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ABSTRACT 

Most of the data available for measuring capabilities or dimensions of poverty is either 

ordinal or categorical. However, the majority of the indices introduced for the assessment of 

multidimensional poverty behave well only with cardinal variables. In a recent paper, Alkire 

and Foster (2008) propose a new methodology to measure multidimensional poverty that 

includes an identification method and a class of poverty measures. The identification step and 

the first of their measures, the dimension adjusted headcount ratio, are based on a counting 

approach and are well suited for use with ordinal and categorical data. The implementation of 

this methodology involves the choice of a minimum number of deprivations required in order 

to be identified as poor. This cut-off adds arbitrariness to poverty comparisons  

In this paper we explore dominance conditions that guarantee unanimous poverty 

rankings in a counting framework. Our conditions are based on a simple graphical device that 

provides a tool for checking the robustness of poverty rankings to changes in the 

identification cut-off, and also for checking unanimous orderings in a wide set of 

multidimensional poverty indices that suit ordinal and categorical data.  
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INTRODUCTION 

In recent years there has been considerable agreement that poverty is a multidimensional 

phenomenon and great efforts have been made from both a theoretical and an empirical point 

of view, trying to assess multidimensional poverty.2 However, since most of the data available 

to measure capabilities or dimensions of poverty is either ordinal or categorical, only indices 

that behave well with this sort of variable should be used in empirical applications. 

The counting approach introduced by Atkinson (2003) takes into consideration the 

number of dimensions in which each person is deprived, and is an appropriate procedure that 

deals well with ordinal and categorical variables. Based on this framework there are two 

recent contributions.  

On the one hand, Alkire and Foster (2008) propose a new framework for measuring 

multidimensional poverty that includes an identification procedure and a way of aggregation. 

The identification step extends the traditional union and intersection approaches and 

incorporates two cut-offs. The first has to do with the traditional identification of the poor 

within each dimension using a dimension-specific poverty line. In the second step, a counting 

approach is used to identify the poor people using a threshold of the number of dimensions in 

which a person should be deprived in order to be identified as multidimensional poor.3  

As regards the aggregation step, they propose the Foster-Greer-Thobercke measures 

(Foster et al. (1984)) appropriately adjusted to the identification procedure. Specifically, the 

first of their measures, the adjusted headcount ratio, defined as the average of the number of 

deprivations suffered by the poor, is also based on a counting approach. In addition, it fulfils a 

number of desirable properties; among them the suitability for working with ordinal data and 

the dimensional monotonicity, which means that it will increase if a person already identified 

as poor becomes deprived in an additional dimension. 

The second contribution based on a counting approach is Bossert et al. (2009) that 

characterizes a class of counting measures and generalizes Alkire and Foster indices. 

In general, the choice of either the identification cut-offs, or the indices, adds 

arbitrariness to poverty comparisons, and different selections can lead to contradictory results. 

                                                 
2 See, among others, UNDP (1997), Chakravarty et al. (1998), Tsui (2002), Bourguignon and Chakravarty 
(2003), Deutsch and Silber (2005), Alkire and Foster (2008), Chakravarty et al. (2008), Maasoumi and Lugo 
(2008), Diez et al. (2008), Bossert et al. (2009). 
3 Actually Alkire and Foster (2008) have explicitly formulated and analyzed this identification procedure 
although similar methods had already been used in the literature, for instance Marck and Lindsay (1985), Gordon 
et al. (2003). 
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For this reason it may be of interest to investigate dominance criteria to allow poverty 

comparisons to be robust to the different choices.4 There exists a branch of the literature 

devoted to establishing dominance criteria which provide unanimous orderings when 

comparisons are made at a variety of poverty thresholds and measures. A comprehensive 

survey of dominance conditions in the poverty unidimensional field is provided by Zheng 

(2000). Taking this literature as a starting point, and more specifically the basic papers by 

Shorrocks (1983), Foster (1985) and Foster and Shorrocks (1988), this work explores ordering 

conditions of the adjusted headcount ratio for a range of identification cut-offs. We show that 

if the rankings provided by this index are unanimous over all the admissible identification 

thresholds, then this rank holds for any counting measure in a wide set of indices. The 

implementation of these conditions is based on what we call dimension deprivation curves, 

henceforth DD curves, a simple device which allows us to represent in the same picture the 

headcount ratio, the adjusted headcount ratio and the average deprivation share according to 

Alkire and Foster (2008)’s proposal. Since the Lorenz curve was introduced in the literature, a 

number of cumulative curves have been widely used to check unanimous orderings in the 

inequality, poverty, and polarization fields.5 In this connection, the curves we propose become 

a very intuitive tool to make robust comparisons when a counting approach is used.  

