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Abstract

Most of the data available for measuring capabilities or dimensions of poverty is either
ordinal or categorical. However, the majority of the indices introduced for the
assessment of multidimensional poverty behave well only with cardinal variables. In a
recent paper, Alkire and Foster (2008) propose a new methodology to measure
multidimensional poverty that includes an identification method and a class of poverty
measures. The identification step and the first of their measures, the dimension adjusted
headcount ratio, are based on a counting approach and are well suited for use with
ordinal and categorical data. The implementation of this methodology involves the
choice of a minimum number of deprivations required in order to be identified as poor.
This cut-off adds arbitrariness to poverty comparisons. In this paper we explore
dominance conditi ns that guarantee unanimous poverty rankings in a counting
framework. Our conditions are based on a simple graphical device that provides a tool
for checking the robustness of poverty rankings to changes in the identification cut-off,
and also for checking unanimous orderings in a wide set of multidimensional poverty
indices that suit ordinal and categorical data.
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ABSTRACT

Most of the data available for measuring capabgitor dimensions of poverty is either
ordinal or categorical. However, the majority oé timdices introduced for the assessment of
multidimensional poverty behave well only with daal variables. In a recent paper, Alkire
and Foster (2008) propose a new methodology to uneasultidimensional poverty that
includes an identification method and a class ofepty measures. The identification step and
the first of their measures, tligmension adjusted headcount ratare based on a counting
approach and are well suited for use with ordimal @ategorical data. The implementation of
this methodology involves the choice of a minimuamiber of deprivations required in order

to be identified as poor. This cut-off adds arbitrass to poverty comparisons

In this paper we explore dominance conditions thaarantee unanimous poverty
rankings in a counting framework. Our conditions based on a simple graphical device that
provides a tool for checking the robustness of pgveankings to changes in the
identification cut-off, and also for checking unaoius orderings in a wide set of

multidimensional poverty indices that suit ordiaad categorical data.
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INTRODUCTION

In recent years there has been considerable agnédhe poverty is a multidimensional
phenomenon and great efforts have been made framabiteoretical and an empirical point
of view, trying to assess multidimensional povériyowever, since most of the data available
to measure capabilities or dimensions of povertgitiser ordinal or categorical, only indices
that behave well with this sort of variable shobédused in empirical applications.

The counting approach introduced by Atkinson (20@®es into consideration the
number of dimensions in which each person is dedriand is an appropriate procedure that
deals well with ordinal and categorical variablBased on this framework there are two

recent contributions.

On the one hand, Alkire and Foster (2008) proposeva framework for measuring
multidimensional poverty that includes an idenéfion procedure and a way of aggregation.
The identification step extends the traditional aimiand intersection approaches and
incorporates two cut-offs. The first has to do witie traditional identification of the poor
within each dimension using a dimension-specifieguty line. In the second step, a counting
approach is used to identify the poor people uaitigreshold of the number of dimensions in

which a person should be deprived in order to katifled as multidimensional podr.

As regards the aggregation step, they propose tis¢ei-Greer-Thobercke measures
(Foster et al. (1984)) appropriately adjusted ® ittentification procedure. Specifically, the
first of their measures, thedjusted headcount ratiaefined as the average of the number of
deprivations suffered by the poor, is also based oounting approach. In addition, it fulfils a
number of desirable properties; among them thelsilitty for working with ordinal data and
the dimensional monotonicity, which means thatilt icrease if a person already identified

as poor becomes deprived in an additional dimension

The second contribution based on a counting appreadossert et al. (2009) that

characterizes a class of counting measures andalers Alkire and Foster indices.

In general, the choice of either the identificationt-offs, or the indices, adds

arbitrariness to poverty comparisons, and diffeseéctions can lead to contradictory results.

2 See, among others, UNDP (1997), Chakravarty e{18198), Tsui (2002), Bourguignon and Chakravarty
(2003), Deutsch and Silber (2005), Alkire and Fo$a908), Chakravarty et al. (2008), Maasoumi angd.
(2008), Diez et al. (2008), Bossert et al. (2009).

 Actually Alkire and Foster (2008) have explicittermulated and analyzed this identification proaedu
although similar methods had already been usetkititerature, for instance Marck and Lindsay (1)9&ordon

et al. (2003).



