fixed 15-year citation window for all patents, ensuring equal citation exposure across application cohorts.

Zombie exposure is defined as in the baseline analysis. The dependent variable is measured using ln(1 + y) in log-linear OLS 

specifications or in levels using Poisson regressions, as indicated in the column headers. All specifications include technology-class 

fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting share for each 

technology class (13 clusters) and are reported in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent 

levels, respectively.



Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Grants) ln(1+Grants) ln(1+Grants) Grants Grants Grants

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.514*** 1.069*** 1.069*** 1.607*** 2.329*** 2.326***

(0.122) (0.129) (0.129) (0.252) (0.199) (0.198)

Non-zombie x zombie percentage -3.239*** -3.239*** -6.629*** -6.614***

(0.540) (0.540) (0.941) (0.934)

Sales growth 0.00994 0.248***

(0.0777) (0.0946)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

Panel B: Forward citations

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.646*** 1.334*** 1.334*** 1.832*** 2.598*** 2.594***

(0.149) (0.154) (0.154) (0.286) (0.248) (0.247)

Non-zombie x zombie percentage -4.013*** -4.013*** -7.022*** -7.006***

(0.686) (0.684) (1.085) (1.077)

Sales growth 0.0857 0.345***

(0.128) (0.110)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

Table 8. Zombie Lending and Firm-Level Innovation

This table reports firm-level regressions of patent grants and forward citations on a non-zombie indicator and its interaction with 

industry-level zombie prevalence, measured by the asset-weighted share of zombie firms in the industry. Zombie firms are 

identified using the subsidy-based definition of Caballero, Hoshi, and Kashyap (2008). 

All specifications include industry–year fixed effects, so identification comes from differences between zombie and non-zombie 

firms operating within the same industry and year. The dependent variable is measured using ln(1 + y) in log-linear OLS 

specifications or in levels using Poisson regressions, as indicated in the column headers. Standard errors are clustered at the 

industry level. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Grants) ln(1+Grants) ln(1+Grants) Grants Grants Grants

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.406*** 0.763*** 0.764*** 1.365*** 1.876*** 1.870***

(0.0999) (0.116) (0.117) (0.188) (0.137) (0.137)

Non-zombie x zombie percentage -4.014*** -4.015*** -9.268*** -9.244***

(0.883) (0.884) (1.870) (1.866)

Sales growth -0.0235 0.199*

(0.0756) (0.115)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,423 23,423 23,423 23,423 23,423 23,423

Panel B: Forward citations

(2) (3) (4) (6) (7) (8)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.533*** 0.986*** 0.985*** 1.581*** 2.204*** 2.194***

(0.129) (0.142) (0.143) (0.251) (0.176) (0.175)

Non-zombie x zombie percentage -5.100*** -5.098*** -10.89*** -10.86***

(1.119) (1.121) (2.320) (2.316)

Sales growth 0.0424 0.297**

(0.123) (0.121)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,423 23,423 23,423 23,423 23,423 23,423

Table 9. Zombie Lending and Firm-Level Innovation: Stricter Zombie Definition (Credit Subsidy + Balance-Sheet Weakness)

This table replicates the firm-level regressions in Table 8 using a stricter definition of zombie firms. Zombie firms are identified following 

Acharya et al. (2019), requiring both subsidized credit and balance-sheet weakness, defined as above-median leverage and below-median 

interest coverage.

All specifications include industry–year fixed effects. The dependent variable is measured using ln(1 + y) in log-linear OLS specifications or 

in levels using Poisson regressions, as indicated in the column headers. Standard errors are clustered at the industry level. *, **, and *** 

denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Grants) ln(1+Grants) ln(1+Grants) Grants Grants Grants

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.469*** 1.041*** 1.041*** 1.327*** 2.057*** 2.056***

(0.120) (0.160) (0.160) (0.206) (0.233) (0.233)

Non-zombie x zombie percentage -3.128*** -3.128*** -5.483*** -5.480***

(0.632) (0.633) (0.907) (0.908)