The paper is structured as follows. In the next section we present the notation and basic 

definitions. Section 2 introduces the DD curves, showing that these curves may be 

constructed in a similar way to the procedure used in the literature to derive the mentioned 

cumulative curves. Then, following Foster and Shorrocks (1988), in Section 3 we will show 

that the DD curves become a powerful tool for checking unanimous orderings according to a 

wide class of counting measures. They also avoid the choice of an arbitrary identification cut-

off and offer a useful way to determine the bounds of the number of dimensions for which 

multidimensional comparisons are robust. As the dimensional headcount ratio behaves 

particularly well with ordinal and categorical data, the DD curves play an important role in 

making poverty comparisons when data is ordinal. The paper finishes with some concluding 

remarks.  

                                                 
4 The robustness of poverty measures as regards the number of deprivations chosen to identify the poor has 
already been addressed by Batana (2008) and Subramanian (2009). The former proposes to follow the procedure 
introduced by Davidson and Duclos (2006) and already used by Batana and Duclos (2008) to check the 
robustness of adjusted headcount ratio. They suggest a statistical dominance test based on the empirical 
likelihood ratio. The latter author introduces a graphical device to check the robustness of the headcount ratio 
when different cut-offs are selected. 
5 Among them the TIP curves proposed by Jenkins and Lambert (1997), the polarization curve introduced by 
Foster and Wolfson (1992) and more recently the proposal of Shorrocks (2009) to derive unemployment indices. 
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1. NOTATION AND BASIC DEFINITIONS. 

We consider a population of n 2≥  individuals endowed with a bundle of 2d ≥  

attributes considered as relevant to measure poverty. In a counting approach, poverty is 

measured taking into consideration the number of dimensions in which people are deprived. 

Thus, we assume that the dimensions are represented by binary variables where a value of 1 

means that the individual is deprived in that attribute, and a value of 0 indicates that the 

individual is not deprived. In this framework it is implicitly assumed that comparing each 

person’s achievements with the respective dimension poverty lines, determines whether the 

individual is deprived or not in each attribute. Thus, each individual’s characteristics are 

represented by a deprivation vector { }0,1
d

ig ∈ , whose typical component j is defined by 

1ijg =  when individual i is deprived in attribute j and 0ijg =  otherwise. For simplicity we 

assume that all the dimensions are equally weighted, although similar conclusions may be 

derived if different fixed weights are attached to the different dimensions.  

Let’s denote by { }0,1,..,ic d C∈ =  the number of dimensions in which person i is 

deprived, that is, 
1i ijj d

c g
≤ ≤

=∑ . The vector ( )1,...,
n

nc c c C= ∈  is referred to as the vector of 

deprivation counts. This vector plays an important role in the poverty measurement when 

ordinal data are involved. In fact this vector is invariant if the achievement levels and the 

poverty lines are transformed under the same monotonic transformations, and this is a crucial 

property when the achievements or capabilities are measured with ordinal variables. We will 

denote by c  the permutation of c in which the number of deprived dimensions have been 

arranged in decreasing order, that is, 1i ic c+≥  for 1,...,i n= . Hence people are ranked from the 

most deprived to the least. Let 
1

n

n

G C
≥

=∪  be the set of all admissible vectors of deprivation 

counts.  

We will say that the vector c’ is obtained from the vector c by a permutation if 'c c= ; 

by a replication if ( )' , ,...,c c c c= ; by an increment if 'i ic c>  for some i and 'j jc c=  for all 

j i≠ ; and by a deprived dimension (regressive) transfer if 'i i jc c c> > , ' 'i j i jc c c c+ = + ; 

'k kc c=  for all ,k i j≠ . 

Following the framework proposed by Alkire and Foster (2008), a methodology for 

measuring multidimensional poverty consists of a method to identify the poor and an 

aggregative measure. 
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Two main methods have been used in the literature in the identification step, referred to 

as the ‘union’ and the ‘intersection’ approaches respectively. Whereas the union procedure 

identifies the poor as someone who is deprived in at least one dimension, the intersection 

definition requires a poor person to be deprived in all dimensions. These methods present well 

known drawbacks when the number of poverty dimensions is great. Whereas “almost 

nobody” is identified as poor with the intersection approach, “almost everybody” is poor with 

the union identification. 