For this reason it may be of interest to inveségdbminance criteria to allow poverty
comparisons to be robust to the different chofc@bere exists a branch of the literature
devoted to establishing dominance criteria whiclovigle unanimous orderings when
comparisons are made at a variety of poverty tlmldshand measures. A comprehensive
survey of dominance conditions in the poverty umesional field is provided by Zheng
(2000). Taking this literature as a starting poarid more specifically the basic papers by
Shorrocks (1983), Foster (1985) and Foster andr8tka (1988), this work explores ordering
conditions of the adjusted headcount ratio forreyeaof identification cut-offs. We show that
if the rankings provided by this index are unanisiaver all the admissible identification
thresholds, then this rank holds for any countingasure in a wide set of indices. The
implementation of these conditions is based on waitcall dimension deprivation curves
henceforthDD curves, a simple device which allows us to represethe same picture the
headcount ratiptheadjusted headcount ratiand theaverage deprivation shar@ccording to
Alkire and Foster (2008)’s proposal. Since the bareurve was introduced in the literature, a
number of cumulative curves have been widely usedhieck unanimous orderings in the
inequality, poverty, and polarization field$n this connection, the curves we propose become

a very intuitive tool to make robust comparison®ewla counting approach is used.

The paper is structured as follows. In the nextiseave present the notation and basic
definitions. Section 2 introduces the DD curvespvang that these curves may be
constructed in a similar way to the procedure usette literature to derive the mentioned
cumulative curves. Then, following Foster and Stcks (1988), in Section 3 we will show
that theDD curves become a powerful tool for checking unanisnorderings according to a
wide class of counting measures. They also avadhioice of an arbitrary identification cut-
off and offer a useful way to determine the bouofishe number of dimensions for which
multidimensional comparisons are robust. As the edisional headcount ratio behaves
particularly well with ordinal and categorical dathe DD curves play an important role in
making poverty comparisons when data is ordinaé paper finishes with some concluding

remarks.

* The robustness of poverty measures as regardsutimer of deprivations chosen to identify the pbas
already been addressed by Batana (2008) and Suflieam(2009). The former proposes to follow the paare
introduced by Davidson and Duclos (2006) and alfeased by Batana and Duclos (2008) to check the
robustness of adjusted headcount ratio. They stigmestatistical dominance test based on the ernapiric
likelihood ratio. The latter author introduces amtical device to check the robustness of the lmadaatio
when different cut-offs are selected.

® Among them the TIP curves proposed by Jenkinslamdbert (1997), the polarization curve introducgd b
Foster and Wolfson (1992) and more recently th@@sal of Shorrocks (2009) to derive unemploymedicies.



1. NOTATION AND BASIC DEFINITIONS.

We consider a population oh> 2 individuals endowed with a bundle af =2
attributes considered as relevant to measure povkrta counting approach, poverty is
measured taking into consideration the number wfedisions in which people are deprived.
Thus, we assume that the dimensions are represbytbohary variables where a value of 1
means that the individual is deprived in that htite, and a value of O indicates that the
individual is not deprived. In this framework it isplicitly assumed that comparing each
person’s achievements with the respective dimenpwrerty lines, determines whether the

individual is deprived or not in each attribute.ush each individual’'s characteristics are
represented by deprivation vectorg, D{O,]}d, whose typical componentis defined by
g; =1 when individuali is deprived in attribut¢ and g; =0 otherwise. For simplicity we

assume that all the dimensions are equally weighatdough similar conclusions may be

derived if different fixed weights are attachedtie different dimensions.

Let’'s denote byc D{O,l,..,d} = C the number of dimensions in which persois

deprived, thatisg =»,__ g; . The vectorc=(g, ..., )0 C' is referred to as theector of

1<
deprivation countsThis vector plays an important role in the poyarteasurement when
ordinal data are involved. In fact this vector nwariant if the achievement levels and the
poverty lines are transformed under the same mormotoansformations, and this is a crucial
property when the achievements or capabilitiesvaasured with ordinal variables. We will
denote byC the permutation o€ in which the number of deprived dimensions havenbe

arranged in decreasing order, thatgsz G,, for i =1,...n. Hence people are ranked from the

most deprived to the least. LG=UC” be the set of all admissible vectors of deprivatio

nx1

counts.