Sales growth -0.0194 0.131

(0.0753) (0.145)

Industry-year fixed effects YES YES YES YES YES YES

Observations 20,960 20,960 20,960 20,960 20,960 20,960

Panel B: Forward citations

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.590*** 1.298*** 1.298*** 1.489*** 2.240*** 2.240***

(0.146) (0.191) (0.191) (0.217) (0.252) (0.252)

Non-zombie x zombie percentage -3.869*** -3.870*** -5.599*** -5.595***

(0.787) (0.787) (1.014) (1.011)

Sales growth 0.0369 0.289

(0.122) (0.214)

Industry-year fixed effects YES YES YES YES YES YES

Observations 20,960 20,960 20,960 20,960 20,960 20,960

Table 10. Zombie Lending and Firm-Level Innovation: Excluding Rapid-Growth Technology (Electrical Machinery)

This table replicates the firm-level regressions in Table 8 after excluding firms in the electrical machinery industry, the most technologically 

dynamic sector in the sample. 

All specifications include industry–year fixed effects. The dependent variable is measured using ln(1 + y) in log-linear OLS specifications or in 

levels using Poisson regressions, as indicated in the column headers. Standard errors are clustered at the industry level. *, **, and *** denote 

statistical significance at the 10, 5, and 1 percent levels, respectively.



Table 11. Zombie Lending and Firm-Level Forward Citations: Alternative Application Windows

Panel A: Short Application Window (1992–1998)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.725*** 1.287*** 1.287*** 1.768*** 2.534*** 2.533***

(0.164) (0.175) (0.175) (0.343) (0.314) (0.310)

Non-zombie x zombie percentage -3.656*** -3.654*** -7.434*** -7.432***

(0.839) (0.838) (1.555) (1.543)

Sales growth 0.138 0.640***

(0.158) (0.135)

Industry-year fixed effects YES YES YES YES YES YES

Observations 14,096 14,096 14,096 14,096 14,096 14,096

Panel B: Extended Application Window (1992–2007)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.449*** 1.242*** 1.242*** 1.390*** 2.248*** 2.248***

(0.113) (0.136) (0.136) (0.139) (0.208) (0.207)

Non-zombie x zombie percentage -3.952*** -3.956*** -6.259*** -6.255***

(0.563) (0.564) (1.434) (1.429)

Sales growth 0.0615 0.159***

(0.0537) (0.0483)

Industry-year fixed effects YES YES YES YES YES YES

Observations 37,072 37,072 37,072 37,072 37,072 37,072

This table replicates the firm-level forward-citation regressions in Table 8 using alternative patent application windows. Panel A restricts the 

sample to patent applications filed between 1992 and 1998, while Panel B extends the application window to 1992–2007. In both panels, 

forward citations are measured through 2018.

All specifications include industry–year fixed effects. The dependent variable is forward citations associated with patent applications filed by 

firm i in year t, measured using ln(1 + y) in log-linear OLS specifications or in levels using Poisson regressions, as indicated in the column 

headers. Standard errors are clustered at the industry level. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels, 

respectively.



Table 12. Zombie Lending and Firm-Level Forward Citations: Alternative Citation Windows

Panel A: Citations Ending in 2010 (≈7–18 years of exposure)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.631*** 1.303*** 1.303*** 1.846*** 2.597*** 2.593***

(0.146) (0.151) (0.150) (0.292) (0.252) (0.251)

Non-zombie x zombie percentage -3.922*** -3.922*** -7.003*** -6.986***

(0.670) (0.667) (1.093) (1.083)

Sales growth 0.101 0.377***

(0.126) (0.109)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

Panel B: Citations Ending in 2015 (≈12–23 years of exposure)

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.643*** 1.329*** 1.329*** 1.833*** 2.599*** 2.595***

(0.148) (0.153) (0.153) (0.287) (0.249) (0.248)

Non-zombie x zombie percentage -4.000*** -4.000*** -7.035*** -7.018***

(0.685) (0.683) (1.087) (1.078)

