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Abstract

Distortions in credit allocation can slow technological progress by sustaining unproductive firms
and generating congestion that crowds out innovation from otherwise healthy firms. We study
this mechanism using Japan’s banking crisis of the 1990s, linking firm-level borrowing data to
the universe of patent applications with more than fifteen years of historical citation outcomes.
Innovation declines more in technology fields facing greater credit distortion, with effects
substantially larger for forward citations than for patent counts. Firm-level evidence reveals
persistently low innovation by zombie firms and reduced innovation by healthy firms operating

in zombie-intensive industries, consistent with congestion effects.
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“The banker makes possible the carrying out of new combinations, authorizes people, in the
name of society as it were, to form them. He is the ephor of the exchange economy.”

— Joseph A. Schumpeter, The Theory of Economic Development (1934)

“Financial markets essentially involve the allocation of resources. They can be thought of as the
‘brain’ of the entire economic system, the central locus of decision-making: if they fail, not only
will the sector’s profits be lower than they otherwise would have been, but the performance of
the entire economic system may be impaired.”

— Joseph E. Stiglitz (1993)

1. Introduction

Two Josephs—Joseph Schumpeter and Joseph Stiglitz—writing six decades apart and
from distinct intellectual traditions, both underscored the central role of the financial system in
directing innovation and shaping broader economic outcomes. Yet in many economies, credit
does not flow to its most productive uses. In particular, underdeveloped financial systems,
often dominated by state-owned banks or institutions influenced by industrial elites, frequently
channel preferential credit to insiders, connected incumbents, or otherwise unviable firms.?
Such privileged access to finance gives incumbents a competitive edge in product markets.
Having secured their dominant positions, they often act to resist further financial development
(Rajan and Zingales 2003; Benmelech and Moskowitz 2010).

There are two main channels through which persistent credit misallocation undermines
technological progress. First, when financial systems favor unproductive firms, those with

transformative ideas may be starved of the liquidity required to develop them. Second, in

1 Credit misallocation has been a recurrent feature of financial systems across diverse institutional and historical
contexts. For example, in the United States, the Savings and Loan crisis of the 1980s illustrated how regulatory
forbearance allowed insolvent thrifts to continue channeling funds into low-quality real estate and speculative
assets, ultimately amplifying eventual losses (Kane 1989). In South Korea, preferential access to finance under
implicit state guarantees enabled large business groups (chaebols) to accumulate unsustainable debts, with the
collapse of Daewoo in 1999 providing a salient example (Krueger and Yoo 2002; Minetti and Yun 2015). Similarly, in
Mexico, related-party lending during the 1990s directed bank credit toward politically connected or insider-owned
firms, many of which subsequently defaulted (La Porta, Lépez-de-Silanes, and Zamarripa 2003). See also Claessens
et al. (2008), Faccio (2006), Carvalho (2014), and Morck et al. (2011).



Schumpeterian models of creative destruction, innovation is driven by the prospect of
displacing incumbents and earning temporary monopoly rents (Aghion and Howitt 1992).
When subsidized incumbents that should otherwise exit remain in the market, they congest
product markets, depress prices, and erode the market share and profitability of more dynamic
rivals, thereby reducing the expected returns to innovation.?

While an extensive empirical literature documents the detrimental impact of financial
underdevelopment on real economies,?® our understanding of credit dynamism and its
consequences for technological progress remain incomplete. What are the implications of
sustained impairment of credit dynamism for innovation? We seek to answer this question
through examination of Japan’s 1990s episode of widespread credit misallocation, commonly
referred to as zombie lending, as a natural experiment (Hoshi 2006; Peek and Rosengren 2005;
Caballero, Hoshi and Kashyap 2008).

Why focus on Japan’s experience from more than thirty years ago, especially when
zombie lending has also afflicted many economies since the Global Financial Crisis of 2008?
While Japan’s institutional context is in some respects unique, the mechanisms we study,
namely, delayed balance-sheet repair and the resulting credit subsidies to unproductive firms
appear to be common across post-crisis banking systems (Baron et al. 2026). More importantly,
Japan’s prolonged episode of financial zombification offers a rare empirical setting that helps
overcome two central measurement challenges. First, detailed firm-level borrowing data allow
us to directly identify impaired credit reallocation. Second, the long time horizon since the crisis
enables the use of patent-based measures of innovation quality, particularly forward citation
data, without the truncation bias that complicates analyses of more recent episodes.

A first methodological challenge is that credit misallocation is difficult to observe and

quantify systematically. Impaired credit dynamism typically involves lenders extending

2 |n effect, a large presence of financially protected incumbents can push the economy into a range where
intensified competition weakens innovation incentives by compressing margins and lowering the payoff to creative
destruction—a concern long emphasized in classical Schumpeterian theory (Schumpeter 1942). Moreover, when
credit distortions deter entry by new firms, the diminished threat of entry further weakens incumbents’ incentives
to innovate, consistent with the Arrow replacement effect (Arrow 1962). See Aghion et al. (2005) and Aghion et al.
(2019) for subsequent work showing that both product market competition (Aghion et al. 2005) and access to
finance (Aghion et al. 2019) affect innovation and productivity in a non-monotonic way.

3 See Levine (2005) for reviews of the literature.



subsidized loans to unviable borrowers, but the contractual terms of such loans (e.g., interest
rates, collateral requirements, or renegotiation agreements) are rarely disclosed. Building on
Caballero, Hoshi, and Kashyap (2008), we infer credit subsidies indirectly from firms’ financial
statements by comparing their effective borrowing costs to benchmark rates for the highest-
credit-quality borrowers. This approach provides a systematic measure of zombie lending and
allows us to trace the consequences of impaired credit reallocation during Japan’s lost decade.

A second methodological challenge concerns the measurement of technological
progress. ldentifying mechanisms of creative destruction requires distinguishing between
marginal improvements and transformative inventions that have the potential to disrupt entire
industries. Patent statistics provide detailed, time-stamped information on inventive activity,
but because patent quality is highly heterogeneous, forward citations are widely used as a
proxy for innovation quality (Griliches 1990; Trajtenberg 1990; Hall, Jaffe, and Trajtenberg
2005; Harhoff et al. 1999; Moser et al. 2016). A well-known limitation of citation-based
measures, however, is truncation bias: more recent patents mechanically receive fewer
citations because they have had less time to be cited (Hall, Jaffe, and Trajtenberg 2001). Recent
work shows that this bias is non-random and can materially affect inference if not handled
carefully (Dass, Nanda, and Xiao 2017; Lerner and Seru 2022). By focusing on patented
inventions from the 1990s and observing more than fifteen years of subsequent citations,
Japan’s early zombification episode allows us to credibly measure innovation quality—rather
than patent counts alone—while minimizing concerns about truncation bias.*

We construct two complementary patent datasets. The first covers the universe of
patented inventions from 1992-2002, aggregated by technological field, with forward citation

counts observed through 2018. The second links a subset of these patents to publicly listed

4 Complementary measures of innovation quality do not rely on the accumulation of citations over time. Kelly et al.
(2021) use textual analysis of patent documents to construct measures of technological novelty and impact that
are immediately observable at the time of patenting. Kogan et al. (2017) infer innovation quality from stock market
reactions to patent announcements, capturing investors’ assessments of economic value in real time. Despite their
very different constructions, both measures exhibit highly skewed distributions, reflecting the empirical regularity
that a small fraction of inventions accounts for a disproportionate share of subsequent innovation and economic
value. Moreover, both are strongly correlated with forward citations, reinforcing the interpretation of citations as
capturing the economic significance of new ideas. Unlike citation-based measures, however, these approaches do
not require the passage of time to assess patent quality, as market reactions and patent documents are
immediately observable, whereas forward citations can take decades to fully accumulate.



firms in the Nikkei NEEDS Financial Database. This firm-level linkage allows us not only to
control for firm characteristics, but also to identify the mechanisms through which impaired
credit reallocation affects innovation—distinguishing between mechanical effects driven by the
low innovative activity of zombie firms themselves and equilibrium effects operating through
congestion and competitive pressures within industries.

Our analysis yields three main results. First, zombie lending is disproportionately
concentrated in technological fields that were already less innovative prior to the rise of
zombification, highlighting the importance of accounting for non-random selection across
technologies. Separately, differences in baseline innovative intensity generate differential
truncation in patent statistics: more innovative, low-zombie fields produce larger volumes of
patents and citations and therefore experience more severe mechanical truncation for later
application cohorts, whereas truncation is substantially less pronounced in technologically
stagnant, high-zombie fields. Second, exploiting within-field variation over time, we find that
greater exposure to zombie lending is associated with economically large declines in
innovation. Notably, citation-weighted measures of innovation respond roughly twice as
strongly to credit misallocation as simple patent counts, reinforcing the interpretation that
impaired credit dynamism disproportionately undermines the creation of high-quality,
potentially disruptive inventions central to creative destruction. Third, firm-level analyses
reveal two reinforcing channels through which impaired credit reallocation depresses
innovation. Zombie firms innovate substantially less than healthy firms, and—consistent with
congestion effects—the innovative advantage of healthy firms erodes with increased zombie
prevalence. Quantitatively, the estimated interaction effects imply that the innovation gap
between non-zombie and zombie firms vanishes once the zombie share reaches roughly 35
percent—a level well within the observed range in many industries during the late 1990s.

We address three methodological concerns. First, how zombie lending is defined.
Following Hoshi (2000) and Caballero, Hoshi, and Kashyap (2008), we identify zombie firms
based on implicit credit subsidies inferred from borrowing costs rather than ex post
performance. This approach focuses on distortions in credit allocation itself, rather than

mechanically linking financial distress status to poor outcomes. To guard against potential



misclassification, we also consider a stricter definition that combines credit subsidies with
balance-sheet indicators of financial distress, following Acharya et al. (2024). Second, because
zombie lending is disproportionately concentrated in technological fields that were already less
innovative, selection poses a serious concern. We address this issue using within-technology
variation over time, extensive controls, and placebo tests based on non-corporate patenting
activity, which responds to common technology shocks but is plausibly insulated from bank
lending behavior.

Finally, we confront concerns about truncation bias in patent citations. Because Japan’s
zombification episode occurred earlier than post-GFC episodes studied elsewhere, our data
allow us to observe more than fifteen years of forward citations for patents filed in the 1990s.
We exploit this long horizon to conduct extensive robustness checks that vary citation windows
and sample definitions, following the recommendations of Dass, Nanda, and Xiao (2017) and
Lerner and Seru (2022). In addition, to ensure that our results are not driven by differential
truncation associated with surges in patenting, we re-estimate our main specifications after
excluding industries and technology classes that experienced unusually rapid growth in
patenting activity. Beyond addressing truncation concerns, this restriction also mitigates
selection issues by avoiding comparisons between rapidly innovating fields—where zombie
lending is rare—and chronically low-innovation technologies. These exercises confirm that our
findings are not artifacts of right-censoring, unequal citation exposure, or non-random selection
across technologies.

Related Literature

Our paper contributes to several strands of the literature on finance, credit allocation,
and innovation. Foundational work on finance and economic growth emphasizes that financial
development promotes growth primarily by improving capital allocation and total factor
productivity rather than by expanding the quantity of investment (Beck, Levine, and Loayza
2000; Wurgler 2000). Conventional measures of financial development, however, largely
capture the scale of intermediation rather than the quality or dynamism of credit allocation.

Closely related studies examine settings in which policy-induced changes improved the

efficiency of credit reallocation. A prominent example is the literature on US banking



deregulation, which shows that the removal of state branching restrictions accelerated credit
flows from low- to high-quality firms and facilitated Schumpeterian creative destruction,
leading to productivity growth (Jayaratne and Strahan 1996; Black and Strahan 2002; Cetorelli
and Strahan 2006; Kerr and Nanda 2009; Bai, Carvalho, and Phillips 2018; Herrera, Minetti,
Schaffer 2025).> While this literature highlights the importance of credit reallocation, isolating
its effects on innovation is challenging because banking deregulation are multifacted and
affects financial markets through multiple channels simultaneously, including competition, firm
entry, and organizational structure.®

Our paper is most closely related to the literature on zombie lending and productivity
slowdowns. Caballero, Hoshi, and Kashyap (2008) show that subsidized lending to distressed
firms during Japan’s 1990s stagnation distorted resource allocation and depressed productivity
growth by impeding reallocation and exit.” We build on this framework by studying innovation
as a distinct and complementary channel through which impaired credit dynamism affected
Japan’s long-run economic performance.®

Recent and concurrent work examines the effects of post—Global Financial Crisis
zombification on innovation in Europe. Schmidt et al. (2024) and Ascani and Balachandran Nair
(2025) study Spain and Italy, respectively, documenting declines in patenting activity following
the rise of zombie firms. Our approach differs in two important respects. First, we follow

Caballero, Hoshi, and Kashyap (2008) in defining zombie firms based on implicit credit subsidies

5 Others also examine financial liberalization or banking reform in other countries as a quasi-experimental setting to
identify credit allocation efficiency (e.g., Bertrand, Schoar, and Thesmar 2007, Varela 2018).

® The effects of banking deregulation on innovation are nuanced. Amore, Schneider, and Zaldokas (2013) find that
interstate banking deregulation increases both the quantity and quality of innovation by public manufacturing
firms. In contrast, Cornaggia et al. (2015) show that while deregulation reduces innovation by public firms at the
state level, it increases innovation by private firms, as greater bank competition improves credit access and allows
small, innovative firms to remain independent. Chava et al. (2013) distinguish between intrastate and interstate
branching deregulation, finding that the former reduces, while the latter increases, the level and riskiness of
innovation by young and private firms. Hombert and Matray (2017) further document that intrastate deregulation
dampens innovation among small firms by weakening lending relationships and limiting inventor mobility with little
effect on large firms.

7 Others build on the seminal work of Caballero, Hoshi and Kashyap (2008) to examine Japan’s zombification
episode (e.g., Kwon, Narita, and Narita (2015), Imai (2016), Cheung and Imai (2024), and Sakai and Uesugi (2024).