There is an intermediate procedure that proposes to identify a person as poor if they are 

deprived in at least k dimensions. According to this procedure, person i is identified as poor if 

ic k≥ , i.e., the number of dimensions in which they are deprived is at least k; and person i is 

non-poor otherwise, that is, if ic k< .Clearly, for 1k = , this method coincides with the union 

approach, whereas for k d= , it is equivalent to the intersection approach. Following Alkire 

and Foster (2008), we will use kρ  to denote this procedure, which will be the identification 

method throughout this paper. 

Let’s denote by kQ  and kq  respectively, the set and number of poor identified using the 

dimension cut-off k. For each vector c of deprivation counts, we define the censored vector of 

deprivation counts, denoted by ( )c k , as follows: ( )i ic k c=  if ic k≥ , and ( ) 0ic k =  if ic k< .  

In what follows, a counting measure P  is a non-constant function { }: 1,...,P G d× →ℝ , 

whose typical image ( )kP c  represents the level of poverty in a society where the poor are 

identified according to kρ . We assume that P  fulfils the following four properties:  

*  Poverty Focus (PF): kP  remains unchanged if the number of deprived dimensions of a 

non-poor person decreases.  

*  Dimensional Monotonicity (MON): ( ) ( )'k kP c P c<  if c’ is obtained from c by an 

increment of a poor person.  

*  Symmetry (SYM): ( ) ( )'k kP c P c=  if c’ is obtained from c by a permutation. 

*  Replication Invariance (RI): ( ) ( )'k kP c P c=  if c’ is obtained from c by a replication.  

Since poverty measurement is concerned with the deprivations of the poor people, the 

first two properties, postulated by Sen (1976) in the unidimensional setting, are considered as 
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basic axioms for a poverty measure. Thus, PF requires that a poverty index should not depend 

on the non poor people’s deprivations and MON demands that poverty should increase if the 

number of deprived dimensions suffered by a poor person increases. It may be worth noting 

that PF ensures that ( ) ( )( )k kP c P c k= . 

SYM and RI are also standard requirements for a poverty measure. SYM establishes 

that no other characteristic apart from the number of dimensions in which a person is deprived 

matters in defining a counting poverty index. In turn, RI allows us to compare populations of 

different sizes. 

According to Sen (1976), a poverty measure should be sensitive to inequality among the 

poor, then the counterpart of the Pigou-Dalton transfer principle for a counting measure may 

be introduced as follows: 

*  Transfer Sensitivity (TS): ( ) ( )'k kP c P c<  if c’ is obtained from c by a deprived 

dimension transfer between two people that are poor before and after the transfer.  

The class of counting poverty measures that fulfil these five axioms will be denoted by 

P , that is: 

{ }{ }: 1,..., / , , , ,P G d P satisfies PF MON DDC SYM RI and TS= × →P ℝ .  

The first poverty counting measure introduced in the literature is the multidimensional 

headcount ratio, denoted by k kH q n= , that is, the percentage of the population deprived in 

at least k dimensions. There are some advantages to this index, usually used to measure the 

incidence of poverty. One of them is that it can be used with ordinal and categorical data. 

There are also some shortcomings, since it is able to capture neither the intensity nor the 

inequality among the poor and violates MON, that is, it does not change if a person already 

identified as poor becomes deprived in an additional dimension in which the person was not 

poor previously. 

The adjusted headcount ratio, kM , introduced by Alkire and Foster (2008) is defined as 

the average of the number of deprivations suffered by the poor, that is, ( ) ( )
1 ii n

k

c k
M c

nd
≤ ≤= ∑ . 

This index overcomes the drawbacks of the headcount ratio since it satisfies MON. However 

kM  does not belong to class P , since although it satisfies a weaker version of TS, it violates 

TS as proposed in this paper. 
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More information about poverty can be incorporated using the average deprivation 

share across the poor denoted by kA , also introduced by Alkire and Foster (2008), which is 

defined as the mean among the poor, of the number of deprivations suffered by the poor, that 

is, 
( )

1 ii n
k

k

c k
A

q d
≤ ≤= ∑ . This index captures the intensity of poverty. Moreover, kM  can be 

computed as the product of the multidimensional headcount ratio and the average deprivation 

share across the poor. 

Poverty rankings may be reversed depending on the identification threshold, or on the 

measure selected. Thus, in order to avoid contradictory results, dominance conditions ensure 

unanimous rankings for a set of identification cut-offs, or a class of poverty measures. 