Sales growth 0.0897 0.350***

(0.128) (0.109)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

Panel C: Fixed 15-Year Citation Window

(1) (2) (3) (4) (5) (6)

Dependent variable ln(1+Citations) ln(1+Citations) ln(1+Citations) Citations Citations Citations

Estimation method OLS OLS OLS Poisson Poisson Poisson

Non-zombie dummy 0.638*** 1.316*** 1.316*** 1.839*** 2.609*** 2.606***

(0.147) (0.152) (0.152) (0.285) (0.246) (0.244)

Non-zombie x zombie percentage -3.959*** -3.959*** -7.034*** -7.017***

(0.677) (0.675) (1.077) (1.068)

Sales growth 0.0925 0.338***

(0.128) (0.107)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

This table replicates the firm-level forward-citation regressions in Table 8 using alternative citation windows, while holding the patent 

application period fixed at 1992–2002 throughout. Panel A truncates citations in 2010, and Panel B truncates citations in 2015.

All specifications include industry–year fixed effects. The dependent variable is forward citations associated with patent applications filed by firm 

i in year t, measured using ln(1 + y) in log-linear OLS specifications or in levels using Poisson regressions, as indicated in the column headers. 

Standard errors are clustered at the industry level. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Appendix A. Detecting Zombie Lending Following Caballero, Hoshi, and Kashyap 

(2008) 

To identify zombie lending, we replicate the approach of Caballero, Hoshi, and Kashyap 

(2008), who compute for each firm i in year t a minimum required interest payment 

(𝑅!,#∗ ) representing the cost the firm would face if it borrowed at the most favorable 

market rates available to creditworthy firms. The lower bound for required interest 

payments is defined as: 

𝑅!,#∗ =	𝑟𝑠#%&𝐵𝑆!,#%& + (
1
5,𝑟𝑙#%'

(

')&

)𝐵𝐿!,#%& +	𝑟𝑐𝑏*!+𝐵𝑜𝑛𝑑𝑠!,#%& 

where: 

𝐵𝑆!,#%&: short-term bank loans (maturity less than one year) 

𝐵𝐿!,#%&: long-term bank loans (maturity greater than one year) 

𝐵𝑜𝑛𝑑𝑠!,#%&: total bonds outstanding (including convertible and warrant-attached bonds) 

𝑟𝑠#%&: average short-term prime rate 

𝑟𝑙#%': average long-term prime rate 

𝑟𝑐𝑏*!+: minimum observed coupon rate on any convertible bond issued during the 

previous five years 

 

This specification constructs a conservative lower bound—meaning the implied interest 

rate is lower than that faced by most borrowers—because it assumes that even bond 

financing occurs at the most favorable historical rates available. Each firm’s actual 

interest payments, 𝑅!,#, are compared to this benchmark. The difference, normalized by 

total borrowing at the start of the year, gives the interest rate gap: 

 

𝑥!,# =
𝑅!,# − 𝑅!,#∗
𝐵!,#%&  

 

where 𝐵!,#%& is the amount of total borrowing at the beginning of the period (𝐵!,#%& =
𝐵𝑆!,#%& + 𝐵𝐿!,#%& + 𝐵𝑜𝑛𝑑𝑠!,#%& + 𝐶𝑃!,#%&) with 𝐶𝑃!,#%& denoting commercial paper 

outstanding. A negative gap (𝑥!,# < 0) indicates that a firm’s observed interest payments 

(𝑅!,#) fall below the most favorable market rate implied by 𝑅!,#∗ , suggesting the firm is 

receiving subsidized credit or loan evergreening from its banks. Accordingly, Caballero, 

Hoshi, and Kashyap (2008) classify a firm as a zombie firm in year t when 𝑥!,# < 0. 

 

As Caballero, Hoshi, and Kashyap note, this measure cannot capture all forms of 

assistance—such as debt forgiveness, interest rate concessions, or off–balance-sheet 

support—but it provides a transparent, data-driven proxy for the extent of subsidized 

lending and the prevalence of zombie firms in Japan’s corporate sector. 