8 Related work applying the Caballero—Hoshi—Kashyap framework to post-GFC Europe includes Banerjee and
Hofmann (2022), McGowan, Andrews, and Millot (2017), and Acharya et al. (2024). See Acharya et al. (2022) for a
review of the literature.



rather than balance-sheet distress, allowing us to capture distortions in credit allocation rather
than poor performance per se. Second and more importantly, Japan’s earlier zombification
episode provides a much longer horizon, enabling us to measure innovation quality—rather
than patent counts alone—using unusually long forward citation data. This distinction is crucial
for identifying creative destruction, as simple patent counts conflate trivial inventions with
transformative innovations that drive industry disruption.

The remainder of the paper is organized as follows. Section 2 describes the institutional
background of credit misallocation in Japan and outlines our measure of zombie
lending. Section 3 presents the patent data and discusses their construction and key
measurement issues. Section 4 links credit misallocation to patent outcomes by technology
class and describes the key features of the linked data. Section 5 formally presents aggregate
evidence on the innovation effects of impaired credit dynamism using technology-field—level
analyses. Section 6 provides firm-level evidence on congestion externalities and heterogeneous
responses to zombie lending. Section 7 concludes.

2. Credit Misallocation in Japan

2.1. Institutional Background

The phenomenon of zombie lending emerged after the burst of Japan’s asset-price
bubble in 1990-91, which triggered a sharp decline in land and stock prices. Because real estate
served as collateral for much of bank lending—and because banks themselves held large equity
and property positions—the collapse destroyed bank capital and rendered many firms
insolvent. Loan growth and investment contracted sharply (Peek and Rosengren 1998, 2000;
Imai and Takarabe 2011; Amiti and Weinstein 2011, 2018; Gan 2007a, 2007b). At the same
time, under-capitalized banks, reluctant to recognize losses, rolled over loans to failing
borrowers to keep them nominally current, allowing “zombie firms” to survive not through
profitability but through banks’ willingness to continue lending on favorable terms (Peek and

Rosengren 2005; Caballero, Hoshi, and Kashyap 2008).°

 The main bank system—uwith its long-term relationships, cross-shareholdings, and managerial ties—reinforced
these incentives by making banks hesitant to abandon long-standing clients (Hoshi, Kashyap, and Scharfstein 1990;
Morck and Nakamura 1999; Aoki and Patrick 1994).



As Imai (2019) emphasizes, zombie lending reflected not only weak bank balance sheets
but also a regulatory and political environment that suppressed market discipline and favored
forbearance to avoid widespread bankruptcies and unemployment.l° The government’s
reluctance to force recognition of loan losses reflected broader efforts to contain the political
and fiscal costs of full-scale restructuring. Only with the Takenaka Plan (2002—-2005) did the
government impose stricter accounting standards and begin to compel banks to recognize
losses. Japan’s experience thus illustrates how regulatory forbearance and moral hazard—
amplified by political incentives to conceal losses—can transform a temporary asset-price
collapse into a decade-long episode of capital misallocation.!!

2.2. Measuring Credit Misallocation

How should one identify credit misallocation? By nature, misallocation is rarely
transparent to outside observers with banks rolling over or restructuring loans to otherwise
insolvent borrowers. This opacity is compounded by the fact that banks possess private
information about borrower viability and may deliberately obscure the extent of evergreening,
making it difficult to distinguish between efficient liquidity support and inefficient forbearance.
Moreover, assessing its macroeconomic consequences requires disentangling these effects
from contemporaneous shocks to productivity, demand, or financial conditions. These
challenges underscore the need for detailed micro-level data and creative empirical strategies.

One can identify zombie lending based on the prevalence of financially distressed or

insolvent firms.*? While convenient, such performance-based definitions risk circularity: by

10 The government’s 1996 blanket deposit guarantee shielded creditors from losses, weakening depositor
monitoring (Imai 2006). Regulators tolerated “regulatory capital arbitrage,” allowing banks to meet Basel standards
with deferred tax assets and subordinated debt rather than genuine equity (Hoshi and Kashyap 2004). Political
connections and amakudari appointments of former officials to bank boards further delayed corrective action
(Horiuchi and Shimizu 2001).

11 Across countries, a common mechanism behind delayed bank resolution is the incentive of regulators—and
ultimately politicians—to avoid upfront fiscal costs. Closing insolvent banks or recapitalizing healthy ones requires
immediate cash outlays to repay depositors or inject public capital, actions that make losses explicit to taxpayers. A
large body of work shows that these fiscal and political incentives encourage regulatory forbearance, allowing weak
banks to evergreen loans to distressed borrowers and creating the conditions for zombie lending. This pattern is
documented in the U.S. thrift crisis (Kroszner and Strahan 1996) and the European banking sector (Acharya et al.
2020).

12 “7ombie firms” are frequently identified as mature firms exhibiting persistently weak financial performance—
often measured using the interest coverage ratio (ICR), Tobin’s g, leverage, or sales growth. An ICR below one over
multiple years signals chronic weakness and dependence on forbearance.



construction, they equate poor performance with zombie status. This endogeneity motivates
identifying distortions in lending behavior directly, as in Caballero, Hoshi, and Kashyap (2008).

Caballero, Hoshi, and Kashyap (2008) detect subsidized credit in two steps. First, they
establish a conservative lower bound for required interest payments by combining prevailing
short- and long-term prime rates with the lowest coupon rates on convertible bonds observed
in the preceding five years—benchmarks attainable only by the most creditworthy firms. They
then compare actual interest payments to this benchmark, normalizing by total borrowing to
construct an “interest rate gap.” Firms whose observed payments fall below this bound are
classified as zombies, indicating bank subsidization through evergreening or restructuring.
Because this approach relies on loan terms rather than ex post firm performance, it isolates
distortions in credit allocation without mechanically conflating them with low profitability or
productivity. Our analysis uses their approach.?

Our primary data source, Nikkei Financial QUEST, provides detailed financial statements
for all firms listed on Japanese stock exchanges, including the over-the-counter market. This
coverage is considerably broader than that of Caballero, Hoshi, and Kashyap (2008), who
restricted their sample to firms listed on the first and second sections of the Tokyo Stock
Exchange. Thus, we provide a more comprehensive measure of credit misallocation. From this
database, we obtain information on each firm’s short-term bank loans (maturity of less than
one year), long-term bank loans (maturity exceeding one year), and total bonds outstanding,
including both convertible bonds (CBs) and warrant-attached bonds. To measure the degree of
credit subsidization, we complement these data with prime lending rates published by the Bank
of Japan (https://www.boj.or.jp/statistics/dl/loan/prime/primeold2.htm) and subscriber yields
for convertible bonds collected from various issues of Kin’yu Nenpo (Annual Report on Finance)
published by the Ministry of Finance.

Using these data, we construct annual measures of the share of zombie firms in Japan’s
corporate sector. Figure 1 replicates the original analysis of Caballero, Hoshi, and Kashyap

(2008, Figure 1, p. 1945) using our expanded firm coverage and updated data and reveals a

13 See Online Appendix for a detailed description of the zombie-firm identification method developed by Caballero,
Hoshi, and Kashyap (2008).

10



remarkably similar pattern. After the collapse of the asset-price bubble in the early 1990s and
the sharp recession of 1992-93, the share of zombie firms rises sharply beginning around 1993.
In the top panel of Figure 1, where firms are weighted equally, the zombie share fluctuates
between 5 and 15 percent during the late 1980s and early 1990s, then accelerates through the
mid-1990s, exceeding 25 percent and reaching roughly 30 percent by the early 2000s. Notably,
much of this increase occurs during a period of economic stabilization and partial recovery
beginning in 1994-95, indicating that the expansion of zombie lending was not merely a
transitory response to recession but persisted well into the recovery phase. This persistence
underscores the enduring nature of Japan’s credit misallocation problem and the slow pace of
financial restructuring.

From the standpoint of congestion spillovers, however, a size-weighted measure is
arguably more relevant. The bottom panel of Figure 1, which weights firms by total assets,
displays a similar time pattern but at lower levels, indicating that approximately 15 percent of
corporate assets were tied up in zombie firms during the late 1990s. Both measures are
substantially lower throughout the 1980s and the early phase of the post-bubble downturn.

When we disaggregate the analysis by industry (Figure 2), our results continue to closely
mirror those reported by Caballero, Hoshi, and Kashyap (2008). Following their approach, we
group firms into six broad sectors—manufacturing, construction, real estate, trade, services,
and all firms combined—and compute the asset-weighted share of zombie firms within each
sector. The resulting industry-level series closely replicate the time-series patterns in their
Figure 3 (p. 1951): zombie prevalence rises sharply in the early 1990s and remains elevated
across all sectors for the remainder of the sample. Consistent with their findings, the problem is
more pronounced in nonmanufacturing industries—particularly construction, real estate, and
services—where zombie asset shares increase substantially following the bubble’s collapse. In
contrast, the manufacturing sector exhibits a more modest rise, likely reflecting greater
exposure to international competition and fewer opportunities for banks to sustain unviable

borrowers through domestic protection. The purpose of replicating these figures is twofold
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purposes: to validate the consistency of our data with earlier studies and to establish a
benchmark for interpreting our subsequent analysis.*

3. Patent Data and the Measurement of Innovation

Measuring technological knowledge is inherently difficult, but patent data provide one
of the few standardized and widely used sources for observing innovative activity (Griliches
1990; Hall, Jaffe, and Trajtenberg 2001). Patent records contain rich, time-stamped information
on the technological content and ownership of inventions, including application and grant
dates, technology classifications, and references to prior patents and non-patent literature. At
the same time, the informativeness of patent statistics depends critically on the institutional
environment in which patents are examined and recorded.

This section first describes truncation bias in the widely used NBER patent database for
the United States as a benchmark, then explains the construction and institutional features of
the Japanese patent data, and finally highlights key features of the data that are central for
interpreting patent-based measures of innovation and assessing truncation bias across settings.

3.1. Truncation Bias in the NBER Patent Database

Truncation bias in the NBER patent database has been extensively documented (Hall,
Jaffe, and Trajtenberg 2001, 2005; Harhoff et al. 1999; Dass, Nanda, and Xiao 2017; Lerner and
Seru 2022). The issue arises because the NBER database contains only granted patents. While
inventive activity is often dated by application year to better capture the timing of innovation,
applications still pending at the end of the sample are unobserved, generating truncation that
becomes more severe for later cohorts.

A related problem arises in citation data. Because citations can be observed only from
patents granted within the sample window, even older patents have incomplete citation

counts, with missing citations becoming increasingly severe for patents closer to the cutoff

14 Using the same data and zombie definitions, we also replicate the central empirical findings of Caballero, Hoshi,
and Kashyap (2008) regarding the real effects of zombie lending. In particular, we confirm that otherwise healthy
firms exhibit lower employment and investment in industries with higher zombie prevalence, consistent with
congestion and competitive spillovers operating through product and factor markets (results not shown to
conserve space). These findings closely mirror those reported in Caballero, Hoshi, and Kashyap (2008, Table 3) and
provide further validation that our data and measurement strategy capture the same underlying phenomenon
documented in their study.

12



year. As a result, patents near the end of the sample mechanically appear less influential, not
because they are of lower quality, but because future citing patents fall outside the dataset.
These features generate systematic truncation bias in citation-based measures of innovation
quality.

Recent work demonstrates that these biases are large, non-random, and consequential.
Dass, Nanda, and Xiao (2017) show that truncation in the NBER-2006 data leads to severe
understatement of both patenting activity and citations for cohorts in the early 2000s, even
after applying standard corrections based on historical grant-lag distributions. Lerner and Seru
(2022) extend this analysis using a longer observation window and show that both patent and
citation truncation vary systematically across technologies, firms, and regions. Importantly,
they document that commonly used adjustment methods correct only a small fraction of the
bias and that the resulting measurement error is correlated with firm characteristics such as
size, R&D intensity, and financial constraints. As a result, empirical studies may spuriously
attribute patterns in patenting or citations to economic mechanisms when they instead reflect
truncation-induced measurement error.

3.2. Institutional Features of the Japanese Patent System

A defining institutional feature of the Japanese patent system is pre-grant publication.
All patent applications are automatically disclosed eighteen months after filing, regardless of
whether they are subsequently examined or registered. As a result, researchers can observe
application activity directly, in principle avoiding truncation associated with grant lags. In
practice, however, application data alone are not a reliable measure of realized innovative
output.

This limitation arises from Japan’s request-for-examination system, introduced in 1971.
Unlike the U.S. system, in which all patent applications are examined automatically, applicants
in Japan must affirmatively request substantive examination within a specified period after
filing—currently within three years, and up to seven years prior to 2001. Because filing fees are
relatively low, firms may file applications strategically before the economic value or novelty of

an invention is fully established and subsequently choose not to pursue examination. As a

13



consequence, only a subset of applications is examined, and an even smaller subset is
ultimately registered as patents.

For this reason, patent grants—rather than applications—remain the appropriate unit
for measuring realized inventive activity, paralleling standard practice in the NBER-based U.S.
patent literature. At the same time, the ability to observe applications in the Japanese data is
valuable for diagnosing truncation patterns and for selecting sample endpoints that ensure
sufficient post-application observation.

The request-for-examination system also implies that the lag between application and
registration is both long and highly variable. Median application-to-registration lags are on the
order of three to four years, and a nontrivial share of patents experience lags of five to eight
years or longer, particularly in technologically crowded fields (Goto and Motohashi 2007;
Nagaoka, Motohashi, and Goto 2010). These institutional features play a central role in shaping
truncation patterns in Japanese patent data and motivate careful choices regarding innovation
timing and sample windows in empirical analysis.*

3.3. Institute of Intellectual Property (IIP) Patent Database

Our patent data come from the Institute of Intellectual Property (IIP) Patent Database,
developed under the leadership of Akira Goto. The IIP Patent Database was designed to provide
a structured, research-ready version of Japanese patent records based on the Japan Patent
Office’s standardized administrative data (“Seiri-Hyojunka Data”) to facilitate empirical research
on innovation (Goto and Motohashi 2007; Nagaoka, Motohashi, and Goto 2010). While the
underlying JPO records extend back to the early twentieth century, the IIP database focuses on
applications from 1964 onward, reflecting the availability of consistent bibliographic fields and
International Patent Classification (IPC) codes. The first public release, covering 1964-2004 and

approximately nine million applications, became available in 2005; subsequent releases extend

15 The request-for-examination system, and the longer median application-to-registration lags that result, are not
unique to Japan. For example, under the European Patent Convention, European patent applications are typically
published at 18 months after filing or priority, and applicants must file a request for examination and pay an
examination fee within a fixed period after publication of the European search report for the application to proceed
toward grant. These parallels underline that truncation and variation in application-to-grant timing are common
features in multiple advanced patent systems, reinforcing the importance of carefully aligning timing and
measurement when using patent data to study innovation.
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coverage forward in time. We use the 2020 release, whose documentation is the most
complete and which covers all published patent applications and registered patents through
September 16, 2019.

