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Abstract

This paper examines the economic impact of re-invention — the degree to which an inno-
vation is modified by a user — on industry growth and productivity. The paper focuses on
two re-inventions made by a Japanese steel company; these inventions improved the productive
efficiency of Austrian-made refining technology, namely, basic oxygen furnace (BOF). Results ob-
tained from the plant-level production-function estimation indicate that re-inventions account for
approximately 40 percent of the total factor productivity of the BOF, substantially promoting the
dissemination of the BOF technology. Our simulation analysis indeed reveals that re-inventions
contributed to steel output growth by more than 20 percent. This paper also documents that
innovating Japanese companies played the role of a “lead user” in developing and disseminating
their re-invented technologies.
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1 Introduction

The history of major technologies is characterized by occasional major inventions followed by a wave of

improvements (Nelson and Winter, 1982: 257). A long process of improvements, often called re-invention, is

required in order for such technologies to successfully prevail in the economy.1 Among many examples, the

studies of Enos (1962) on petroleum refining and those of Hollander (1965) on rayon textile illustrate that

re-invention tends to contribute just as much to technological progress. While the importance of re-invention

has been featured in a number of anecdotes, there is a severe paucity of empirical research that measures

the magnitude of the impact of re-invention on the productivity and profitability. The purpose of this paper

∗We thank Hiroyuki Odagiri, Arnold Picot, Eric von-Hippel and seminar and conference participants at the Japan Economic

Association meetings, LMU and the HBS-MIT User Innovation Workshop for helpful comments.
†Faculty of Economics, Tokyo Keizai Univeristy. 1-7-34, Minami-cho, Kokubunji, Tokyo, Japan. Phone: +81-42-328-7940.

nakamura@tku.ac.jp
‡Department of Economics, University of Tokyo.
1The process of technological improvements is sometimes called by other terms, including follow-on innovations, accumulated

improvements, and incremental innovations. In this paper, we collectively call re-invention, followed by Rogers (2003).
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is to go some way towards redressing that balance by offering empirical evidence in the effect of re-invention

on industry growth and productivity.

Using a unique example from the Japanese steel industry, this paper quantitatively assesses the role

of re-invention in technological improvements. After the late 1950s, steel manufacturers around the world

gradually upgraded their refining furnace technology, shifting from the conventional open-hearth furnace

(hereafter OHF) to the Austrian-made basic oxygen furnace (BOF). While the introduction of the BOF

was praised as “unquestionably one of the greatest technological breakthroughs in the steel industry during

the twentieth century” (Hogan, 1971: 1543), several technical problems had to be resolved before the BOF

technology was widely implemented. Two major problems were associated with slag slopping and exhaust gas

emission. Developing improved devices to cope with these problems was imperative to ensure steel production

that was cost-efficient and precise in terms of specifications and to minimize the negative environmental effects

of steel manufacturing.

In response to the technical difficulties, two innovative improvements were introduced in the BOF in

1962, namely, multi-hole lance (hereafter MHL) and oxygen converter gas recovery (hereafter OG) systems:

The MHL enabled substantial reduction in the frequency of slag slopping, and the OG system provided a

method to recycle gas and heat generated from the steel refining stage. Interestingly, these improvements

were introduced not by the Austrian, inventor of the BOF, but by a Japanese, importer and user of the

technology. The two user-developed re-inventions successfully improved the productive efficiency of the BOF

use, and gained wide acceptance among not only domestic but also foreign steel companies. For example,

by the late 1970s, firms such as U.S. Steel, Bethlehem, Armco, and Inland produced steel under the licenses

of MHL and OG systems that were obtained from Japan.

To assess the contribution of re-inventions on industry growth and productivity, we employ a unique

plant-level data set that covers the inputs and outputs of the BOF and the installation timing and usage

intensity of the innovations. The data permit estimations of the production function based on the BOF

technology and of the changes in productivity, profitability, and output growth both before and after the

adoption of re-invented technologies. Our estimation results for total factor productivity (hereafter TFP)

indicate that these re-inventions contributed to approximately 40 percent of the BOF productivity growth.