Figure A1: Prevalence of Firms Receiving Subsidized Loans in Japan Using a Stricter Zombie 

DefiniBon (Credit Subsidy + Balance-Sheet Weakness) 

 
This figure reports the share of listed firms classified as zombies—firms receiving subsidized 

loans and exhibiBng balance sheet weakness—constructed following Acharya et al. (2024). 

Panel A shows the unweighted fracBon of zombie firms, treaBng each firm equally. Panel B 

shows the asset-weighted fracBon, weighBng firms by total assets. Zombie prevalence rises 

sharply in the early 1990s and remains elevated thereaXer, indicaBng the persistence of 

subsidized lending well beyond the iniBal post-bubble recession.  
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Table A1. Industry–Technology Mapping Based on Patent Shares (120 IPC technology classes; top two industries by patent share)

IPC class code Technology field  (IPC class level) Top-share industry Share (%) Second-share industry Share (%)

A01 Agriculture; Forestry; Animal Husbandry; Hunting; Trapping; Fishing Machinery, non-electric 52.11 Chemicals 15.97

A21 Baking; Edible doughs Food products 53.97 Chemicals 25.06

A22 Butchering; Meat Treatment; Processing Poultry or Fish Food products 47.56 Machinery, non-electric 20.73

A23 Foods or Foodstuffs; Their Treatment, Not Covered by Other Classes Food products 54.02 Chemicals 22.47

A24 Tobacco; Cigars; Cigarettes; Smokers' Requisites Food products 73.21 Chemicals 16.03

A41 Wearing Apparel Textile mill products 41.56 Wholesale 13.48

A42 Headwear Motor vehicles 28.31 Chemicals 25.30

A43 Footwear Misc manufacturing 38.84 Chemicals 21.71

A44 Haberdashery; Jewellery Precision machinery 22.56 Misc manufacturing 18.75

A45 Hand or Travelling Articles Electric machinery 37.36 Chemicals 34.12

A46 Brushware Chemicals 67.80 Electric machinery 18.40

A47 Furniture (arrangements of seats for, or adaptation of seats to, vehicles B60n) Electric machinery 46.29 Misc manufacturing 14.03

A61 Medical or Veterinary Science; Hygiene Chemicals 24.84 Electric machinery 24.43

A62 Life-Saving; Fire-Fighting Electric machinery 47.62 Machinery, non-electric 12.92

A63 Sports; Games; Amusements Machinery, non-electric 42.12 Misc manufacturing 13.34

B01 Physical or Chemical Processes or Apparatus in General Machinery, non-electric 26.64 Chemicals 22.60

B02 Crushing, Pulverising, or Disintegrating; Preparatory Treatment of Grain for Milling Machinery, non-electric 47.36 Electric machinery 16.85

B03 Separation of Solid Materials Using Liquids Machinery, non-electric 39.53 Electric machinery 33.21

B04 Centrifugal Apparatus or Machines for Carrying-Out Physical Machinery, non-electric 70.47 Electric machinery 12.20

B05 Spraying or Atomising in General; Applying Liquids or Other Fluent Materials to SurfaceChemicals 25.09 Electric machinery 20.19

B06 Generating or Transmitting Mechanical Vibrations in General Electric machinery 56.11 Precision machinery 12.47

B07 Separating Solids from Solids; Sorting Electric machinery 39.70 Machinery, non-electric 34.48

B08 Cleaning Electric machinery 38.92 Machinery, non-electric 22.24

B09 Disposal of solid waste; Reclamation of contaminated soil Electric machinery 30.76 Machinery, non-electric 24.76

B21 Mechanical Metal-Working without Essentially Removing Material; Punching Metal Steels 36.54 Machinery, non-electric 23.71