The IIP database reflects key institutional features of the Japanese patent system by
recording information separately for applications, examination requests, and registrations. It
includes application dates, IPC-based technology classifications, applicant and inventor
information, examination request dates, and registration dates for granted patents. Citation
information in the IIP Patent Database is compiled from search reports prepared by patent
examiners rather than by applicants themselves, mitigating concerns about strategic citation
behavior—a feature shared with the European patent system. Substantial effort was devoted to
cleaning and harmonizing applicant identities, as the original JPO data do not contain stable
applicant identifiers and include numerous name variants—an issue analogous to that
documented for raw USPTO data (Goto and Motohashi 2007; Lerner and Seru 2022).

Do the IIP patent data exhibit truncation patterns similar to those documented for the
NBER patent database? To address this question, we replicate the diagnostic exercises
proposed by Lerner and Seru (2022). Their analysis of the NBER-2006 patent database plots: (i)
the number of patents by grant year, (ii) the number of successful patent applications—defined
as applications that eventually result in grants—by application year, (iii) the total number of
applications (successful plus unsuccessful), and (iv) forward citations per patent by application
year. Together, these panels provide a clear visual diagnosis of truncation arising from grant
lags and finite citation windows.

Figure 3 replicates these diagnostics using the IIP Patent Database. When patents are
organized by grant (registration) year, patent counts evolve smoothly over time, with no
evidence of a sharp end-of-sample decline (Panel A). By contrast, when granted patents are
reorganized by application year, the series declines sharply toward the end of the sample,
approaching zero (Panel B). This decline begins around 2015—approximately three years before
the end of the observation window—consistent with median application-to-registration lags of
three to four years and substantially longer lags for a nontrivial share of patents under Japan’s

request-for-examination system.
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Citation-based measures exhibit an even earlier and more pronounced truncation
pattern. Forward citations per patent, when plotted by application year, peak for relatively
early cohorts and then decline steadily, with citation intensity for recent cohorts falling close to
zero (Panel D). This decline begins around 2001 —roughly eighteen years before the end of the
citation window—reflecting the compounded lags associated with the registration of cited
patents, the subsequent grant of citing patents, and the finite observation window for citations.

Panel C plots the total number of patent applications, defined as the sum of successful
and unsuccessful applications. In contrast to the U.S. data, where total applications continue to
rise through the end of the sample, the IIP data exhibit a sharp decline beginning in 2018. This
decline is fully mechanical and reflects Japan’s eighteen-month pre-grant publication rule:
because the IIP database used in this study was compiled in September 2019, applications filed
after early 2018 had not yet reached the publication stage and are therefore unobserved (Goto
and Motohashi 2007).

To further illustrate citation truncation, Figure 4 plots the distribution of forward
citations by citation lag for patents applied for in different years. Earlier cohorts (e.g., 1990 and
1995) exhibit long citation tails, with meaningful citation activity extending beyond twenty
years after application. By contrast, for more recent cohorts (notably 2005 and 2010), citations
drop sharply after relatively short lags and approach zero within ten years. This pattern reflects
a finite observation window rather than faster technological obsolescence. Accordingly, our
baseline analysis restricts attention to patent applications filed no later than 2002, ensuring
sufficiently long post-application horizons for measuring innovation quality.'®

4. Creation of Linked Patent—Zombie Datasets

To examine how credit misallocation affects innovative activity, we construct two
complementary datasets that link patent outcomes to measures of zombie lending. Zombie
lending is measured at the industry-year level following Caballero, Hoshi, and Kashyap (2008),
while innovation outcomes are observed at the firm and technology levels. Because these

objects are defined at different levels of aggregation, empirical analysis requires mapping

16 Robustness to alternative application and citation windows is later examined.
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industry-level credit distortions into the domains where innovation is observed. This mapping
underlies both datasets used in our analysis.

4.1 Linking Patent Applicants to Firms

We begin by linking patent records from the Institute of Intellectual Property Patent (lIP)
Database to firm-level financial information from the Nikkei NEEDS Financial Quest (FQ)
database. This task is nontrivial because patent applicants are not recorded using stable firm
identifiers. The same firm may appear under multiple names due to variation in spelling,
abbreviations, character sets (Japanese, Chinese, and Roman), typographical conventions, and
organizational changes such as mergers, spin-offs, and rebranding (Yamashita and Yamauchi
2019).

To address these challenges, we rely on a company name dictionary compiled by the
National Institute of Science and Technology Policy (NISTEP). The 2019 version of this dictionary
assigns unique firm identifiers (NISTEP IDs) and standardized names to major patent
applicants—defined as firms that have filed at least 100 patent applications since 1970—which
together account for more than 90 percent of corporate patent applications in Japan. Crucially,
the dictionary records historical organizational changes, allowing past firm names to be linked
to current identifiers.

Using NISTEP IDs as the primary key, we match patent applicants to firms in the Nikkei
FQ database. We further refine this matching using information on company names, security
codes, and headquarters locations at the municipal level. Because firm names in the Nikkei FQ
database can be reliably traced back only to 1997, we identify earlier name changes using
the Handbook of the Tokyo Stock Exchange. This procedure allows us to match approximately
76 percent of patent applications filed by firms with NISTEP IDs, corresponding to about 60
percent of all patent applications in the IIP database.

4.2 Sample Period

Our baseline patent sample consists of applications filed between 1992 and 2002. The
start year is chosen to avoid the unusual macroeconomic and policy environment of the early
1990s, when tight monetary policy by the Bank of Japan and regulatory restrictions on

commercial real estate lending precipitated the collapse of the asset price bubble and a deep
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recession (Okina, Shirakawa, and Shiratsuka 2001; Sonoda and Sudo, forthcoming). Because this
episode represents a sharp macroeconomic regime break rather than a stable pre-crisis
baseline, earlier years do not provide an appropriate counterfactual. The end year is chosen to
mitigate truncation bias in forward patent citations (Section 3).%’

4.3 Firm-Level Dataset

Using the matched data, we first construct a firm-level dataset by restricting attention
to patents whose applicants can be linked to publicly listed firms in the Nikkei FQ database. For
these firms, we aggregate patent counts and forward citations to the firm-application year level
and merge them with balance-sheet information and measures of zombie status. This dataset
allows us to study firm-level innovation behavior and congestion externalities in section 6.

A limitation of this firm-level analysis is that it necessarily excludes patents granted to
firms that are not publicly listed and therefore do not appear in the Nikkei FQ database.
Because credit misallocation affects the broader corporate sector, including private firms and
other entities for which firm-level financial data are unavailable, analyses restricted to listed
firms may understate the aggregate impact of impaired credit reallocation on innovative
activity.

4.4 Technology-Class—Level Dataset

To address this limitation, we exploit the fact that all patents in the IIP database are
assigned to detailed technology classes based on their International Patent Classification (IPC)
codes, regardless of the ownership or listing status of the applicant. This feature allows us to
construct a technology-class—level dataset that includes the universe of patented inventions,
encompassing patents by listed firms, unlisted firms, and other corporate entities (excluding
patents with foreign applicants).

The primary dataset for our aggregate analysis is therefore constructed at the
technology-class level. Each patent is assigned to one of 120 technology classes based on its

primary IPC code. For each technology class, we aggregate patent counts and forward citations

17 Japan experienced a severe banking crisis in 1997-98, marked by major financial institution failures and
government interventions. While our baseline sample extends through 2002, our results do not hinge on including
the late-1990s crisis period. In robustness checks, we re-estimate all specifications using a sample ending in 1997,
prior to the banking crisis, and obtain qualitatively similar results.
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by application year using the universe of patents filed between 1992 and 2002. This dataset
enables us to estimate the aggregate effects of credit misallocation on innovation across
technological fields, rather than only the responses of a selected subset of publicly listed
firms.18

4.5 Mapping Industry-Level Credit Misallocation into Technology Fields

Because zombie lending is measured at the industry-year level and varies over time,
while patents are classified by technology rather than industry, we translate industry-level
credit misallocation into technology-level exposure using a shift—share approach. Using the
firm-patent linkage described above, we identify the industries in which patenting firms
operate and compute, for each technology class k and industry j, the share of patents
originating from industry j, denoted wy;.

These weights are computed using the full matched patent—firm sample pooled over
1991-2001—one year prior to the estimation window—and are held fixed over time, reflecting
the long-run industry composition of innovation within each technology class. Fixing the
weights avoids mechanically linking contemporaneous patenting outcomes to exposure
measures and follows standard practice in shift—share designs.!®

We then define technology-level zombie exposure in year t as:

Zkt = E Wiij Zjt,
j

where z;; denotes the asset-weighted share of zombie firms in industry j in year t.

Under this construction, variation in technology-level exposure arises solely from changes in

18 Nano-technology (IPC B82), one of the 120 technology classes, is only defined and available starting in 1997, but
our technology-class level panel data are virtually balanced with 1,314 technology-class—year observations (119 x
11 +5=1314).

19 Online Appendix Table A1 provides transparency on the industry—technology mapping underlying the
construction of our exposure measures. For each of the 120 IPC technology classes, the table reports the two
industries with the largest patenting shares, w; ;. Patent activity within technology classes is highly concentrated:
only 13 industries ever appear as the dominant patenting sector, and this set expands to just 16 industries when
second-ranked sectors are included. Electric machinery is by far the most pervasive industry, appearing among the
top two patenting sectors in 71 technology classes, followed by non-electric machinery and chemicals. Overall, the
implied mappings are economically intuitive—for example, machinery-related technologies are primarily associated
with manufacturing industries, while construction- and real-estate-related technologies draw disproportionately
from nonmanufacturing sectors—confirming that the exposure measures capture meaningful industry—technology
linkages rather than mechanical artifacts of aggregation.
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industry-level zombie prevalence over time, while the mapping from industries to technologies
remains stable.?°

5. Zombie Lending Exposure and Innovation across Technology Classes

5.1. Descriptive Patterns

We begin by documenting several descriptive patterns in the technology class—level
data that motivate our empirical strategy and underscore the importance of accounting
for selection across technologies, differential truncation in citation data, and heterogeneous
underlying innovation trends.

Figure 5 plots average patent grants (top panel) and average forward citations (bottom
panel) over 1992—-2002 against the industry-weighted average zombie exposure of each
technology class, computed using one-year-lagged values over 1991-2001. Each point
corresponds to one of the 120 IPC technology classes. The figure reveals a clear negative cross-
sectional relationship: technology classes more exposed to zombie lending exhibit substantially
lower patenting activity and fewer citations on average. At face value, this pattern suggests that
innovation is weaker in technological fields associated with industries characterized by
persistent credit misallocation.

However, these cross-sectional correlations also highlight an important selection
issue. Figure 6 plots total patent grants (top panel) and total forward citations (bottom panel)
by application year for technology classes with low versus high exposure to zombie lending,
where technology classes are classified based on whether their industry-weighted average
zombie share over 1991-2001 lies below or above the median. Low-zombie technology classes
are substantially more innovative throughout the sample period, both in terms of patenting
volume and citation intensity, mirroring the pattern in Figure 5. Importantly, these differences
in innovative output were already visible well before zombie lending became a prominent

feature of Japan’s banking system in the early 1990s. That is, technology classes with high

20 This approach is closely related to that used by Autor et al. (2020), who study the effects of trade shocks on
innovation by weighting industry-level shocks by the industry composition of patenting within each technology, and
by Hombert and Matray (2017), who map financial shocks into technology-level innovation outcomes using patent
data. As in these studies, our objective is not to assign each technology to a single industry, but to translate
industry-level credit distortions into technology-level exposure measures based on observed patterns of
innovation.
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zombie exposure are not simply those that subsequently “fell behind,” but rather those that
were already characterized by lower innovative dynamism. This pre-existing heterogeneity
cautions against interpreting the cross-sectional patterns in Figure 5 as causal effects of
zombification on innovation.

At the same time, Figure 6 reveals a closely related pattern that raises additional
econometric concerns, closely connected to the non-classical measurement error and
endogeneity issues emphasized by Dass, Nanda, and Xiao (2017) and Lerner and Seru (2022).
Forward citations in low-zombie technology classes rise sharply during the 1990s and then
decline rapidly in the early 2000s, whereas citation activity in high-zombie fields remains
comparatively flat throughout. Part of this divergence reflects mechanical truncation, as
discussed in Section 3: more innovative fields generate larger volumes of patents and citations
and therefore experience more severe end-of-sample citation truncation. At the same time, the
pronounced rise in citations during the 1990s suggests that some low-zombie technology
classes might have been “hot” fields whose innovative activity surged for reasons unrelated to
credit conditions—for example, due to underlying technological breakthroughs or shifts in
demand.

As a result, selection, heterogeneous innovation trends in the 1990s, and subsequent
citation truncation in the early 2000s interact in ways that can be misleading. Absent careful
treatment, naive comparisons across technology classes or over time could lead to faulty causal
interpretations—for example, that low-zombie fields performed strongly in the 1990s only to
stagnate in the 2000s, suggesting that credit misallocation has only transitory effects on
innovation—when, in fact, the observed pattern may simply reflect a relative surge in
innovation in a subset of low-zombie technologies whose patents have yet to receive most of
their citations because truncation is more severe in technologically dynamic fields.

These considerations motivate several features of our empirical design. First, we exploit
within-technology variation over time while controlling for technology fixed effects, thereby
accounting for time-invariant differences in innovative capacity across fields. Second, we
restrict the baseline analysis to patent applications filed no later than 2002, for which citation

windows are sufficiently long. Third, we construct technology-level zombie exposure measures
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that vary only through changes in industry-level zombie prevalence, holding the industry—
technology mapping fixed. Finally, we conduct robustness checks that explicitly address the
possibility that results are driven by “hot” technology fields by excluding technologies that
experienced surges in patenting or citations during the 1990s. The regression analysis that
follows is structured to address these intertwined concerns of selection, truncation, and latent
technological trends highlighted by Figures 5 and 6.