Thus, the advent of the re-inventions developed by users facilitated the dissemination of BOF technology,

thereby promoting the growth of the Japanese steel industry, as observed in Figure 1. Using simulation

analysis, this paper substantiates the possibility that had the re-inventions of the MHL and OG systems not

been developed, the output growth of the Japanese steel industry would have averaged at only 33 percent

annually, in contrast to the actual 40 percent achieved during the study period from 1957 to 1968.

The re-invention in principle occurs on the sides of both producers and users. As surveyed in Rogers

(2003), a number of cases exist where users play a role in re-invention in the literature of process innovation.

Studies on innovating users show that such re-inventions are likely to be concentrated among the “lead

users.” According to the definition proposed in von Hippel (1986), lead users are ahead of the majority of

users with respect to an important market trend and that they expect to secure large benefits by proposing

solutions to their leading edge needs. A close observation of re-inventions of the MHL and OG systems as

documented in industry trade journals reveals that a company named Yawata appeared to play the role of

a lead-user. As the largest steel producing firm in Japan, Yawata actively sought solutions for the technical
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problems of slag slopping and exhaust gas emissions resulting from BOF use. Indeed, Yawata was the

first to adopt the BOF in Japan and produced the highest share of output through BOF use during the

study period; thus, it had the most number of incentives to improve the productivity of its BOF. Upon the

successful development of its MHL and OG systems, Yawata freely shared the details of its innovations with

other Japanese steel manufacturers, providing additional momentum to the dissemination of re-invented

technologies.2 Our simulation analysis, based on the production function estimation, reveals that the profits

Yawata secured from its re-inventions of the MHL and OG systems would have far exceeded those of the

company with the second highest profits.

The rest of the paper is organized as follows. Section 2 provides an overview of the Japanese steel market

after the World War II. It mainly describes the two technological improvements — the MHL and the OG

systems — developed by a user of the BOF technology. Further, it illustrates that the innovating user,

i.e., Yawata, exhibited the characteristics of a lead user and that it freely revealed the technical details

and performance of the re-inventions to other Japanese manufacturers. Section 3 delineates the framework

employed in estimating the productivity of re-invented technologies. Our plant-level panel data set allows

us to address endogeneity issues in productivity measurement. The estimates indicate that re-inventions

accounted for approximately 40 percent of the growth in steel-making productivity. Using the obtained

estimates, this section also examines the steel output, considering a hypothetical situation in which no

Japanese steel plants adopted re-invented technologies during the study period from 1957 to 1968. The

difference between the actual and simulated outputs is considered as the contribution made by re-inventions.

Finally, in Section 3, we calculate the amount of profits accrued by Japanese steel companies via re-inventions.

We discover that re-inventions did not benefitted to all companies uniformly; instead, it was the inventing

company that benefitted the most. Section 4 provides the concluding remarks, followed by data appendix.

2 Re-invention in Steel Refining Technology

Japan experienced a remarkable growth in steel production shortly after World War II. Figure 1 illustrates

that production in this industry expanded more than fourfold between the 1950s and 1960s. This not only

satisfied the rapidly growing domestic demand but also stimulated steel exports, which grew at over 20

percent annually, raising Japan to the status of the world’s largest steel exporter in 1969.

A large portion of Japanese steel production in the 1950s and 1960s was accounted for by integrated

steel manufacturers. These manufacturers processed raw materials (iron ore and coking coal) into pig iron

in a blast furnace. Pig iron is subsequently converted into crude steel in another furnace by the removal

of carbon and other elements. The prevalent technology used in this second or “refining” stage was that

of OHF, wherein air is blown from the bottom of a brick-lined steel shell through molten pig iron. The air

increases the temperature of the pig iron and oxidizes the carbon in it. In the late 1950s, the OHF began

to rapidly lose ground to the BOF. Invented by an Austrian firm in 1952, the BOF technology involved the

passage of oxygen for the oxidization of the iron and was expected to refine molten iron and scrap charge

into steel in approximately 45 minutes—a sharp decrease from the 6 hours normally required by the OHF.