B22 Casting; Powder Metallurgy Steels 36.22 Machinery, non-electric 17.71

B23 Machine Tools; Metal-Working Not Otherwise Provided for Machinery, non-electric 28.71 Electric machinery 26.68

B24 Grinding; Polishing Machinery, non-electric 23.97 Electric machinery 22.57

B25 Hand tools; Portable power-driven tools; Handles for hand implements Electric machinery 45.46 Machinery, non-electric 25.02

B26 Hand Cutting Tools; Cutting; Severing Electric machinery 38.47 Machinery, non-electric 12.88

B27 Working or Preserving Wood or Similar Materials; Nailing or Stapling Misc manufacturing 22.46 Electric machinery 20.91

B28 Working Cement, Clay, or Stone Chemicals 17.69 Ceramics 17.16

B29 Working of Plastics; Working of Substances in a Plastic State in General Chemicals 28.18 Machinery, non-electric 17.63

B30 Presses Machinery, non-electric 53.62 Electric machinery 14.23

B31 Making paper articles; Working paper Misc manufacturing 32.00 Machinery, non-electric 22.00

B32 Layered Products Chemicals 37.22 Misc manufacturing 18.68

B41 Printing; Lining Machines; Typewriters; Stamps Electric machinery 61.28 Chemicals 10.09

B42 Bookbinding; Albums; Files; Special Printed Matter Misc manufacturing 58.41 Electric machinery 22.31

B43 Writing or Drawing Implements; Bureau Accessories Misc manufacturing 63.11 Electric machinery 23.79

B44 Decorative Arts Misc manufacturing 56.30 Chemicals 13.32

B60 Vehicles in General Motor vehicles 58.59 Rubber products 12.61

B61 Railways Electric machinery 55.76 Machinery, non-electric 13.27

B62 Land Vehicles for Travelling Otherwise than on Rails Motor vehicles 65.74 Machinery, non-electric 20.93

B63 Ships or Other Waterborne Vessels; Related Equipment Machinery, non-electric 49.28 Motor vehicles 26.02

B64 Aircraft; Aviation; Cosmonautics Machinery, non-electric 38.98 Electric machinery 37.40

B65 Conveying; Packing; Storing; Handling Thin or Filamentary Material Electric machinery 36.42 Machinery, non-electric 15.92

B66 Hoisting; Lifting; Hauling Electric machinery 48.59 Machinery, non-electric 28.66

B67 Opening or closing bottles, jars or similar containers; Liquid handling Machinery, non-electric 29.50 Motor vehicles 23.29

B68 Saddlery; Upholstery Motor vehicles 50.00 Textile mill products 29.79

B81 Micro-Structural Technology Electric machinery 63.84 Precision machinery 16.95

B82 Nano-Technology Electric machinery 77.14 Chemicals 8.57

C01 Inorganic Chemistry Chemicals 40.18 Electric machinery 18.23

C02 Treatment of Water, Waste Water, Sewage, or Sludge Machinery, non-electric 40.93 Electric machinery 21.44

C03 Glass; Mineral or Slag Wool Ceramics 29.35 Non-ferrous metal products 17.49

C04 Cements; Concrete; Artificial Stone; Ceramics Ceramics 24.07 Electric machinery 22.65

C05 Opening or closing bottles, jars or similar containers; Liquid handling Chemicals 45.47 Machinery, non-electric 19.80

C06 Explosives; Matches Chemicals 86.06 Motor vehicles 4.53

C07 Organic Chemistry Chemicals 62.17 Medical products 19.70

C08 Organic Macromolecular Compounds; Their Preparation Chemicals 67.53 Textile mill products 10.20

C09 Dyes; Paints; Polishes; Natural Resins; Adhesives Chemicals 63.27 Electric machinery 10.24

C10 Petroleum, Gas or Coke Industries; Technical Gases Containing Carbon Monoxide Steels 22.68 Machinery, non-electric 19.33

C11 Animal or Vegetable Oils, Fats, Fatty Substances or Waxes; Chemicals 83.02 Food products 5.23