We will say that the vectar’ is obtained from the vectarby apermutationif C'=T¢;

by areplication if c':(c, c,...,c); by anincrementif c', >¢ for somei andc ; = ¢ for all
j#i; and by adeprived dimension (regressive) transferc’, >G >¢, ci+c|, =¢+¢;
c.=¢ forallk#i,j.

Following the framework proposed by Alkire and Fps(2008), a methodology for

measuring multidimensional poverty consists of athoe to identify the poor and an

aggregative measure.



Two main methods have been used in the literatutkd identification step, referred to
as the ‘union’ and the ‘intersection’ approachespeetively. Whereas the union procedure
identifies the poor as someone who is deprivedtiteast one dimension, the intersection
definition requires a poor person to be deprivedlimimensions. These methods present well
known drawbacks when the number of poverty dimerssics great. Whereas “almost
nobody” is identified as poor with the intersectapproach, “almost everybody” is poor with

the union identification.

There is an intermediate procedure that proposesetdify a person as poor if they are
deprived in at leakt dimensions. According to this procedure, pelssndentified as poor if

¢ =k, i.e., the number of dimensions in which they @eprived is at leadt and person is
non-poor otherwise, that is, @ < k.Clearly, for k =1, this method coincides with the union

approach, whereas fdc=d, it is equivalent to the intersection approachldvang Alkire

and Foster (2008), we will usg, to denote this procedure, which will be the idigrdtion

method throughout this paper.

Let’s denote byQ, and g, respectively, the set and number of poor identitising the
dimension cut-ofk. For each vectar of deprivation counts, we define thensored vector of
deprivation countsdenoted byc(k), as follows:c (k) = ¢ if ¢ =k, andc (k) =0 if ¢ <k.

In what follows, a counting measuke is a non-constant functioR : G><{1,...,d} - R,
whose typical imageR, (c) represents the level of poverty in a society whaeepoor are
identified according tqo, . We assume tha® fulfils the following four properties:

* Poverty Focus (PF)RR, remains unchanged if the number of deprived dimoassof a

non-poor person decreases.

*  Dimensional Monotonicity (MON)R,(c)<R(c) if ¢’ is obtained fromc by an

increment of a poor person.
*  Symmetry (SYM)R, (c) = R(c) if ¢’ is obtained front by a permutation.
*  Replication Invariance (RI)R,(c) = R(c) if ¢’ is obtained front by a replication.

Since poverty measurement is concerned with the\dgions of the poor people, the

first two properties, postulated by Sen (1976)hi& tinidimensional setting, are considered as



basic axioms for a poverty measure. Thus, PF regirat a poverty index should not depend
on the non poor people’s deprivations and MON detadhat poverty should increase if the

number of deprived dimensions suffered by a poosgeincreases. It may be worth noting

that PF ensures th@, (c) = R (o K).

SYM and RI are also standard requirements for esefifpvmeasure. SYM establishes
that no other characteristic apart from the nunabelimensions in which a person is deprived
matters in defining a counting poverty index. ImtuR| allows us to compare populations of

different sizes.

According to Sen (1976), a poverty measure shoelddnsitive to inequality among the
poor, then the counterpart of the Pigou-Daltongfanprinciple for a counting measure may
be introduced as follows:

*  Transfer SensitivityTS): R (c)<R(c) if ¢ is obtained fromc by a deprived
dimension transfer between two people that are pefmre and after the transfer.

The class of counting poverty measures that ftlitise five axioms will be denoted by
P, that is:

P={P:Gx{1,...d - R/Psatisfies PF MON DDC SYM RI and}l.

The first poverty counting measure introduced i@ literature is thenultidimensional

headcount ratipdenoted byH, =q,/n, that is, the percentage of the population deprine

at leastk dimensions. There are some advantages to thig,ingeally used to measure the
incidence of poverty. One of them is that it canused with ordinal and categorical data.
There are also some shortcomings, since it is @bleapture neither the intensity nor the
inequality among the poor and violates MON, thaitisloes not change if a person already
identified as poor becomes deprived in an additidimaension in which the person was not

poor previously.