Following the existing literature, given a poverty measure P we introduce a partial ordering 

denoted by P≺
ɶ

 in the set of vectors of deprivation counts, as follows:6  

Pc' c≺
ɶ

 if and only if ( ) ( )k kP c' P c≥  for all :1,...,k d . 

 

 

2. DEPRIVATION DIMENSION CURVES. 

We can compute the previous indices in an example. Consider the vector of deprivation 

counts ( )4,3,3,2,2,1,1,1,0,0c =  in a society of 10 individuals with 4 dimensions. The 

headcount ratio, the average deprivation share and the adjusted headcount ratio for all the 

possible identification cut-offs are displayed in the following table: 

 

k=4 k=3 k=2 k=1

H k 0.1 0.3 0.5 0.8

M k 0.1 0.25 0.35 0.425

A k 1 0.833 0.7 0.531  

 

                                                 
6 We follow Atkinson (1987) and adopt the weak definition of a partial ordering. Although not all the results 
derived in this paper hold for the other two levels (the semi-strict and the strict ones) similar conditions could be 
also obtained in these two cases. 



 8 

We propose constructing the DD curve, for this vector c, plotting the headcount ratio 

against the adjusted headcount ratio, that is, pairs of points ( ),k kH M . We also plot two 

extreme points ( )0,0  as the start of the curve, and ( )11,M , as the end of the curve. Then we 

join the dots, as showed in Figure 1: 

 

Figure 1. Plotting the headcount ratio and the adjusted headcount ratio. 

0

1

0 1H4 H3 H2 H1

M 4

M 3

M 2

M 1

A 1

 

 

By definition, each time the slope of the curve changes the headcount ratio is displayed 

in the horizontal axis. By contrast, in the vertical axis, the adjusted headcount ratio is 

recovered. The slope of the line that connects (0,0) with ( ),k kH M  coincides with the average 

deprivation share kA . 

In general, for any vector of deprivation counts c, ranked from the most deprived to the 

least, the DD-curve can equivalently be defined in the following way: for each integer 

0,..., 1p n= −  the ordinate of the curve is computed as the cumulative of the sum of the total 

number of deprivations experienced by the first p people divided by the total number of 

deprivations that could possibly experienced by all people. At intermediate points the curve is 

determined by linear interpolation. Thus, the ordinates of the DD-curve are computed as 

follows: 
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( );0 0DD c =  

1

1
; ii p

p
DD c c

n nd ≤ ≤

  = 
 

∑ , 1,...,p n=  

( )11

1
; i pi p

p
DD c c c

n nd

θ θ +≤ ≤

+  = + 
 

∑ , 0,..., 1p n= − , [ ]0,1θ ∈  

Some interesting properties of this curve may be mentioned. First of all, the ordinates of 

this curve are replication invariant, and are also invariant to permutation of c. The graph, as 

displayed in Figure 2, begins at the origin, and is a continuous non-decreasing concave 

function.  

There are two bounding curves which correspond with the extreme situations of 

minimum and maximum deprivation. If nobody is deprived, the curve coincides with the 

horizontal axis. By contrast, if everybody is deprived in all dimensions, the curve becomes the 

diagonal line.  

 

Figure 2. Deprivation Dimension Curves. 

0 1

1

M k

Hk H1Hd

M d
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cumulative sum of poor deprived dimensions
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In general, the slope of the curve is to change d times, as many as the number of 

dimensions considered. Each point p n at which the curvature of the curve changes, yields 
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the percentage of people deprived in at least as many dimensions as person p. If we call this 

number k, we find that the adjusted headcount ratio, kH , is recovered in these points. In 

contrast, the vertical axis displays, by definition, the dimension adjusted headcount ratio kM . 

Thus, the first time the slope changes corresponds to the headcount ratio according to the 

intersection procedure, dH . The last time, when the curve becomes horizontal, yields the 

headcount ratio as regards the union procedure, 1H . At this point the curve reaches its 

maximum value which corresponds to the ratio between the sum of the total number of 

deprivations experienced by all the people, and the total number of deprivations that could 

possibly be experienced, that is, 1M  according to Alkire and Foster (2008) designation.  

The average deprivation share across the poor, kA , is also represented in the graph by 

the slope of the ray from (0,0) to ( )( ),p DD p . 