5.2. Baseline Regression Specification

Our baseline specification relates innovation outcomes in technology class k and
application year t to exposure to zombie lending as follows:

Vit = BZre-1 + Qe + Ve + Ekes
where y,: denotes an innovation outcome—such as the log number of granted patents or the
log number of forward citations associated with patent applications in technology class k and
year t. The key explanatory variable, z,;_4, is the industry-weighted zombie share for
technology class k in year t — 1, constructed using the long-run industry composition of
patenting within each technology class, as described in Section 4.5. Standard errors are
clustered by the industry with the largest patenting share for each technology class (13
clusters).

The specification includes technology-class fixed effects (ay), which absorb time-
invariant differences in innovative capacity across fields. Year fixed effects (y;) capture
aggregate trends in patenting, changes in patent-office practices, and macroeconomic shocks
common to all technologies.

This within-technology design directly addresses the selection concerns highlighted in
Section 4. Technology classes that are more exposed to zombie lending are systematically less
innovative in the cross section, even prior to the rise of zombie lending. By comparing each
technology class to itself over time, the regression framework isolates changes in innovation
associated with changes in exposure to credit misallocation, rather than relying on comparisons
between inherently high- and low-innovation fields. At the same time, year fixed effects ensure
that identification comes from differential exposure to zombie lending across technologies

within a given year, rather than from secular trends in innovative activity.
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Patent grants and forward citations are inherently count variables and exhibit highly
skewed distributions, with a small number of technology classes accounting for a
disproportionate share of innovative activity. A common approach in the innovation literature
is to estimate log-linear models using the logarithm of one plus the count of patents or
citations, which allows zeros to be included while compressing the right tail of the distribution.
While this transformation is convenient, it treats zero outcomes in an ad hoc manner and
distorts proportional effects at low counts. We therefore complement log-linear specifications
with Poisson regressions, which model the conditional mean of count outcomes directly and
accommodate zeros naturally. 2

5.3. Baseline Results

Table 1 reports baseline estimates of the baseline model relating innovation outcomes
at the technology-class level to exposure to zombie lending. Panel A presents specifications that
include year fixed effects but exclude technology-class fixed effects, while Panel B adds
technology-class fixed effects and therefore exploits only within-technology variation over time.
In each panel, we report results for patent grants and forward citations using both log-linear
OLS specifications and Poisson count models.

Panel A reveals a strong negative cross-sectional relationship between zombie exposure
and innovation. Technology classes that are more exposed to zombie lending exhibit
substantially lower patenting and citation activity on average, regardless of whether innovation
is measured using log outcomes or Poisson counts. The estimated coefficients are large in
magnitude and highly statistically significant across all four specifications. These results mirror
the raw patterns documented in Section 4 and confirm that zombie lending is
disproportionately concentrated in technological fields characterized by persistently low

innovative activity.

21 L og-linear specifications using log(1 + y) yield qualitatively similar patterns. However, recent work shows that log
transformations in the presence of zeros can distort magnitudes and inference, whereas Poisson estimators deliver
more reliable semi-elasticities for count and count-like outcomes (Santos Silva and Tenreyro 2006; Cohn, Liu, and
Wardlaw 2022; Chen and Roth 2024). Accordingly, we emphasize Poisson estimates when discussing economic
magnitudes.
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Panel B introduces technology-class fixed effects, absorbing time-invariant differences in
innovative capacity across technological fields. Once these fixed effects are included, the
magnitude of the estimated coefficients declines sharply but remains negative and statistically
significant. This attenuation indicates that a substantial portion of the unconditional correlation
between zombie exposure and innovation reflects selection: industries and technologies with
chronically low innovative dynamism are more likely to experience persistent credit
misallocation. At the same time, the remaining within-technology estimates suggest that
increases in exposure to zombie lending within a given technological field are associated with
meaningful reductions in innovative activity.

In Poisson specifications with technology-class fixed effects, the results show that a 10
percentage point increase in the zombie share faced by a technology class is associated with
roughly a 10 percent reduction in patent grants and a 20 percent reduction in forward citations.
Thus, the quantitative impact on citation-based measures is roughly twice as large as that on
patent counts. Because forward citations proxy for the economic and technological significance
of inventions, the larger effect on citations implies that impaired credit dynamism is
particularly damaging to the generation of high-impact innovations that drive creative
destruction.

5.4. Robustness Check

5.4.1. Alternative Measures of Zombie Lending

Our baseline measure of zombie lending, used in Table 1, follows Hoshi (2006) and
Caballero, Hoshi, and Kashyap (2008) and identifies zombie firms solely on the basis of whether
they appear to receive subsidized credit. This approach deliberately avoids defining zombies
using profitability, productivity, or growth outcomes. As emphasized by Caballero, Hoshi and
Kashyap (2008), performance-based definitions risk hard-wiring the very correlations one seeks
to study: if zombies are identified by poor operating performance, then industries with many
zombies will mechanically appear unproductive and slow-growing. By contrast, a subsidy-based
definition permits an evaluation of whether distortions in credit allocation—rather than ex post

firm outcomes—predict subsequent innovative activity.
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While this definition is therefore well suited for isolating the role of credit misallocation,
it may misclassify some financially healthy firms as zombies if they face legitimately low
borrowing costs due to low risk. To address this concern, we implement a more stringent
alternative definition based on Acharya et al. (2024). Under this definition, firms are classified
as receiving zombie credit only if they both (i) appear to receive a credit subsidy and (ii) exhibit
balance-sheet characteristics indicative of financial fragility—specifically, above-median
leverage and below-median interest coverage. This refinement narrows attention to firms that
are not only beneficiaries of unusually favorable financing terms but also unlikely to sustain
those terms absent creditor forbearance. Figure Al in the Online Appendix documents the

evolution of zombie prevalence under this alternative definition.

Table 2 reports the results of re-estimating the baseline technology-class regressions
with both technology-class fixed effects and application-year fixed effects using this stricter
measure of zombie exposure. The estimates are qualitatively similar to those in Table 1 (Panel
B) but are uniformly larger in magnitude and more precisely estimated. Across all specifications,
greater exposure to zombie lending is associated with significantly lower patenting and citation
activity, regardless of whether innovation is measured using log specifications or Poisson

models.

The strengthening of the estimates under the stricter definition admits two, not
mutually exclusive, interpretations. On the one hand, incorporating balance-sheet indicators
may sharpen the measurement of zombie lending by excluding genuinely healthy firms that
happen to face low borrowing costs, thereby reducing attenuation bias in the baseline
estimates. On the other hand, because the alternative definition conditions on financial
distress, it may reintroduce some degree of endogeneity: sectors with more fragile firms may
both receive forbearance lending and experience weaker innovative performance for reasons
unrelated to credit allocation per se. In this sense, the larger coefficients in Table 2 may reflect

a combination of credit distortions and underlying sectoral distress.

For this reason, we view the subsidy-based measure used in Table 1 as our preferred

specification for causal interpretation. The results in Table 2 nonetheless serve an important
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robustness role: they demonstrate that the negative relationship between zombie exposure
and innovation is not driven by the inclusion of financially healthy firms among zombies and, if
anything, becomes stronger when attention is restricted to firms that are both subsidized and

financially fragile.

5.4.2 Addressing Endogeneity Concerns

A central concern in interpreting the baseline results is that exposure to zombie lending
may be correlated with latent differences in innovative potential across technological fields. For
example, industries with weaker growth prospects or lower-quality firms may both attract
greater creditor forbearance and exhibit persistently lower innovation, generating spurious
correlations between zombie exposure and patenting outcomes. While no single test can fully
resolve such endogeneity concerns, we provide several complementary pieces of evidence
suggesting that our results are not driven by omitted variables related to business conditions or
average firm quality.

Table 3 augments the baseline technology-class regressions with additional controls
commonly used in the zombie-lending literature. Following Caballero, Hoshi, and Kashyap
(2008), we include industry-weighted sales growth to proxy for differences in business
opportunities across sectors. We also control for the industry-weighted share of financially
fragile firms—defined as firms with above-median leverage and below-median interest
coverage ratios—following Acharya et al. (2022, 2024), to account for variation in the
underlying quality of firms operating within a technology class.

Across all specifications in both Panel A (patent grants) and Panel B (forward citations),
exposure to zombie lending remains negatively and statistically significantly associated with
innovative activity. Importantly, the magnitude of the zombie exposure coefficient changes
little when these additional controls are included. This stability indicates that the baseline
relationship is not driven solely by differences in contemporaneous business conditions or by
the concentration of low-quality firms in particular technological fields.

The control variables themselves behave as expected. Greater exposure to financially
fragile firms is associated with lower patenting and citation activity, consistent with weaker

innovative capacity in sectors dominated by distressed firms. In contrast, sales growth has
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limited explanatory power once technology-class and year fixed effects are included. Echoing
the findings of Caballero, Hoshi, and Kashyap (2008) that variation in business opportunities
alone cannot account for patterns of zombie lending. Taken together, these results suggest that
the negative association between zombie lending exposure and innovation reflects more than
simple selection on firm quality or demand conditions. Instead, they are consistent with the
view that credit misallocation—over and above underlying sectoral weakness—plays an
independent role in shaping innovative outcomes.

A remaining concern is that the negative association between zombie exposure and
innovation reflects unobserved, technology-specific shocks that simultaneously depress
patenting activity and financial conditions, rather than a causal effect of zombie lending on
corporate innovation. To address this possibility, we conduct a placebo test using patenting
activity by non-corporate applicants.

We classify patents into corporate and non-corporate applicants, where the latter
include individuals, academic institutions, and public research entities. These applicants are
unlikely to be directly affected by bank forbearance, creditor incentives, or the congestion
effects emphasized in the zombie-lending literature. At the same time, non-corporate patenting
is plausibly exposed to the same underlying technological opportunities and scientific advances
that shape corporate innovation.??

We then replicate the baseline technology-level regressions using non-corporate patent
outcomes as dependent variables. Table 4 reports the results. While zombie exposure is weakly
negatively associated with non-corporate patenting in specifications without technology-class
fixed effects, this relationship disappears once fixed effects are included. Across all
specifications—with innovation measured using either log outcomes or Poisson models—the
estimated coefficients are statistically indistinguishable from zero. This absence of a systematic
relationship stands in sharp contrast to the robust negative effects observed for corporate

patents. Taken together, these placebo tests strengthen the interpretation that zombie lending

22 We verify that patent grants and citations by corporate and non-corporate applicants are strongly and positively
correlated across technology classes, even after controlling for technology-class and year fixed effects. This pattern
indicates that both types of patenting respond to common technology shocks, validating the use of non-corporate
patents as a meaningful placebo. See Table A2 in Online Appendix.
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causally impedes corporate innovation rather than merely reflecting unobserved technology-
level shocks or latent differences in technological opportunity across fields.

5.4.3. Truncation Bias

5.4.3.1. Excluding “hot” technology fields

The presence of rapidly innovating (“hot”) technology fields raises two distinct concerns.
First, these fields may generate spurious correlations if low zombie exposure simply reflects
strong underlying technological opportunities and economic viability, rather than differences in
credit allocation. Second, and more subtly, technology classes experiencing rapid innovation
are precisely those for which forward citations are most severely truncated near the end of the
sample (Lerner and Seru 2022). In such fields, patenting activity accelerates sharply, while
observed citation counts decline mechanically toward the end of the sample because a
substantial share of citations arrives with long delays. This asymmetry is particularly relevant in
our setting because hot technology fields tend to exhibit relatively low exposure to zombie

lending.

As a result, observed citation counts may substantially understate the true quality of
innovations in low-zombie technology classes, especially during periods when credit
misallocation intensifies elsewhere. Importantly, this pattern implies that truncation bias is
more likely to attenuate the estimated negative relationship between zombie exposure and

innovation than to generate it spuriously.

To address these concerns, we conduct a robustness check that excludes the ten
technology classes exhibiting the fastest growth in patent grants over the 1992-2002 period
and re-estimate our baseline specifications using both log-linear OLS and Poisson models. If the
baseline relationship were driven primarily by unobserved heterogeneity in technological
opportunity correlated with zombie exposure, or by differential truncation in rapidly growing

fields, the estimated effects should weaken once these classes are excluded.

Table 5 reports the results. Across all specifications, including log-linear models for
patent grants, the coefficient on zombie exposure remains negative and statistically significant.

Moreover, relative to the baseline estimates reported in Table 3, the magnitude of the
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coefficient generally increases. This pattern is consistent with the interpretation that truncation
bias in high-growth technology fields attenuates the estimated effect of zombie lending on

innovation, and that excluding these fields reduces this bias rather than driving the results.
5.4.3.2. Robustness to Alternative Sample Periods and Citation Windows

To further assess whether truncation bias remains a concern despite our use of long (15-
plus-year) citation windows, we follow the recommendations of Lerner and Seru (2022) and
conduct a series of robustness checks that vary both the patent application period and the
length of citation exposure. The underlying logic is simple: if truncation bias were driving our
results, then altering the timing of patent cohorts or restricting citation windows should

materially weaken the estimated relationship between zombie lending and innovation.

We conduct three sets of exercises. First, we vary the application window—shortening
the sample to 1992-1998 or extending it to 1992—-2007—while continuing to measure forward
citations through 2018 (Table 6). Second, holding the application period fixed at 1992—-2002, we
truncate the citation data earlier—ending in 2010 or 2015—thereby mechanically increasing
the severity of right-censoring (Table 7, Panels A and B).23 Third, we impose a fixed 15-year
citation window for all patents (Table 7, Panel C), ensuring equal citation exposure across

application cohorts.

Across all specifications in Tables 6 and 7, zombie exposure is consistently associated
with significantly lower forward citations. Notably, as shown in Table 7, the magnitude and
statistical significance of the estimates are remarkably stable when we vary citation windows,
including under aggressive truncation that limits citation exposure to as little as seven years. In
sum, across technologies and over time, increases in exposure to zombie lending predict
meaningful declines in both the quantity and the quality of innovation, and these patterns are
robust to extensive checks for selection and truncation.