2While it was freely disclosed in the domestic market, Yawata licensed its re-invented technologies to foreign competitors

under royalty agreemnents.
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However, in achieving the full technical and economic potential of the Austrian-made technology, global

steelmakers were confronted with two technical problems, namely those associated with (a) slag slopping

and (b) exhaust gas emissions. During the refining operation, slag foam was created to improve the BOF

performance. Problem (a) arose when the foam level exceeded the height of the vessel and overflowed, result-

ing in severe dust emissions and yield reduction. Furthermore, steel production needed to be discontinued

to clean the area below the vessel and the vessel mouth. These issues motivated a search for methods to

maintain a suitable foam volume, while preventing the occurrence of slopping. Problem (b) emerged when

more stringent environmental standards were introduced in the late 1950s. The BOF was known to discharge

the most significant level of emissions in the steel-making process. Thus, better air cleaning technology for

controlling emissions was regarded as crucial for the dissemination of the BOF technology. It was primarily

due to problems (a) and (b) that foreign firms, some of which had implemented the BOF earlier than did

the Japanese, did not extensively adopt the technology.

These technical difficulties were resolved by two re-inventions introduced in 1962. One of them was the

MHL, which adds more oxygen nozzles in the BOF lance to prevent slag slopping. The configuration change

in the BOF lance of steel companies allows oxygen to be blown at lower velocities and thus reduces splashing

in the BOF. The adoption of the MHL resulted in increased steel-making yield and improved refractory

life; thus, the innovation helped facilitate the scaling up of BOF’s in the mid-1960s. To solve the problem

of exhaust emissions, the OG system was developed to recover gases and fumes released during the BOF

steel-making process. By recycling waste gas, the OG system not only prevented pollution but also reduced

energy usage. Both the MHL and the OG systems were believed to enable steel companies to achieve higher

production rates with lower costs. In Section 3, we will estimate the extent to which these re-inventions

improved the productivity of the steel refining process.

The MHL and OG systems were simultaneously introduced in Japan in 1962, five years after the BOF

was introduced in Japan. Interestingly, these systems were not created by the inventor of the BOF but by a

Japanese company, namely, Yawata, which was an importer and user of the technology. As shown in the left

column of Table 1, Yawata produced the largest amount of steel using the BOF technology, accounting for

more than 20 percent of the total output in Japan. Hence, it is reasonable to consider that Yawata was the

most incentivized to improve the efficiency of the BOF operation. Trade journals, including the Iron and

Steel Institute of Japan (1982), revealed that the MHL and OG systems were the outcome of considerable

experimental efforts that could only be conducted by a company with sufficient familiarity and experience

in using the BOF technology. During the period of five years from 1957 to 1962, Yawata learned through

trials and errors the most efficient configurations to minimize both slag slopping and energy usage.

Another interesting observation is that Yawata freely disclosed pertinent information concerning the

technical details and the performance of their re-inventions to domestic competitors. Thus, competing

firms could liberally use the released information while installing systems developed by Yawata’s innovative

technologies. Yawata, however, did not reveal its re-inventions to foreign competitors free of charge; instead,

it licensed its re-inventions under royalty agreements with them. Although it is beyond the scope of this

paper to consider as to why Yawata was so altruistic as to domestically supply such a public good, this type of

free information-disseminating behavior has been frequently observed in other innovations, for example, blast
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furnace technology of Cleveland in the U.K. (Allen, 1983) and the Cornish pumping engine (Nuvolari, 2004).3

In all likelihood, Yawata’s voluntary knowledge spillovers helped disseminate its re-invented technologies.

Table 1 presents the diffusion processes of re-inventions across plants. While both re-invented technologies

were first deployed in the same year, i.e., 1962, the diffusion paths diverged thereafter; the MHL proliferated

fast and achieved full penetration across firms in 1965, when the OG system was adopted by half the existing

plants. The diffusion rates differed, because it was much easier for a plant to replace a conventional BOF

lance by the MHL, than to build gas recycling facility next to its furnace. The different diffusion rates

observed in the table allow us to separately identify the effects of the respective re-inventions on industry

growth and productivity, as discussed in Section 3.