C12 Biochemistry; Beer; Spirits; Wine; Vinegar; Microbiology; Enzymes Chemicals 28.29 Food products 19.70

C13 Sugar Industry Machinery, non-electric 57.14 Food products 25.71

C14 Skins; Hides; Pelts; Leather Chemicals 45.83 Machinery, non-electric 12.50

C21 Metallurgy of Iron Steels 82.04 Motor vehicles 4.17

C22 Metallurgy (of iron C21); Ferrous or non-ferrous alloys; Steels 51.63 Non-ferrous metal products 21.47



C23 Coating Metallic Materials; Coating Materials with Metallic Materials Electric machinery 30.69 Steels 24.33

C25 Electrolytic or Electrophoretic Processes; Apparatus Therefor Electric machinery 20.91 Steels 20.44

C30 Crystal Growth Electric machinery 34.13 Non-ferrous metal products 24.83

D01 Natural or artificial threads or fibres; Spinning Textile mill products 46.04 Chemicals 31.56

D02 Yarns; Mechanical Finishing of Yarns; Warping or Beaming Textile mill products 66.91 Chemicals 23.08

D03 Weaving Machinery, non-electric 47.37 Textile mill products 33.45

D04 Braiding; Lace-making; Knitting; Trimmings; Non-woven fabrics Textile mill products 46.94 Chemicals 20.47

D05 Sewing; Embroidering; Tufting Electric machinery 71.22 Machinery, non-electric 16.20

D06 Treatment of Textiles or the Like; Laundering; Flexible Materials Electric machinery 43.81 Textile mill products 23.58

D07 Ropes; Cables Other than Electrical Non-ferrous metal products 43.33 Rubber products 36.01

D21 Paper-Making; Production of Cellulose Paper & allied products 40.87 Chemicals 23.18

E01 Construction of Roads, Railways, or Bridges Construction 23.49 Machinery, non-electric 19.09

E02 Hydraulic Engineering; Foundations; Soil-Shifting Construction 41.45 Machinery, non-electric 30.65

E03 Water Supply; Sewerage Ceramics 31.76 Electric machinery 22.66

E04 Building Construction 36.75 Chemicals 20.77

E05 Locks; Keys; Window or Door Fittings; Safes Motor vehicles 30.29 Electric machinery 29.15

E06 Doors, windows, shutters, or roller blinds, in general; Ladders Non-ferrous metal products 40.80 Misc manufacturing 11.94

E21 Earth or Rock Drilling; Mining Construction 48.88 Machinery, non-electric 25.43

F01 Machines or Engines in General; Engine Plants in General; Steam Engines Motor vehicles 60.50 Machinery, non-electric 18.94

F02 Combustion Engines; Hot-Gas or Combustion-Product Engine Plants Motor vehicles 68.38 Electric machinery 17.20

F03 Machines or engines for liquids (for liquids and elastic fluids Electric machinery 52.05 Machinery, non-electric 30.97

F04 Positive-Displacement Machines for Liquids; Pumps Electric machinery 39.67 Machinery, non-electric 39.31

F15 Fluid-Pressure Actuators; Hydraulics or Pneumatics in General Machinery, non-electric 55.07 Motor vehicles 23.17

F16 Engineering Elements or Units; General Measures for Producing Motor vehicles 35.26 Machinery, non-electric 25.99

F17 Storing or Distributing Gases or Liquids Machinery, non-electric 37.49 Electric machinery 15.53

F21 Lighting Electric machinery 56.80 Motor vehicles 27.63

F22 Steam Generation Machinery, non-electric 70.39 Electric machinery 22.26

F23 Combustion Apparatus; Combustion Processes Machinery, non-electric 38.80 Electric machinery 25.69

F24 Heating; Ranges; Ventilating Electric machinery 56.27 Machinery, non-electric 17.00

F25 Refrigeration or Cooling; Combined Heating and Refrigeration Systems; Heat Pumps Electric machinery 59.45 Machinery, non-electric 26.83