6. Firm-Level Analysis

23 Truncating the citation data at 2010 (or 2015) means that any citations received after that year are not counted,
even if the patent continues to be cited thereafter. This construction mechanically increases the degree of right-
censoring in measured forward citations, particularly for patents applied for later in the sample period.
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The technology-class analysis establishes a robust aggregate relationship: greater
exposure to zombie lending is associated with slower innovation, particularly in citation-
weighted measures of quality. By construction, however, these reduced-form results cannot
distinguish whether innovation declines because zombie firms themselves innovate less, or
because zombie lending undermines creative destruction by distorting competition and
weakening innovation incentives for otherwise healthy firms. Distinguishing between these
channels requires moving from aggregate technological fields to firm-level behavior.

We therefore turn to a firm-level dataset that links patent outcomes to publicly listed
firms with detailed balance-sheet information from the Nikkei Financial QUEST database.
Although this analysis necessarily focuses on a subset of patent applicants that can be reliably
matched to listed firms, it offers a key advantage: it allows us to directly identify zombie and
non-zombie firms and to examine how healthy firms respond when they operate in industries
with high zombie prevalence. This granularity enables us to separate a direct effect—zombie
firms innovate less than comparable non-zombies—from a congestion effect, whereby non-
zombie firms reduce innovation in response to distorted competition. The firm-level evidence
thus provides the mechanism-level link between impaired credit dynamism and slower creative
destruction.

6.1. Baseline Specification

To examine the spillover effects of zombie lending on the innovative activity of healthy
firms, we follow the empirical framework of Caballero, Hoshi, and Kashyap (2008) and estimate
the following firm-level specification: 24

Yijt = P1 NonZombie;j;_1 + , NonZombie;j._, X ZombieShare;j._; + 0s;j + nj¢ + &;jq,

where y;; denotes an innovation outcome for firm i operating in industry j in year ¢.
Our primary outcomes are measures of inventive activity based on patent data, including the
number of patent grants and the number of forward citations associated with patent

applications filed by firm i in year t. To mitigate concerns about truncation bias in forward

24 Acharya et al. (2022, 2024) follow the same regression model to examine congestion effects in the US and
European data, respectively.
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citation data, the baseline firm-level analysis focuses on patent applications filed no later than
2002, mirroring the technology-class—level analysis in Section 5.

The indicator variable NonZombie; j;_, equals one if firm i is not classified as a zombie in
year t — 1 and zero otherwise. The variable ZombieShare;;_, measures the asset-weighted
share of zombie firms in industry j at time t — 1. Industry—year fixed effects n;, absorb all
industry-specific shocks and time-varying demand or productivity conditions common to firms
within the same industry each year. As a consequence, the specification does not identify the
aggregate effect of changes in zombie prevalence at the industry level. Instead, identification
comes entirely from differential innovation responses of zombie and non-zombie firms within
the same industry—year, allowing us to isolate congestion effects while abstracting from
industry-wide movements in innovation. Accordingly, the firm-level estimates should be
interpreted as capturing within-industry reallocative effects rather than aggregate innovation
losses. 2

The coefficient 8; captures the baseline innovation advantage of non-zombie firms
relative to zombie firms when industry-level zombie prevalence is negligible. A positive
estimate of f5; indicates that, in the absence of severe congestion from zombies, financially
healthy firms are more innovative than their zombie counterparts. The interaction
coefficient 8, captures how this innovation advantage varies with the prevalence of zombie
firms in the industry. A negative ,implies that as zombie lending becomes more widespread,
the innovation gap between non-zombie and zombie firms narrows, consistent with congestion
effects that depress innovation incentives for otherwise healthy firms.

A potential concern in interpreting the interaction coefficient 3, as evidence of
congestion effects is that industry-level zombie prevalence may proxy for underlying industry
conditions. In particular, 8, could be negative if non-zombie firms are more sensitive than

zombies to adverse industry shocks. Caballero, Hoshi, and Kashyap (2008) address this concern

25 Moreover, because the firm-level analysis is restricted to publicly listed firms that can be matched to patent
records, the estimates should not be interpreted as capturing aggregate innovation effects for the corporate sector
as a whole, but rather as mechanism-level evidence on how impaired credit dynamism distorts innovation
incentives among observable incumbent firms.
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by controlling for firm-level sales growth as a proxy for business opportunities, while
acknowledging that such controls may attenuate estimates if congestion operates precisely by
reducing healthy firms’ growth prospects. Following their approach, we include sales

growth s;;; in selected specifications as a robustness check; its coefficient 6 is expected to be
positive.

Standard errors are clustered at the industry level to account for correlated shocks and
common exposure to industry-wide financial conditions.

6.2. Firm-Level Results: Innovation Gaps and Congestion Effects

Tables 8 and 9 report firm-level estimates of the impact of zombie lending on
innovation, using the subsidy-based zombie definition of Caballero, Hoshi, and Kashyap (2008)
and a stricter definition that additionally incorporates balance-sheet weakness following
Acharya et al. (2019). All specifications include industry—year fixed effects, so identification
comes from comparisons between zombie and non-zombie firms operating within the same
industry and year.

Across all specifications, non-zombie firms are significantly more innovative than zombie
firms. This result holds for both patent grants and forward citations and is robust across
functional forms and zombie definitions. In Poisson specifications without interaction terms,
the estimated coefficient on the non-zombie indicator implies that healthy firms produce
roughly 150 percent more patents and citations than zombies on average—an innovation gap
that is substantial even when averaged over heterogeneous competitive environments.

Allowing the innovation gap to vary with industry-level zombie prevalence yields two
further insights. First, once the interaction between non-zombie status and zombie share is
included, the coefficient on the non-zombie indicator increases markedly. In the Poisson
specifications, this coefficient rises to approximately 2.5, implying that in industries with
negligible zombie presence, healthy firms are 250 percent more innovative than zombies. This
contrast highlights that unconditional estimates mask considerable heterogeneity: the
innovation advantage of healthy firms is largest precisely where credit allocation is least

distorted.
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Second, and central to our mechanism, the interaction between non-zombie status and
zombie share is negative and precisely estimated across all specifications. As zombie prevalence
rises, the innovation advantage of healthy firms erodes, consistent with congestion effects
whereby subsidized incumbents weaken the incentives and returns to innovation for otherwise
productive competitors. Formally, the expected innovation gap between non-zombie and
zombie firms is

E[y | NonZombie = 1] — E[y | NonZombie = 0] = B, + f, X ZombieShare.

Using the Poisson estimates, this gap closes at zombie-share levels of approximately 35
percent (—% = 27 = .35), well within the range observed in some industries in Japan during
2

the 1990s as seen in Figure 2. In sufficiently distorted industries, healthy firms thus become as
non-innovative as zombies despite retaining access to unsubsidized credit.

Sales growth enters positively in the Poisson specifications, consistent with stronger
business conditions supporting innovative activity. Importantly, including sales growth has little
effect on the magnitude or significance of the interaction term, indicating that the estimated
congestion effects are not driven by differential exposure to industry-wide shocks affecting
healthy firms. The firm-level evidence, thus, confirms that impaired credit dynamism depresses
innovation not only because zombie firms innovate less, but because their continued presence
undermines the incentives of otherwise productive competitors.

6.3. Truncation and Hot-Sector Robustness

Just as in the technology-class analysis, firm-level patent outcomes may be affected by
non-uniform truncation and by the presence of technologically dynamic sectors that experience
rapid growth in patenting and citations and subsequent undercounting in forward citations. We
therefore conduct a parallel set of robustness checks to assess whether the firm-level
congestion results are driven by (i) dominant “hot” sectors or (ii) the timing of patent
application cohorts and citation windows.

6.3.1. Excluding Rapid-Growth Technologies

We first address the concern that the baseline firm-level results may be
disproportionately influenced by a small number of technologically dominant sectors. In the

Japanese data, electrical machinery stands out as the single largest contributor to patenting
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and citation growth during the 1990s and early 2000s. This sector accounts for roughly 10
percent of firm-level observations and experienced the sharpest increase in patenting activity,
making it a natural candidate for both sector-specific technological shocks and more severe
citation truncation.

Table 10 reports firm-level regressions excluding all firms in the electrical machinery
sector. Reassuringly, removing this technologically dynamic sector leaves the key results
essentially unchanged. Across both patent grants and forward citations, the coefficient on the
interaction between non-zombie status and industry-level zombie share remains negative,
precisely estimated, and similar in magnitude to the baseline estimates. The innovation
advantage of non-zombie firms persists, and the erosion of this advantage as zombie
prevalence rises is virtually identical to that observed in the full sample.

These findings reinforce the mechanism-based interpretation of the firm-level results.
The estimated congestion effects do not hinge on the behavior of a single high-innovation
sector, nor do they reflect sector-specific technological booms. Instead, they are consistent
with a broader pattern in which impaired credit dynamism weakens innovation incentives for
healthy firms through distorted competition. Moreover, because electrical machinery is also
the sector most exposed to potential differential citation truncation, its exclusion provides an
especially stringent robustness check.

6.3.2. Robustness to Alternative Sample Periods and Citation Windows

We next examine whether the firm-level congestion effects are sensitive to the timing of
patent application cohorts or the length of citation exposure, following the same logic as in
Section 5.4.3.2. If truncation bias were driving the results, altering application windows or
shortening citation horizons should materially weaken the estimated interaction effects.

Table 11 varies the patent application window while continuing to measure forward
citations through 2018. Panel A restricts the sample to applications filed between 1992 and
1998, while Panel B extends the window to 1992—-2007. Despite substantial changes in sample
size and effective citation horizons, the results remain qualitatively unchanged. The interaction
between non-zombie status and zombie share remains negative and statistically significant,

indicating that healthy firms’ innovation advantage erodes as zombie prevalence rises. As
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expected, the shorter application window yields larger standard errors due to fewer
observations, but the estimated magnitudes remain comparable to the baseline.

Table 12 directly varies citation exposure while holding the application period fixed at
1992-2002. Panels A and B truncate citations in 2010 and 2015, respectively, thereby
mechanically increasing the severity of right-censoring, especially for later cohorts. Even under
these more aggressive truncation schemes, the estimated congestion effects are remarkably
stable. We impose a fixed 15-year citation window for all patents (Panel C), ensuring equal
citation exposure across application cohorts. The interaction coefficients retain both their sign
and economic magnitude across all specifications.

Taken together, Tables 10-12 demonstrate that the firm-level results are not artifacts of
dominant technology sectors, application timing, or unequal citation exposure. As in the
technology-class analysis, Japan’s early zombification episode provides sufficiently long citation
horizons to verify directly that the key mechanism—erosion of healthy firms’ innovation
incentives in zombie-dominated industries—persists even when truncation concerns are
deliberately exacerbated.

7. Conclusion

This paper studies how impaired credit dynamism—the failure to reallocate capital from
unproductive incumbents to innovative firms—affects technological progress. Using Japan’s
experience with widespread zombie lending in the 1990s, we combine detailed firm-level
financial data with the universe of patented inventions and unusually long citation horizons to
examine both aggregate and micro-level innovation outcomes.

We document three main findings. First, credit misallocation is systematically
concentrated in technological fields that were already less innovative prior to the rise of zombie
lending, highlighting the importance of accounting for selection across technologies. Second,
exploiting within-technology variation over time, we show that increases in exposure to zombie
lending are associated with economically meaningful declines in patenting activity, especially
when measured with forward citations. Third, firm-level evidence reveals the mechanism

underlying these aggregate patterns: zombie firms innovate less, and crucially, healthy firms
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innovate less when they are forced to compete in industries dominated by zombies. As zombie
prevalence rises, the innovation advantage of healthy firms erodes and can vanish entirely.

Our results underscore that the costs of zombie lending extend beyond the
misallocation of capital toward unproductive firms. By distorting competition and weakening
the rewards to innovation, impaired credit dynamism slows creative destruction and depresses
the quality of technological progress economy-wide. These findings complement existing work
on productivity and reallocation by highlighting innovation as a distinct and powerful channel
through which financial frictions shape long-run economic performance.

More broadly, the paper illustrates the value of combining detailed micro-level financial
data with long-horizon patent information. While zombie lending has reemerged in many
economies following recent financial crises, Japan’s early experience provides a uniquely
informative historical setting in which truncation and selection issues can be addressed directly.
The evidence suggests that policies delaying restructuring and sustaining unviable firms may

impose long-lasting costs on innovation, even after macroeconomic conditions stabilize.
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Figure 1: Prevalence of Firms Receiving Subsidized Loans in Japan
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This figure reports the share of listed firms classified as zombies—firms receiving subsidized
loans—constructed following Caballero, Hoshi, and Kashyap (2008). Panel A shows the
unweighted fraction of zombie firms, treating each firm equally. Panel B shows the asset-
weighted fraction, weighting firms by total assets. Zombie prevalence rises sharply in the early
1990s and remains elevated thereafter, indicating the persistence of subsidized lending well
beyond the initial post-bubble recession.



Figure 2: Cross-Industry Incidence of Asset Weighted Zombie Percentage
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This figure reports the asset-weighted share of zombie firms by industry, constructed following
Caballero, Hoshi, and Kashyap (2008). Firms are grouped into six sectors: manufacturing,
construction, real estate, trade, services, and all firms combined. Zombie prevalence rises
sharply in the early 1990s and remains elevated thereafter, particularly in nonmanufacturing
sectors such as construction, real estate, and services.



Figure 3. Patent Grants, Applications, and Citations per Patent
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Panel A reports the number of registered patents by grant (registration) year. Panel B reports
the number of registered patents by application year. Panel C reports the total number of
published patent applications, defined as the sum of successful and unsuccessful applications.
Panel D reports forward citations per patent by application year. The sharp end-of-sample
declines in Panels B and D reflect truncation arising from long and variable application-to-
registration lags and finite citation windows. The decline in Panel C beginning in 2018 reflects
Japan’s 18-month pre-grant publication rule and the September 2019 data cutoff.



Figure 4: Distribution of Forward Citation Lags for Selected Cohorts: 1990, 1995, 2000, 2005 and
2010
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The figure plots the distribution of forward citations by citation lag (in years) for patents applied
for in different years. Earlier cohorts display long citation tails, while more recent cohorts exhibit
mechanically truncated distributions due to the finite observation window.