The technological improvements conducted by Yawata received considerable attention from foreign steel-

makers as well. Although Yawata had licensed its re-invented technologies for royalty fees, the re-inventions

were highly appreciated abroad. For example, beginning with West Germany in 1963, the OG system was

adopted by more than 60 percent of the foreign steel manufacturers by the mid-1970s. Eventually, the

royalties obtained from this technology by the Japanese proved to be more than the amount they had paid

the Austrian company to obtain license rights for the BOF. In the next section, we quantitatively assess the

extent to which re-inventions contributed to the Japanese steel market in the 1950s and 1960s.

3 Economic Impacts of Re-inventions

This section, which comprises two subsections, analyzes the economic effects of re-inventions on industry

growth. Section 3.1 presents the method used to estimate the productivity of re-inventions in the steel refining

process, namely the MHL and OG systems. To achieve this, we require estimates of the production function

that describes the steel refining process of the BOF. The estimation results, also presented in this section,

indicate that re-inventions accounted for approximately 40 percent of the TFP increase in the BOF process.

Using the obtained estimates, Section 3.2 examines the steel output considering a hypothetical situation

in which Japanese steel companies do not adopt the MHL and OG systems. We find that re-inventions

indeed contributed to the expanded steel production, and without them, the output would have annually

increased by only 33 percent, which is considerably below the actual output growth of 40 percent. However,

the re-inventions did not lead to uniform benefits for all Japanese companies. In fact, our simulation result

indicates that the profits earned by the innovating company, Yawata, were more than 10 percent higher than

those earned by other companies.

3.1 Econometric Analysis of Production Function

3.1.1 Estimation Model

In this subsection, we empirically analyze the productivity of re-inventions, namely, the MHL and OG

systems, in steel production. For this, we first estimate the production function that describes the BOF

steel refining process. The BOF produces crude steel of homogenous quality, regardless of whether the MHL

3Lerner and Tirole (2002) attempt to explain this behavior in the context of open source software development.
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or the OG system is installed. Our econometric model of the production function assumes the following

Cobb-Douglas form (all variables are in logarithmic form).

yi,t = αi,t + βlli,t + βxxi,t + βkki,t + βzzi,t + ui,t (1)

where yi,t denotes the annual output (in tons) at plant i in year t. The production function comprises several

input variables. The electricity and labor inputs are denoted respectively by li,t and xi,t. The capacity size

is indicated by ki,t, and the number of years of the BOF use is denoted by zi,t. The latter variable captures

two aspects of capital utilization. On one hand, it reflects the experience level, i.e., the extent to which

extensive use of a particular furnace type leads to more efficient production. On the other hand, the variable

indicates the degree of capital depreciation, as furnace productivity deteriorates with age. The estimated

coefficient, βi,t, indicates which of the two effects is more dominant in our application. The production

function (1) implicitly assumes that, given the value of ki,t, the number of BOF’s owned by a plant does

not affect the production level for plant i in year t. Our estimation results discussed in the next subsection

relax this assumption and allow for discontinuity over multiple BOF’s in the capacity-size variable.

Since the MHL and OG systems contributed to improving yields and saving energy costs, we include the

effect of the re-inventions in the constant term, αi,t, as follows.

αi,t = γ0 + γMHL · MHLi,t + γOG · OGi,t (2)

in which MHLi,t (or OGi,t) indicates the extent to which the MHL (or OG system) was instituted at plant

i in year t, as presented in Table 1. Thus, either indicator takes the value in the range between 0 (when none

of the BOF furnaces in plant i had adopted the corresponding user innovation) and 1 (when all furnaces at

plant i adopted it).4 The Greek letters, βl, βx, βk, βz, γ0, γMHL,and γOG represent the parameters to be

estimated.