Theadjusted headcount ratid\l, , introduced by Alkire and Foster (2008) is defirzesd

2 i ()

nd
This index overcomes the drawbacks of the headaattiot since it satisfies MON. However

the average of the number of deprivations suffésethe poor, that isM, (c) =

M, does not belong to clags, since although it satisfies a weaker version $f it violates

TS as proposed in this paper.



More information about poverty can be incorporatesing theaverage deprivation

share across the poatenoted byA, , also introduced by Alkire and Foster (2008), \iahis

defined as the mean among the poor, of the nunfodepivations suffered by the poor, that

20 G (K)

is, A :—d. This index captures the intensity of poverty. Bwrer, M, can be
oh

computed as the product of thrultidimensional headcount ratend theaverage deprivation

share across the poor

Poverty rankings may be reversed depending onddetification threshold, or on the
measure selected. Thus, in order to avoid conti@gicesults, dominance conditions ensure
unanimous rankings for a set of identification offs, or a class of poverty measures.
Following the existing literature, given a povermyeasureP we introduce a partial ordering

denoted by, in the set of vectors of deprivation counts, d®¥es:°

c'<,c ifand only if B (c¢')= R (¢ forall k:1,...,d.

2. DEPRIVATION DIMENSION CURVES.
We can compute the previous indices in an exanmpnsider the vector of deprivation
counts c:(4,3,3,2,2,1,1,1,0,)( in a society of 10 individuals with 4 dimensioriEhe

headcount ratio, the average deprivation sharetlamdadjusted headcount ratio for all the

possible identification cut-offs are displayedthie following table:

k=4 k=3 k=2 k=l

H 0.1 0.3 0.5 0.8
M 0.1 0.25 0.35 0.425
Ay 1 0.833 0.7 0.531

® We follow Atkinson (1987) and adopt the weak deiami of a partial ordering. Although not all thesuéts
derived in this paper hold for the other two leyghe semi-strict and the strict ones) similar goods could be
also obtained in these two cases.



We propose constructing thegD curve for this vectorc, plotting the headcount ratio

against the adjusted headcount ratio, that isspafirpoints (H,,M,). We also plot two

extreme point{0,0) as the start of the curve, aftiM,), as the end of the curve. Then we

join the dots, as showed in Figure 1:

Figure 1. Plotting the headcount ratio and the adjusted headcount ratio.

M1
M2

M3

M4

By definition, each time the slope of the curvergfes the headcount ratio is displayed

in the horizontal axis. By contrast, in the vertiexis, the adjusted headcount ratio is

recovered. The slope of the line that connects (Dith (Hk, M k) coincides with the average

deprivation sharéeA, .

In general, for any vector of deprivation couatsanked from the most deprived to the
least, theDD-curve can equivalently be defined in the following wdgr each integer
p=0,...,n—1the ordinate of the curve is computed as the catival of the sum of the total
number of deprivations experienced by the figspeople divided by the total number of
deprivations that could possibly experienced byabiple. At intermediate points the curve is
determined by linear interpolation. Thus, the oatlts of the DD-curve are computed as

follows:



Some interesting properties of this curve may batmoeed. First of all, the ordinates of
this curve are replication invariant, and are ams@riant to permutation af. The graph, as

displayed in Figure 2, begins at the origin, andai€ontinuous non-decreasing concave
function.

There are two bounding curves which correspond Wit extreme situations of
minimum and maximum deprivation. If nobody is depd, the curve coincides with the
horizontal axis. By contrast, if everybody is depd in all dimensions, the curve becomes the

diagonal line.

Figure 2. Deprivation Dimension Curves.

cumulative sum of poor deprived dimensions
divided by total deprived dimensions

1

1
cumulative population share

In general, the slope of the curve is to chadggmes, as many as the number of

dimensions considered. Each poiptn at which the curvature of the curve changes, gield



the percentage of people deprived in at least as/rdanensions as persgn If we call this

numberk, we find that the adjusted headcount rati),, is recovered in these points. In
contrast, the vertical axis displays, by definititthe dimension adjusted headcount ra¥lp.

Thus, the first time the slope changes corresptodbe headcount ratio according to the

intersection procedureH,. The last time, when the curve becomes horizorialds the

headcount ratio as regards the union procedttg, At this point the curve reaches its

maximum value which corresponds to the ratio betwd#ee sum of the total number of
deprivations experienced by all the people, andtdted number of deprivations that could

possibly be experienced, that i, according to Alkire and Foster (2008) designation.