Figure 5. Technology-Level Innovation and Exposure to Zombie Lending
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This figure plots average patent grants (top panel) and average forward citations (bottom panel)
over 1992-2002 against industry-weighted average zombie lending exposure for each of the 120
IPC technology classes. Zombie exposure is constructed as a weighted average of industry-level
zombie shares over 1991-2001, using the long-run industry composition of patenting within
each technology class. Each point represents one technology class. Technology classes more
exposed to zombie lending exhibit substantially lower patenting and citation activity on average.
These cross-sectional correlations motivate the analysis but, as discussed in the text, reflect
substantial pre-existing heterogeneity in innovative intensity across technological fields rather
than causal effects of zombification.



Figure 6: Innovation Dynamics in Technology Classes with High and Low Zombie Exposure
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Notes: This figure plots total patent grants (top panel) and total forward citations (bottom
panel) by application year for technology classes with low versus high exposure to zombie
lending. Technology classes are classified based on whether their industry-weighted average
zombie share over 1991-2001 is below or above the median. Low-zombie technology classes
are substantially more innovative throughout the sample period, including prior to the rise of
zombie lending in the early 1990s. The sharp post-2000 decline—especially pronounced for
citations in low-zombie fields—reflects mechanical truncation arising from finite citation
windows rather than real declines in inventive activity. The figure illustrates how truncation
interacts with pre-existing differences in innovative intensity across technologies, motivating our
focus on early application cohorts and within-technology variation in the regression analysis.



Table 1. Zombie Exposure and Innovation Across Technology Classes
Panel A: Without technology class fixed effects

(1) (2) (3) (4)

Dependent variable In(1+Grants) Grants In(1+Citations) Citations
Estimation method OLS Poisson OLS Poisson
Zombie exposure -14.11%* -22.01%** -16.09** -24.73***
(4.693) (7.582) (5.777) (9.335)
Technology class fixed effects No No No No
Year fixed effects Yes Yes Yes Yes
Observations 1,314 1,314 1,314 1,314

Panel B: With technology class fixed effects

(1) (2) (3) (4)

Dependent variable In(1+Grants) Grants  In(1+Citations) Citations
Estimation method OoLS Poisson OoLS Poisson
Zombie exposure -0.911%** -1.198* -1.606** -2.082***
(0.350) (0.622) (0.542) (0.492)
Technology class fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 1,314 1,314 1,314 1,314

Thistablereports technology-class—level regressions of innovative activity on exposure to
zombielending. The unit of observation is atechnology class—year, based on 120 IPC
technology classes observed over the period 1992-2002. Panel A presents specifications
without technology-class fixed effects, while Panel B includes technology-class fixed
effects. The dependent variableisthe number of granted patents or forward citations,
measured using In(1 +y) in log-linear OLS specifications or in levels using Poisson
regressions, asindicated in the column headers.

Zombie exposureistheindustry-weighted zombie share for technology class k in year t-1,
constructed using the long-run industry composition of patenting within each
technology class, as described in Section 4.5. All specificationsinclude application-year
fixed effects; specifications with technology-class fixed effects absorb time-invariant
differencesin innovative capacity across fields. Standard errors are clustered by the
industry with the largest patenting share for each technology class (13 clusters) and are
reported in parentheses. ***, ** and * denote statistical significanceat the 1, 5, and 10
percent levels, respectively.



Table 2. Zombie Exposure and Innovation Using a Stricter Zombie Definition (Credit Subsidy + Balance-Sheet Weakness)

(1) (2) (3) (4)

Dependent variable In(1+Grants) Grants In(1+Citations) Citations
Estimation method oLS Poisson oLS Poisson
Zombie exposure (credit subsidy + balance-sheet weakness)  -1.500** -2.734%** -1.769** -3.267%**
(0.557) (0.488) (0.692) (0.705)
Technology class fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 1,314 1,314 1,314 1,314

~TTITS TaUTE TEPTUUUTES TITE SPECTIICATTOTTS TIT PATTer 5 UT Td0TE T USTITE aT aTtElTTatIveE, TTOTE STTITEENT OO OT ZOToTeE——
firms. The unit of observation is atechnology class—year, based on 120 IPC technology classes observed over the period
1992-2002.

The dependent variableis the number of granted patents or forward citations, measured using In(1 +y) in log-linear OLS
specifications (columns (1) and (3)) or in levels using Poisson regressions (columns (2) and (4)). Zombie exposureis
constructed following Acharya et al. (2024) and classifies firms as zombies only if they both receive subsidized credit and
exhibit balance-sheet indicators of financial fragility, defined as above-median leverage and below-median interest
coverage.

All specificationsinclude technology-class fixed effects and application-year fixed effects. Standard errors are clustered

by theindustry with the largest patenting share for each technology class (13 clusters) and are reported in parentheses.
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Table 3. Zombie Exposure and Innovation: Controlling for Firm Quality and Business Conditions
Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)

Dependent variable In(14+Grants) In(1+Grants) In(1+Grants) Grants Grants Grants
Estimation method OLS OLS OLS Poisson Poisson Poisson
Zombie exposure -0.911** -1.036*** -0.977*** -1.198* -1.235%** -1.122%**
(0.350) (0.277) (0.313) (0.622) (0.444) (0.482)
Low-quality firm share -1.017%** -1.000*** -1.020%** -0.983***
(0.226) (0.220) (0.305) (0.345)
Sales growth 0.362 0.444
(0.433) (0.585)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1,314 1,314 1,314 1,314 1,314 1,314

Panel B: Forward Citations

(1) (2) (3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations)  Citations Citations Citations
Estimation method oLs oLs oLs Poisson Poisson Poisson
Zombie exposure -1.606** -1.720%** -1.650*** -2.082*** -2.229%** -2.030***
(0.542) (0.512) (0.538) (0.492) (0.408) (0.411)
Low-quality firm share -0.928** -0.908** -0.853** -0.785**
(0.352) (0.317) (0.363) (0.388)
Sales growth 0.432 0.891
(0.638) (0.572)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1,314 1,314 1,314 1,314 1,314 1,314

This table augments the baseline technology-class—level regressionsin Panel B of Table 1 by adding controls for firm quality
and business conditions. The unit of observation is atechnology class—year, based on 120 IPC technology classes observed
over the period 1992-2002. Panel Areports results for patent grants, and Panel B reports results for forward citations.
Low-quality firm shareis the industry-weighted fraction of firms with above-median leverage and below-median interest
coverage, following Acharya et al. (2022, 2024), and captures average financial fragility within a technology class. Sales
growth istheindustry-weighted sales growth rate and proxies for differences in business opportunities, following Caballero,
Hoshi, and Kashyap (2008).

Zombie exposureis defined asin the baseline analysis. The dependent variableis measured usingIn(1 +y) in log-linear OLS
specificationsor in levels using Poisson regressions, as indicated in the column headers. All specificationsinclude technology-
class fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting
share for each technology class (13 clusters) and arereported in parentheses. ***, **, and * denote statistical significance at
thel, 5, and 10 percent levels, respectively.



Table 4. Placebo Test Using Non-Corporate Patents
Panel A: Without technology class fixed effects

(1) (2) (3) (4)

Dependent variable In(1+Grants) Grants In(1+Citations) Citations
Estimation method oLsS Poisson OLS Poisson
Zombie exposure -3.555 -2.009 -6.611* -7.244
(2.539) (3.262) (3.310) (4.785)
Technology class fixed effects No No No No
Year fixed effects Yes Yes Yes Yes
Observations 1,314 1,314 1,314 1,314

Panel B: With technology class fixed effects

(1) (2) (3) (4)

Dependent variable In(1+Grants) Grants In(1+Citations) Citations
Estimation method OoLS Poisson OoLS Poisson
Zombie exposure 0.0937 -2.207 -0.481 -3.799
(1.060) (1.901) (1.365) (2.563)
Technology class fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 1,314 1,314 1,314 1,314

This table reports placebo regressions that replicate the baseline technology-class—Ievel
specification (Table 1) using patenting outcomes by non-corporate applicants, including
individuals, universities, and public research institutions. The unit of observationisa
technology class—year. Panel A reports specifications without technology-class fixed effects,
while Panel B includes technology-class fixed effects.

Zombie exposureis defined asin the baseline analysis. The dependent variable is measured
usingIn(1 +vy)in log-linear OLS specifications or in levels using Poisson regressions, as
indicated in the column headers. Standard errors are clustered by theindustry with the
largest patenting share for each technology class (13 clusters) and arereported in

parentheses. *** ** and * denote statistical significanceat the 1, 5, and 10 percent levels,
resnectivelv.



Table 5. Zombie Exposure and Innovation: Excluding Rapid-Growth Technology Classes
Panel A: Patent Grants

(1) (2) 3) (4) (5) (6)

Dependent variable In(1+Grants) In(1+Grants) In(1+Grants) Grants Grants Grants
Estimation method OoLS oLsS oLS Poisson Poisson Poisson
Zombie exposure -1.161*** -1.264*** -1.240%** -1.436%** -1.419%** -1.320%**
(0.351) (0.393) (0.419) (0.487) (0.400) (0.392)
Low-quality firm share -0.903*** -0.897*** -1.189*** -1.157%%*
(0.229) (0.231) (0.280) (0.317)
Sales growth 0.141 0.377
(0.432) (0.536)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1,204 1,204 1,204 1,204 1,204 1,204

Panel B: Forward Citations

(1) (2) 3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OoLS oLS OoLS Poisson Poisson Poisson
Zombie exposure -1.793*** -1.872*** -1.875%** -2.413%** -2.514%*** -2.345%%*
(0.543) (0.562) (0.599) (0.381) (0.338) (0.243)
Low-quality firm share -0.696** -0.697** -1.135%** -1.077***
(0.252) (0.236) (0.275) (0.310)
Sales growth -0.0170 0.740
(0.616) (0.515)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1,204 1,204 1,204 1,204 1,204 1,204

This table replicates the technology-class—Tevel regressionsin Table 3 after excluding the ten technology classes that experienced
thelargest growth in patenting activity between 1992 and 2002.

Zombie exposureis defined asin the baseline analysis. The dependent variable is measured using In(1 +y) in log-linear OLS
specifications or in levels using Poisson regressions, asindicated in the column headers. All specificationsinclude technology-class
fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting share for
each technology class (13 clusters) and are reported in parentheses. ***, ** and * denote statistical significanceat the 1, 5, and 10
percent levels, respectively.



Table 6. Zombie Exposure and Forward Citations: Alternative Application Windows
Panel A: Short Application Window (1992-1998)

(1) (2) (3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations)  Citations Citations Citations
Estimation method OLS OLS OLS Poisson Poisson Poisson
Zombie exposure -1.961*** -1.900** -2.035** -1.868*** -1.953*** -2.093***
(0.624) (0.650) (0.707) (0.614) (0.592) (0.632)
Low-quality firm share 0.403 0.363 -0.370 -0.375
(0.461) (0.428) (0.659) (0.600)
Sales growth -0.672 -0.519
(0.518) (0.416)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 833 833 833 833 833 833

Panel B: Extended Application Window (1992-2007)

(1) (2) (3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations)  Citations Citations Citations
Estimation method oLsS oLs oLs Poisson Poisson Poisson
Zombie exposure -0.870** -0.928** -0.907** -1.646*** -1.623*** -1.523***
(0.379) (0.366) (0.375) (0.508) (0.520) (0.455)
Low-quality firm share -0.165 -0.130 0.130 0.233
(0.255) (0.293) (0.160) (0.188)
Sales growth 0.332 0.831
(0.542) (0.540)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1,914 1,914 1,914 1,914 1,914 1,914

Thistablereplicates the forward-citation specificationsin Panel B of Table 3 using alternative patent application windows.
Panel Arestricts the sampleto patent applications filed between 1992 and 1998, while Panel B extends the application
window to 1992-2007. In both panels, forward citations are measured through 2018.

Zombie exposureis defined asin the baseline analysis. The dependent variableis measured using In(1 +y) in log-linear OLS
specifications or in levels using Poisson regressions, as indicated in the column headers. All specificationsinclude technology-
class fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting
share for each technology class (13 clusters) and arereported in parentheses. ¥***, ** and * denote statistical significance at
the 1, 5, and 10 percent levels, respectively.



Table 7. Zombie Exposure and Forward Citations: Alternative Citation Windows
Panel A: Citations Endingin 2010 (=7-18 years of exposure)

(1) () (3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method oLS oLS OoLS Poisson Poisson Poisson
Zombie exposure -1.657%** -1.761%** -1.694 %% -2.209%** -2.395*** -2.192***
(0.458) (0.436) (0.441) (0.521) (0.447) (0.433)
Low-quality firm share -0.844%* -0.825* -0.996** -0.937**
(0.417) (0.383) (0.399) (0.428)
Sales growth 0.412 0.866
(0.735) (0.613)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1314 1314 1314 1314 1314 1314

Panel B: Citations Endingin 2015 (=12-23 years of exposure)

(1) ) (3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OLS OLS OLS Poisson Poisson Poisson
Zombie exposure -1.641 %% -1.757%%* -1.691 %** -2.112%%* -2.264%** -2.068***
(0.524) (0.490) (0.511) (0.498) (0.411) (0.410)
Low-quality firm share -0.948** -0.929** -0.884** -0.817**
(0.350) (0.316) (0.348) (0.373)
Sales growth 0.409 0.872
(0.618) (0.560)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1314 1314 1314 1314 1314 1314

Panel C: Fixed 15-Year Citation Window

(1) (2) 3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OoLS OLS OLS Poisson Poisson Poisson
Zombie exposure -1.600%** -1.704%** -1.632%** -2.004*** -2.145%%* -1.989%**
(0.469) (0.436) (0.449) (0.471) (0.358) (0.378)
Low-quality firm share -0.853** -0.832%** -0.765** -0.706*
(0.302) (0.266) (0.367) (0.400)
Sales growth 0.443 0.724
(0.624) (0.567)
Technology class fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Observations 1314 1314 1314 1314 1314 1314

This table replicates the forward-citation specificationsin Panel B of Table 3 using alternative citation windows, while holding the
patent application period fixed at 1992-2002 throughout. Panel Atruncates citation datain 2010. Panel B truncates citation datain
2015. Panel Cimposes a fixed 15-year citation window for all patents, ensuring equal citation exposure across application cohorts.
Zombie exposureis defined asin the baseline analysis. The dependent variable is measured using In(1 +y) in log-linear OLS
specifications orin levels using Poisson regressions, asindicated in the column headers. All specificationsinclude technology-class
fixed effects and application-year fixed effects. Standard errors are clustered by the industry with the largest patenting share for each
technology class (13 clusters) and arereported in parentheses. ***, ** and * denote statistical significanceat the 1, 5, and 10 percent
levels, respectively.