 

 

3. DEPRIVATION DIMENSION DOMINANCE. 

When the DD curves of two vectors c and c’ do not intersect, they allow us to introduce a 

dominance criterion denoted by DD≻
ɶ

, as follows: 

DDc' c≻
ɶ

 if and only if ( ) ( )DD c'; p DD c; p≥  for all [ ]p 0,1∈ . 

The following proposition is based on the results established by Marshall and Olkin 

(1979, propositions 4.A.2 and A.B.2) for vectors with the same number of components: 

 

Proposition 1. For any , ' nc c C∈  vectors of deprivation counts, the following statements are 

equivalent: 

i) c’ dominates c; 

ii)  ( ) ( )'k kM c M c≤  for all 1,...,k d= ; 

iii)  '

1 1i ii p i p
c c

≤ ≤ ≤ ≤
≤∑ ∑  for all 1,...,p n= ; 

iv) c’ may be obtained from c by a finite sequence of permutations, increments and/or 

deprived dimension transfers; 
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v) ( ) ( )'

1 1i ii p i p
c cϕ ϕ

≤ ≤ ≤ ≤
≤∑ ∑  for all continuous, increasing and convex functions 

[ ]: 0,dϕ →ℝ . 

 

This proposition establishes that when the curve of a vector of deprivation counts lies 

above the curve of another with the same population size, or equivalently, when these two 

vectors can be ordered by the multidimensional headcount ratio, then one may be obtained 

from the other by a sequence of increments and/or permutations. Consequently, any poverty 

measure belonging to class P will rank these two vectors in exactly the same way. In addition, 

as the deprivation curves are invariant under replication, and the same holds for any measure 

P∈ P , the result also holds for vectors with different population sizes. 

Then, this result reveals that although the dimension adjusted headcount ratio violates 

TS, if two vectors of deprivation counts can be unanimously ranked by kM  at all cut-offs, 

then all poverty counting measures satisfying TS will rank societies in the same way. 

The reverse of this proposition is also true. In particular, consider the class of counting 

measures: 

( ) ( )( )1

1
, ii n

P c k c k
n

ψ
≤ ≤

= ∑  

with [ ]: 0,dψ →ℝ  a continuous increasing and strictly convex function. It is quite simple 

to show that ( ),P c k  belongs to class P. Given any continuous increasing and convex 

function [ ]: 0,dϕ →ℝ  and 0ε > , then the measures ( ) ( ) ( )( )1

1
, ii n

P c k c k
nε εψ ϕ

≤ ≤
= +∑  

also belong to class P. Consequently, given two vectors c and c’ with ( ) ( ), ',P c k P c kε ε≤ , 

when 0ε →  we get statement v) in Proposition 1 and have the following result: 

 

Proposition 2. For any , 'c c G∈  vectors of deprivation counts: 

( ) ( )DD c'; p DD c; p≥  for all [ ]p 0,1∈  

if and only if ( ) ( )'k kP c P c≥  for all P∈ P  and for all identification cut-off { }1,...,k d∈ . 
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When the DD curves of two vectors, c and c’, intersect, it is always possible to restrict 

the set of identification cut-offs in order to establish similar dominance conditions. In fact, 

there exists a threshold { }* 1,...,k d∈  such that ( ) ( )'k kM c M c≤  for all 1,..., *k k= . Taking 

into consideration the respective censored vectors ( )*c k  and ( )' *c k , we may obtain the 

following proposition: 

 

Proposition 3. For any , 'c c G∈  vectors of deprivation counts: 

( )( ) ( )( )DD c' k* ; p DD c k* ; p≥  for all [ ]p 0,1∈  

 if and only if ( ) ( )'k kP c P c≥  for all P∈ P  and for all identification cut-off { }1,..., *k k∈ . 

 

This proposition shows that, even when the DD curves intersect, they allow us to obtain 

robust conclusions in a wide set of counting measures restricting the set of identification cut-

offs. 

 

 

CONCLUDING REMARKS. 

A counting approach based on the number of deprivations suffered by the poor is quite an 

appropriate framework to measure multidimensional poverty with ordinal or categorical data. 

The choice of a cut-off to identify the poor, and a poverty measure to aggregate the data 

are two sources of arbitrariness and different selections may lead to contradictory 

conclusions. In this paper we derive dominance conditions in order to obtain unanimous 

rankings in a wide set of counting measures, and a set of identification cut-offs. The 

implementation of these conditions is based on the DD curves, a simple and intuitive device. 

The dominance conditions proposed in this paper correspond to what in the literature are 

known as second degree dominance conditions. It is not difficult to derive the counterpart of 

the first degree dominance requirements. 
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