Theaverage deprivation share across the pody, is also represented in the graph by

the slope of the ray from (0,0) {g, DD( p)).

3. DEPRIVATION DIMENSION DOMINANCE.

When theDD curves of two vectors andc’ do not intersect, they allow us to introduce a

dominance criterion denoted by, , as follows:
¢’ =5 C if and only if DD(c'; p) = DD(c; p) for all p[0,1.

The following proposition is based on the resubitablished by Marshall and Olkin
(1979, propositions 4.A.2 and A.B.2) for vectorshathe same number of components:

Proposition 1. For any c,c'0 C" vectors of deprivation counts, the following sta¢ats are

equivalent:
) ¢’ dominates c;
i) M (c)<M(c) forall k=1,...d;
i) >, GSD) .., foral p=1..n;

Iv) ¢’ may be obtained from c by a finite sequenceeompitations, increments and/or

deprived dimension transfers;

10



V) zﬁisp¢(q)szmsp¢(q') for all continuous, increasing and convex funcsion

¢:[0,d] 00 R.

This proposition establishes that when the curvea géctor of deprivation counts lies
above the curve of another with the same populatine, or equivalently, when these two
vectors can be ordered by the multidimensional t@aat ratio, then one may be obtained
from the other by a sequence of increments and?ongtations. Consequently, any poverty
measure belonging to claBwill rank these two vectors in exactly the samg.wa addition,
as the deprivation curves are invariant under eapbn, and the same holds for any measure

POP, the result also holds for vectors with differpopulation sizes.

Then, this result reveals that although the dinmnsidjusted headcount ratio violates

TS, if two vectors of deprivation counts can bernimusly ranked byM, at all cut-offs,

then all poverty counting measures satisfying Tl rank societies in the same way.

The reverse of this proposition is also true. Irtipalar, consider the class of counting

P(e )=, ¢(c(K)

with (//:[O,d] 0 > R a continuous increasing and strictly convex functib is quite simple

to show thatP(c, k) belongs to clas$. Given any continuous increasing and convex
function ¢:[0,d] 0 3- R and £ >0, then the measureg (c, k) :%zﬁisn(£w+¢)(q( K)

also belong to clasB. Consequently, given two vectoesandc’ with P.(c k)< R(c, K,

when € - 0 we get statement v) in Proposition 1 and havddhawing result:

Proposition 2. For any ¢, c'J G vectors of deprivation counts:
DD(c'; p)= DD(c; p) for all pd[0,]

if and only if B, (c') = R (g for all POP and for all identification cut-ofk 0{1,...,d} .

11



When theDD curves of two vectors; andc’, intersect, it is always possible to restrict
the set of identification cut-offs in order to ddish similar dominance conditions. In fact,

there exists a thresholkd 0{1,...,d} such thatM, (c)< M, (c') for all k=1,...k *. Taking

into consideration the respective censored vectdist) and c'(k*), we may obtain the

following proposition:

Proposition 3. For any ¢, c'l] G vectors of deprivation counts:
DD(c'(k*); p)=DD(c(k*); p) for all pO[0,]]

if and only ifR, (c') = R( ¢ for all POP and for all identification cut-ofk O{1,...k } .

This proposition shows that, even when the DD caiiméersect, they allow us to obtain
robust conclusions in a wide set of counting messuestricting the set of identification cut-

offs.

CONCLUDING REMARKS.

A counting approach based on the number of dejpoivatsuffered by the poor is quite an

appropriate framework to measure multidimensiowaigoty with ordinal or categorical data.

The choice of a cut-off to identify the poor, angaverty measure to aggregate the data
are two sources of arbitrariness and different céieles may lead to contradictory
conclusions. In this paper we derive dominance itmmd in order to obtain unanimous
rankings in a wide set of counting measures, ansktaof identification cut-offs. The

implementation of these conditions is based orDiRecurves, a simple and intuitive device.

The dominance conditions proposed in this papeespond to what in the literature are
known as second degree dominance conditions.nivtiglifficult to derive the counterpart of

the first degree dominance requirements.
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