Table 8. Zombie Lending and Firm-Level Innovation
Panel A: Patent Grants

(1) () 3) (4) (5) (6)

Dependent variable In(14Grants) In(1+Grants) In(1+Grants) Grants Grants Grants
Estimation method oLS oLS oLS Poisson Poisson Poisson
Non-zombie dummy 0.514*** 1.069*** 1.069*** 1.607*** 2.329%** 2.326%**
(0.122) (0.129) (0.129) (0.252) (0.199) (0.198)
Non-zombie x zombie percentage -3.239%%* -3.239%%* -6.629%** -6.614%**
(0.540) (0.540) (0.941) (0.934)
Sales growth 0.00994 0.248***
(0.0777) (0.0946)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,433 23,433 23,433 23,433 23,433 23,433

Panel B: Forward citations

(1) (2) 3) (4) (5) (6)

Dependent variable In(1+Citations) In(1+Citations) In(1+Citations)  Citations Citations Citations
Estimation method oLS oLS oLS Poisson Poisson Poisson

Non-zombie dummy 0.646*** 1.334%** 1.334%** 1.832%** 2.598*** 2.594***
(0.149) (0.154) (0.154) (0.286) (0.248) (0.247)

Non-zombie x zombie percentage -4,013%** -4,013%** -7.022%** -7.006***
(0.686) (0.684) (1.085) (1.077)

Sales growth 0.0857 0.345***
(0.128) (0.110)

Industry-year fixed effects YES YES YES YES YES YES

Observations 23,433 23,433 23,433 23,433 23,433 23,433

Thistable reports firm-level regressions of patent grants and forward citations on anon-zombieindicator and itsinteraction with
industry-level zombie prevalence, measured by the asset-weighted share of zombie firmsin theindustry. Zombiefirms are
identified using the subsidy-based definition of Caballero, Hoshi, and Kashyap (2008).

All specificationsinclude industry—year fixed effects, so identification comes from differences between zombie and non-zombie
firms operating within the sameindustry and year. The dependent variable is measured using In(1 +y) in log-linear OLS
specifications or in levels using Poisson regressions, asindicated in the column headers. Standard errors are clustered at the
industry level. *, ** and *** denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Table 9. Zombie Lending and Firm-Level Innovation: Stricter Zombie Definition (Credit Subsidy + Balance-Sheet Weakness)

Panel A: Patent Grants

(1) () (3) (4) (5) (6)
Dependent variable In(1+Grants) In(1+Grants) In(1+Grants) Grants Grants Grants
Estimation method OLS OLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.406*** 0.763*** 0.764*** 1.365%** 1.876%** 1.870%**
(0.0999) (0.116) (0.117) (0.188) (0.137) (0.137)
Non-zombie x zombie percentage -4.014%** -4.015%** -9.268*** -9.244%**
(0.883) (0.884) (1.870) (1.866)
Sales growth -0.0235 0.199*
(0.0756) (0.115)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,423 23,423 23,423 23,423 23,423 23,423
Panel B: Forward citations
() 3) (4) (6) (7) (8)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OoLS OoLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.533%** 0.986*** 0.985*** 1.581%** 2.204%** 2.194%**
(0.129) (0.142) (0.143) (0.251) (0.176) (0.175)
Non-zombie x zombie percentage -5.100*** -5.098*** -10.89%*** -10.86***
(1.119) (1.121) (2.320) (2.316)
Sales growth 0.0424 0.297**
(0.123) (0.121)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,423 23,423 23,423 23,423 23,423 23,423

This tablereplicates the firm-level regressionsin Table 8 using a stricter definition of zombie firms. Zombie firms are identified following
Acharyaet al. (2019), requiring both subsidized credit and balance-sheet weakness, defined as above-median leverage and below-median
interest coverage.

All specificationsinclude industry—year fixed effects. The dependent variableis measured using In(1 +y) in log-linear OLS specifications or
in levels using Poisson regressions, asindicated in the column headers. Standard errors are clustered at the industry level. *, **, and ***
denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Table 10. Zombie Lending and Firm-Level Innovation: Excluding Rapid-Growth Technology (Electrical Machinery)

Panel A: Patent Grants

(1) (2) (3) (4) (5) (6)
Dependent variable In(1+Grants) In(1+Grants) In(1+Grants) Grants Grants Grants
Estimation method OoLS OLS OoLS Poisson Poisson Poisson
Non-zombie dummy 0.469%** 1.041%** 1.0471%** 1.327*** 2.057%** 2.056%**
(0.120) (0.160) (0.160) (0.206) (0.233) (0.233)
Non-zombie x zombie percentage -3.128%*** -3.128%** -5.483*** -5.480%***
(0.632) (0.633) (0.907) (0.908)
Sales growth -0.0194 0.131
(0.0753) (0.145)
Industry-year fixed effects YES YES YES YES YES YES
Observations 20,960 20,960 20,960 20,960 20,960 20,960
Panel B: Forward citations
(1) (2) (3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OoLS OLS OoLS Poisson Poisson Poisson
Non-zombie dummy 0.590%** 1.298%** 1.298%** 1.489*** 2.240%** 2.240%**
(0.146) (0.191) (0.191) (0.217) (0.252) (0.252)
Non-zombie x zombie percentage -3.869%** -3.870*** -5.599%*** -5.595%**
(0.787) (0.787) (1.014) (1.011)
Sales growth 0.0369 0.289
(0.122) (0.214)
Industry-year fixed effects YES YES YES YES YES YES
Observations 20,960 20,960 20,960 20,960 20,960 20,960

This table replicates the firm-level regressionsin Table 8 after excluding firmsin the electrical machinery industry, the most technologically

dynamic sector in the sample.

All specificationsinclude industry—year fixed effects. The dependent variable is measured using In(1 +y) in log-linear OLS specificationsorin
levels using Poisson regressions, asindicated in the column headers. Standard errors are clustered at the industry level. *, **, and *** denote
statistical significance at the 10, 5, and 1 percent levels, respectively.



Table 11. Zombie Lending and Firm-Level Forward Citations: Alternative Application Windows

Panel A: Short Application Window (1992-1998)

(1) (2) (3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OLS OLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.725%** 1.287*** 1.287*** 1.768*** 2.534%*x* 2.533%**
(0.164) (0.175) (0.175) (0.343) (0.314) (0.310)
Non-zombie x zombie percentage -3.656*** -3.654%** -7.434%** -7.432%**
(0.839) (0.838) (1.555) (1.543)
Sales growth 0.138 0.640***
(0.158) (0.135)
Industry-year fixed effects YES YES YES YES YES YES
Observations 14,096 14,096 14,096 14,096 14,096 14,096
Panel B: Extended Application Window (1992-2007)
(1) (2) 3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method oLS OoLS OoLS Poisson Poisson Poisson
Non-zombie dummy 0.449%** 1.242%** 1.242%** 1.390%** 2.248%** 2.248%**
(0.113) (0.136) (0.136) (0.139) (0.208) (0.207)
Non-zombie x zombie percentage -3.952%** -3.956*** -6.259*** -6.255%**
(0.563) (0.564) (1.434) (1.429)
Sales growth 0.0615 0.159%**
(0.0537) (0.0483)
Industry-year fixed effects YES YES YES YES YES YES
Observations 37,072 37,072 37,072 37,072 37,072 37,072

Thistable replicates the firm-level forward-citation regressionsin Table 8 using alternative patent application windows. Panel Arestricts the
sampleto patent applicationsfiled between 1992 and 1998, while Panel B extends the application window to 1992-2007. In both panels,

forward citations are measured through 2018.

All specificationsinclude industry—year fixed effects. The dependent variableisforward citations associated with patent applicationsfiled by
firmiinyeart, measured usingIn(1 +y)in log-linear OLS specifications or in levels using Poisson regressions, asindicated in the column
headers. Standard errors are clustered at theindustry level. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels,

respectively.



Table 12. Zombie Lending and Firm-Level Forward Citations: Alternative Citation Windows
Panel A: Citations Endingin 2010 (=7—18 years of exposure)

(1) (2) (3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OLS OoLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.631%** 1.303*** 1.303*** 1.846%** 2.597%** 2.593%**
(0.146) (0.151) (0.150) (0.292) (0.252) (0.251)
Non-zombie x zombie percentage -3.922%** -3.922%*x* -7.003%** -6.986***
(0.670) (0.667) (1.093) (1.083)
Sales growth 0.101 0.377%**
(0.126) (0.109)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,433 23,433 23,433 23,433 23,433 23,433

Panel B: Citations Endingin 2015 (=12-23 years of exposure)

(1) (2) 3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OLS OLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.643*** 1.329%** 1.329%** 1.833%** 2.599%** 2.595%**
(0.148) (0.153) (0.153) (0.287) (0.249) (0.248)
Non-zombie x zombie percentage -4.000%** -4.000%** -7.035%** -7.018***
(0.685) (0.683) (1.087) (1.078)
Sales growth 0.0897 0.350%**
(0.128) (0.109)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,433 23,433 23,433 23,433 23,433 23,433
Panel C: Fixed 15-Year Citation Window
(1) (2) (3) (4) (5) (6)
Dependent variable In(1+Citations) In(1+Citations) In(1+Citations) Citations Citations Citations
Estimation method OLS OoLS OLS Poisson Poisson Poisson
Non-zombie dummy 0.638*** 1.316%*** 1.316%** 1.839%** 2.609%** 2.606***
(0.147) (0.152) (0.152) (0.285) (0.246) (0.244)
Non-zombie x zombie percentage -3.959%** -3.959%** -7.034%** -7.017%**
(0.677) (0.675) (1.077) (1.068)
Sales growth 0.0925 0.338***
(0.128) (0.107)
Industry-year fixed effects YES YES YES YES YES YES
Observations 23,433 23,433 23,433 23,433 23,433 23,433

Thistablereplicates the firm-level forward-citation regressionsin Table 8 using alternative citation windows, while holding the patent
application period fixed at 1992—2002 throughout. Panel Atruncates citationsin 2010, and Panel B truncates citationsin 2015.

All specificationsinclude industry—year fixed effects. The dependent variableis forward citations associated with patent applicationsfiled by firm
i inyear t, measured using In(1 +y) in log-linear OLS specifications or in levels using Poisson regressions, as indicated in the column headers.
Standard errors are clustered at theindustry level. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels, respectively.



Appendix A. Detecting Zombie Lending Following Caballero, Hoshi, and Kashyap
(2008)

To identify zombie lending, we replicate the approach of Caballero, Hoshi, and Kashyap
(2008), who compute for each firm j in year t a minimum required interest payment
(R} ;) representing the cost the firm would face if it borrowed at the most favorable
market rates available to creditworthy firms. The lower bound for required interest
payments is defined as:

5
1
R, = 15t_4BS;1_1 + (gz rle_j)BLit_1 + 1CbpminBonds; ;4
j=1
where:
BS; ;_1: short-term bank loans (maturity less than one year)
BL;_;: long-term bank loans (maturity greater than one year)
Bonds; ;_4: total bonds outstanding (including convertible and warrant-attached bonds)
rSy_1: average short-term prime rate
rl;_j: average long-term prime rate
1Cbhpyin: Minimum observed coupon rate on any convertible bond issued during the
previous five years

This specification constructs a conservative lower bound—meaning the implied interest
rate is lower than that faced by most borrowers—because it assumes that even bond
financing occurs at the most favorable historical rates available. Each firm’s actual
interest payments, R; ;, are compared to this benchmark. The difference, normalized by
total borrowing at the start of the year, gives the interest rate gap:

*
N Rit — Ry
it=—p5
Bt

where B; ,_; is the amount of total borrowing at the beginning of the period (B; ;_1 =
BS;t-1+BL;,_1 + Bonds;;_1 + CP;;_1) with CP;,_; denoting commercial paper
outstanding. A negative gap (x; ; < 0) indicates that a firm’s observed interest payments
(R; ) fall below the most favorable market rate implied by R;,, suggesting the firm is
receiving subsidized credit or loan evergreening from its banks. Accordingly, Caballero,
Hoshi, and Kashyap (2008) classify a firm as a zombie firm in year t when x; . < 0.

As Caballero, Hoshi, and Kashyap note, this measure cannot capture all forms of
assistance—such as debt forgiveness, interest rate concessions, or off-balance-sheet
support—but it provides a transparent, data-driven proxy for the extent of subsidized
lending and the prevalence of zombie firms in Japan’s corporate sector.



Figure Al: Prevalence of Firms Receiving Subsidized Loans in Japan Using a Stricter Zombie
Definition (Credit Subsidy + Balance-Sheet Weakness)
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This figure reports the share of listed firms classified as zombies—firms receiving subsidized
loans and exhibiting balance sheet weakness—constructed following Acharya et al. (2024).
Panel A shows the unweighted fraction of zombie firms, treating each firm equally. Panel B
shows the asset-weighted fraction, weighting firms by total assets. Zombie prevalence rises
sharply in the early 1990s and remains elevated thereafter, indicating the persistence of
subsidized lending well beyond the initial post-bubble recession.