F26 Drying Machinery, non-electric 42.83 Electric machinery 27.25

F27 Furnaces; Kilns; Ovens; Retorts Steels 38.22 Electric machinery 18.04

F28 Heat Exchange in General Machinery, non-electric 33.23 Electric machinery 32.10

F41 Weapons Machinery, non-electric 47.08 Electric machinery 36.22

F42 Ammunition; Blasting Electric machinery 34.35 Machinery, non-electric 32.06

G01 Measuring; Testing Electric machinery 52.87 Precision machinery 10.82

G02 Optics Electric machinery 53.71 Precision machinery 17.70

G03 Photography; Cinematography; Analogous Techniques Electric machinery 49.13 Precision machinery 22.77

G04 Horology Precision machinery 50.22 Electric machinery 42.78

G05 Controlling; Regulating Electric machinery 65.36 Machinery, non-electric 16.28

G06 Computing; Calculating; Counting Electric machinery 86.47 Misc manufacturing 2.53

G07 Checking-Devices Electric machinery 78.58 Machinery, non-electric 15.80

G08 Signalling Electric machinery 71.21 Motor vehicles 13.05

G09 Educating; Cryptography; Display; Advertising; Seals Electric machinery 77.60 Misc manufacturing 5.55

G10 Musical Instruments; Acoustics Electric machinery 49.25 Misc manufacturing 39.13

G11 Information Storage Electric machinery 86.18 Chemicals 6.27

G12 Instrument Details Electric machinery 60.64 Precision machinery 15.69

G21 Nuclear Physics; Nuclear Engineering Electric machinery 60.25 Machinery, non-electric 23.82

H01 Basic Electric Elements Electric machinery 77.21 Non-ferrous metal products 4.86

H02 Generation, Conversion, or Distribution of Electric Power Electric machinery 76.75 Motor vehicles 5.87

H03 Basic Electronic Circuitry Electric machinery 93.66 Precision machinery 1.42

H04 Electric Communication Technique Electric machinery 89.64 Precision machinery 4.65

H05 Electric Techniques Not Otherwise Provided for Electric machinery 74.95 Chemicals 7.35

This table reports, for each of the 120 IPC technology classes, the two industries with the largest shares of patenting activity. Patent shares wkj are computed as the fraction of 

patents in technology class k that are applied for by firms in industry j. Industries are ranked within each technology class by wkj, and the table lists the first- and second-ranked 

industries for each class.



Table A2. Correlation between Corporate and Non-Corporate Patent

Panel A: Patent Grants

(1) (2) (3)

ln(1+Grants), non-corporate ln(1+Grants), non-corporate ln(1+Grants), non-corporate

ln(1+Grants), corporate 0.482*** 0.537*** 0.481***

(0.012) (0.095) (0.085)

Observations 1,314 1,314 1,314

R-squared 0.924 0.906 0.913

R-squared (within) 0.0808 0.0694

Technology class fixed effects No Yes Yes

Year fixed effects No No Yes

Panel B: Forward Citations

(1) (2) (3)

ln(1+Citations), non-corporate ln(1+Citations), non-corporateln(1+Citations), non-corporate

ln(1+Citations), corporate 0.509*** 0.456*** 0.451***

(0.011) (0.112) (0.106)

Observations 1,314 1,314 1,314

R-squared 0.920 0.857 0.862

R-squared (within) 0.0521 0.0516

Technology class fixed effects No Yes Yes

Year fixed effects No No Yes

This table examines the co-movement between corporate and non-corporate patenting activity at the technology-

class level. The unit of observation is a technology class–year. The dependent variable is ln(1 + y) of non-corporate 
patent grants in Panel A and ln(1 + y) of forward citations to non-corporate patents in Panel B. The key explanatory 

variable is the corresponding ln(1 + y) measure for corporate patent grants or forward citations. Columns progressively 

add technology-class fixed effects and application-year fixed effects. Standard errors are clustered at the technology-

class level and reported in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent levels, 

respectively.
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