Table Al. Industry-Technology Mapping Based on Patent Shares (120 IPC technology classes; top two industries by patent share)

IPC class code |Technology field (IPC class level) Top-share industry Share (%)|Second-share industry Share (%)
AO01 Agriculture; Forestry; Animal Husbandry; Hunting; Trapping; Fishing Machinery, non-electric 52.11 [Chemicals 15.97
A21 Baking; Edible doughs Food products 53.97 [Chemicals 25.06
A22 Butchering; Meat Treatment; Processing Poultry or Fish Food products 47.56 |Machinery, non-electric 20.73
A23 Foods or Foodstuffs; Their Treatment, Not Covered by Other Classes Food products 54.02 [Chemicals 22.47
A24 Tobacco; Cigars; Cigarettes; Smokers' Requisites Food products 73.21 [Chemicals 16.03
A4l Wearing Apparel Textile mill products 41.56 |Wholesale 13.48
A42 Headwear Motor vehicles 28.31 [Chemicals 25.30
A43 Footwear Misc manufacturing 38.84 [Chemicals 21.71
Ad4 Haberdashery; Jewellery Precision machinery 22.56 [Misc manufacturing 18.75
A45 Hand or Travelling Articles Electric machinery 37.36 [Chemicals 34.12
Ad6 Brushware Chemicals 67.80 [Electric machinery 18.40
A47 Furniture (arrangements of seats for, or adaptation of seats to, vehicles B60n) Electric machinery 46.29 |Misc manufacturing 14.03
A6l Medical or Veterinary Science; Hygiene Chemicals 24.84 |Electric machinery 24.43
A62 Life-Saving; Fire-Fighting Electric machinery 47.62 |Machinery, non-electric 12.92
A63 Sports; Games; Amusements Machinery, non-electric 42.12 |Misc manufacturing 13.34
BO1 Physical or Chemical Processes or Apparatus in General Machinery, non-electric 26.64 [Chemicals 22.60
B02 Crushing, Pulverising, or Disintegrating; Preparatory Treatment of Grain for Milling |Machinery, non-electric 47.36 |Electric machinery 16.85
BO3 Separation of Solid Materials Using Liquids Machinery, non-electric 39.53 [Electric machinery 33.21
B04 Centrifugal Apparatus or Machines for Carrying-Out Physical Machinery, non-electric 70.47 |Electric machinery 12.20
BO5 Spraying or Atomising in General; Applying Liquids or Other Fluent Materials to SurfajChemicals 25.09 [Electric machinery 20.19
B0O6 Generating or Transmitting Mechanical Vibrations in General Electric machinery 56.11 [Precision machinery 12.47
BO7 Separating Solids from Solids; Sorting Electric machinery 39.70 [Machinery, non-electric 34.48
B0O8 Cleaning Electric machinery 38.92 [Machinery, non-electric 22.24
B09 Disposal of solid waste; Reclamation of contaminated soil Electric machinery 30.76 [Machinery, non-electric 24.76
B21 Mechanical Metal-Working without Essentially Removing Material; Punching Metal |Steels 36.54 [Machinery, non-electric 23.71
B22 Casting; Powder Metallurgy Steels 36.22 [Machinery, non-electric 17.71
B23 Machine Tools; Metal-Working Not Otherwise Provided for Machinery, non-electric 28.71 |Electric machinery 26.68
B24 Grinding; Polishing Machinery, non-electric 23.97 |Electric machinery 22.57
B25 Hand tools; Portable power-driven tools; Handles for hand implements Electric machinery 45.46 |Machinery, non-electric 25.02
B26 Hand Cutting Tools; Cutting; Severing Electric machinery 38.47 [Machinery, non-electric 12.88
B27 Working or Preserving Wood or Similar Materials; Nailing or Stapling Misc manufacturing 22.46 |Electric machinery 20.91
B28 Working Cement, Clay, or Stone Chemicals 17.69 |Ceramics 17.16
B29 Working of Plastics; Working of Substances in a Plastic State in General Chemicals 28.18 [Machinery, non-electric 17.63
B30 Presses Machinery, non-electric 53.62 [Electric machinery 14.23
B31 Making paper articles; Working paper Misc manufacturing 32.00 [Machinery, non-electric 22.00
B32 Layered Products Chemicals 37.22 [Misc manufacturing 18.68
BA1 Printing; Lining Machines; Typewriters; Stamps Electric machinery 61.28 [Chemicals 10.09
B42 Bookbinding; Albums; Files; Special Printed Matter Misc manufacturing 58.41 [Electric machinery 22.31
B43 Writing or Drawing Implements; Bureau Accessories Misc manufacturing 63.11 |Electric machinery 23.79
B44 Decorative Arts Misc manufacturing 56.30 [Chemicals 13.32
B60 Vehicles in General Motor vehicles 58.59 [Rubber products 12.61
B61 Railways Electric machinery 55.76 [Machinery, non-electric 13.27
B62 Land Vehicles for Travelling Otherwise than on Rails Motor vehicles 65.74 [Machinery, non-electric 20.93
B63 Ships or Other Waterborne Vessels; Related Equipment Machinery, non-electric 49.28 |Motor vehicles 26.02
B64 Aircraft; Aviation; Cosmonautics Machinery, non-electric 38.98 |Electric machinery 37.40
B65 Conveying; Packing; Storing; Handling Thin or Filamentary Material Electric machinery 36.42 [Machinery, non-electric 15.92
B66 Hoisting; Lifting; Hauling Electric machinery 48.59 |Machinery, non-electric 28.66
B67 Opening or closing bottles, jars or similar containers; Liquid handling Machinery, non-electric 29.50 [Motor vehicles 23.29
B68 Saddlery; Upholstery Motor vehicles 50.00 [Textile mill products 29.79
B81 Micro-Structural Technology Electric machinery 63.84 [Precision machinery 16.95
B82 Nano-Technology Electric machinery 77.14 |Chemicals 8.57
co1 Inorganic Chemistry Chemicals 40.18 |Electric machinery 18.23
C02 Treatment of Water, Waste Water, Sewage, or Sludge Machinery, non-electric 40.93 |Electric machinery 21.44
Cco3 Glass; Mineral or Slag Wool Ceramics 29.35 [Non-ferrous metal product{ 17.49
co4 Cements; Concrete; Artificial Stone; Ceramics Ceramics 24.07 |Electric machinery 22.65
C05 Opening or closing bottles, jars or similar containers; Liquid handling Chemicals 45.47 |Machinery, non-electric 19.80
C06 Explosives; Matches Chemicals 86.06 |Motor vehicles 4.53
Cco7 Organic Chemistry Chemicals 62.17 [Medical products 19.70
C08 Organic Macromolecular Compounds; Their Preparation Chemicals 67.53 [Textile mill products 10.20
Cco9 Dyes; Paints; Polishes; Natural Resins; Adhesives Chemicals 63.27 |Electric machinery 10.24
C10 Petroleum, Gas or Coke Industries; Technical Gases Containing Carbon Monoxide Steels 22.68 [Machinery, non-electric 19.33
C11 Animal or Vegetable Oils, Fats, Fatty Substances or Waxes; Chemicals 83.02 |Food products 5.23
C12 Biochemistry; Beer; Spirits; Wine; Vinegar; Microbiology; Enzymes Chemicals 28.29 [Food products 19.70
C13 Sugar Industry Machinery, non-electric 57.14 (Food products 25.71
Cl4 Skins; Hides; Pelts; Leather Chemicals 45.83 |Machinery, non-electric 12.50
c21 Metallurgy of Iron Steels 82.04 |Motor vehicles 4.17
C22 Metallurgy (of iron C21); Ferrous or non-ferrous alloys; Steels 51.63 [Non-ferrous metal product{ 21.47




Cc23 Coating Metallic Materials; Coating Materials with Metallic Materials Electric machinery 30.69 [Steels 24.33
C25 Electrolytic or Electrophoretic Processes; Apparatus Therefor Electric machinery 20.91 (Steels 20.44
C30 Crystal Growth Electric machinery 34.13 [Non-ferrous metal product{ 24.83
D01 Natural or artificial threads or fibres; Spinning Textile mill products 46.04 |Chemicals 31.56
D02 Yarns; Mechanical Finishing of Yarns; Warping or Beaming Textile mill products 66.91 [Chemicals 23.08
D03 Weaving Machinery, non-electric 47.37 |Textile mill products 33.45
D04 Braiding; Lace-making; Knitting; Trimmings; Non-woven fabrics Textile mill products 46.94 |Chemicals 20.47
D05 Sewing; Embroidering; Tufting Electric machinery 71.22 [Machinery, non-electric 16.20
D06 Treatment of Textiles or the Like; Laundering; Flexible Materials Electric machinery 43.81 |Textile mill products 23.58
D07 Ropes; Cables Other than Electrical Non-ferrous metal product{ 43.33 [Rubber products 36.01
D21 Paper-Making; Production of Cellulose Paper & allied products 40.87 |Chemicals 23.18
EO1 Construction of Roads, Railways, or Bridges Construction 23.49 [Machinery, non-electric 19.09
EO2 Hydraulic Engineering; Foundations; Soil-Shifting Construction 41.45 |Machinery, non-electric 30.65
EO3 Water Supply; Sewerage Ceramics 31.76 |Electric machinery 22.66
EO4 Building Construction 36.75 [Chemicals 20.77
EO5 Locks; Keys; Window or Door Fittings; Safes Motor vehicles 30.29 [Electric machinery 29.15
EO06 Doors, windows, shutters, or roller blinds, in general; Ladders Non-ferrous metal product{ 40.80 [Misc manufacturing 11.94
E21 Earth or Rock Drilling; Mining Construction 48.88 |Machinery, non-electric 25.43
FO1 Machines or Engines in General; Engine Plants in General; Steam Engines Motor vehicles 60.50 [Machinery, non-electric 18.94
F02 Combustion Engines; Hot-Gas or Combustion-Product Engine Plants Motor vehicles 68.38 |Electric machinery 17.20
FO3 Machines or engines for liquids (for liquids and elastic fluids Electric machinery 52.05 [Machinery, non-electric 30.97
FO4 Positive-Displacement Machines for Liquids; Pumps Electric machinery 39.67 [Machinery, non-electric 39.31
F15 Fluid-Pressure Actuators; Hydraulics or Pneumatics in General Machinery, non-electric 55.07 [Motor vehicles 23.17
F16 Engineering Elements or Units; General Measures for Producing Motor vehicles 35.26 [Machinery, non-electric 25.99
F17 Storing or Distributing Gases or Liquids Machinery, non-electric 37.49 |Electric machinery 15.53
F21 Lighting Electric machinery 56.80 [Motor vehicles 27.63
F22 Steam Generation Machinery, non-electric 70.39 [Electric machinery 22.26
F23 Combustion Apparatus; Combustion Processes Machinery, non-electric 38.80 [Electric machinery 25.69
F24 Heating; Ranges; Ventilating Electric machinery 56.27 [Machinery, non-electric 17.00
F25 Refrigeration or Cooling; Combined Heating and Refrigeration Systems; Heat Pumps |Electric machinery 59.45 [Machinery, non-electric 26.83
F26 Drying Machinery, non-electric 42.83 |Electric machinery 27.25
F27 Furnaces; Kilns; Ovens; Retorts Steels 38.22 [Electric machinery 18.04
F28 Heat Exchange in General Machinery, non-electric 33.23 [Electric machinery 32.10
F41 Weapons Machinery, non-electric 47.08 |Electric machinery 36.22
F42 Ammunition; Blasting Electric machinery 34.35 [Machinery, non-electric 32.06
G01 Measuring; Testing Electric machinery 52.87 [Precision machinery 10.82
G02 Optics Electric machinery 53.71 [Precision machinery 17.70
G03 Photography; Cinematography; Analogous Techniques Electric machinery 49.13 |Precision machinery 22.77
G04 Horology Precision machinery 50.22 |Electric machinery 42.78
G05 Controlling; Regulating Electric machinery 65.36 [Machinery, non-electric 16.28
G06 Computing; Calculating; Counting Electric machinery 86.47 |Misc manufacturing 2.53
G07 Checking-Devices Electric machinery 78.58 [Machinery, non-electric 15.80
G08 Signalling Electric machinery 71.21 |Motor vehicles 13.05
G09 Educating; Cryptography; Display; Advertising; Seals Electric machinery 77.60 [Misc manufacturing 5.55
G10 Musical Instruments; Acoustics Electric machinery 49.25 |Misc manufacturing 39.13
G11 Information Storage Electric machinery 86.18 |Chemicals 6.27
G12 Instrument Details Electric machinery 60.64 |[Precision machinery 15.69
G21 Nuclear Physics; Nuclear Engineering Electric machinery 60.25 [Machinery, non-electric 23.82
HO1 Basic Electric Elements Electric machinery 77.21 [Non-ferrous metal product{ 4.86
HO2 Generation, Conversion, or Distribution of Electric Power Electric machinery 76.75 [Motor vehicles 5.87
HO3 Basic Electronic Circuitry Electric machinery 93.66 |Precision machinery 1.42
HO4 Electric Communication Technique Electric machinery 89.64 |Precision machinery 4.65
HO5 Electric Techniques Not Otherwise Provided for Electric machinery 74.95 [Chemicals 7.35

This table reports, for each of the 120 IPC technology classes, the two industries with the largest shares of patenting activity. Patent shares wy; are computed as the fraction of

patents in technology class k that are applied for by firms in industry j. Industries are ranked within each technology class by wy;, and the table lists the first- and second-ranked
industries for each class.




Table A2. Correlation between Corporate and Non-Corporate Patent
Panel A: Patent Grants

(1) (2) 3)
In(1+Grants), non-corporate In(1+Grants), non-corporate In(1+Grants), non-corporate
In(1+Grants), corporate 0.482*** 0.537*** 0.481***
(0.012) (0.095) (0.085)
Observations 1,314 1,314 1,314
R-squared 0.924 0.906 0.913
R-squared (within) 0.0808 0.0694
Technology class fixed effect No Yes Yes
Year fixed effects No No Yes

Panel B: Forward Citations

(1) (2) 3)
In(1+Citations), non-corporate In(1+Citations), non-corporate n(1+Citations), non-corporate
In(1+Citations), corporate 0.509*** 0.456*** 0.451%**
(0.011) (0.112) (0.106)
Observations 1,314 1,314 1,314
R-squared 0.920 0.857 0.862
R-squared (within) 0.0521 0.0516
Technology class fixed effect No Yes Yes
Year fixed effects No No Yes

This table examines the co-movement between corporate and non-corporate patenting activity at the technology-
class level. The unit of observation is a technology class—year. The dependent variable is In(1 + y) of non-corporate
patent grants in Panel A and In(1 + y) of forward citations to non-corporate patents in Panel B. The key explanatory
variable is the corresponding In(1 + y) measure for corporate patent grants or forward citations. Columns progressively
add technology-class fixed effects and application-year fixed effects. Standard errors are clustered at the technology-
class level and reported in parentheses. ***, ** and * denote statistical significance at the 1, 5, and 10 percent levels,
respectively.
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