Note that yi,t is measured in terms of output quantity and not value added. Many studies use value

added, deflated by a common industry deflator, under the implicit assumption that the product market is

perfectly competitive. If this assumption is violated and the dispersion in output prices is observed, it is

difficult to obtain unbiased estimates of production-function parameters because the deflated sales differ

from the actual output (Klette and Griliches, 1996).

Apart from the explanatory variables mentioned in (1) and (2), an important influence on steel production

is the plant-level efficiency in production management and improvement in furnace technology, which are

not directly related with the re-invented technologies being studied herein. For example, Lynn (1982; 34)

illustrates the prolonged lives of refractories through the bricks used to line the BOF’s. Such unmeasured

determinants are represented by ui,t. The presence of this term may create endogeneity in input and

technology choices.

Endogeneity in input choice arises when producers adjust the amount of inputs (the amounts of labor

and electricity in our application) according to their efficiency differences in ui,t. A method that fails to

4We assume that MHLi,t (or OGi,t) takes a value equal to the proportion of the furnaces equipped with the MHL (or

the OG) systems in plant i in year t. Our estimation results discussed in this section are quantitatively unaltered under

the alternative assumption that the variable takes the value of 0.5, when some but not all furnaces in plant i adopted the

corresponding user innovation.
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account for such correlation would generate biased estimates. Our response to the endogeneity problem is

to use plant-, and year-specific components in the estimation — ui,t = λi + μt + εi,t, where εi,t denotes a

mean-zero error. The plant fixed component (λi) deals with efficiency differences among plants that do not

change over time. The inclusion of μt serves to control for industry-level supply shocks. Note that year-

specific components may attenuate effects of re-inventions. Even though we use the panel data, the impact of

technological improvements may be compounded by μt; this is because the re-inventions penetrated rapidly,

as indicated in Table 1. Thus, we should consider that the estimated coefficients may understate the actual

impacts of the re-inventions.

It may appear to be restrictive to assume that the plant fixed component is constant over time. However,

this assumption appears reasonable with respect to our data and is consistent with the observation that

the order of the plant-level production share remained constant during the sample period. Spearman’s rank

correlation coefficient in terms of the BOF production share is 0.82 at the 99 percent confidence level between

1957 and 1968; moreover, the deviation from perfect correlation is entirely due to plant entry. 5,6

Endogeneity (or selection) in choice of technology choice arises when a firm’s decision with regard to

the adaptation of re-invented technologies is not random but correlated to the productivity, ui,t. The

severity of the selection bias depends on the magnitude of the productivity difference between plants that

adopt re-invented technologies and those that do not. In theory, two hypotheses exist with regard to the

relationship between plant productivity and technology adoption. One is that the more productive plants are

likelier to adopt a new technology. For example, Caselli (1999) argues that skilled biased technology tends

to be adopted by plants with high human capital levels, because skill and technology are complementary

under strong learning-by-doing conditions. Since plants with more skilled workers are more productive,

this hypothesis implies that productive plants are more likely to adopt re-invented technologies.7 The

alternative hypothesis is related to technology leapfrogging. For example, Jovanovic and Nyarko (1996)

find an “overtaking” equilibrium in cases where less productive plants switch to a better technology more

often than do more productive plants. In their model, productive plants are experienced with regard to old

and familiar technologies, while the less productive plants are less attached to technologies. This extensive

experience prevents productive plants from adopting a new technology, while less productive plants show a

willingness to adopt it. This hypothesis suggests that less productive plants are likelier to adopt re-invented

technologies. The direction and severity of the selection bias is an empirical issue. Our specification corrects

for this selectivity of furnace technology using the instrumental variable technique.

5The stability of market share is often observed in other industries in Japan. See Sutton (2005) for details.
6An alternative method to control for unobserved productivity is to create a proxy for uit by introducing an input demand

equation from outside the production-function framework. A previous version of Nakamura and Ohashi (2006) attempted to

apply this method and reports that the infrequency of investment fails to use the Olley and Pakes (1996) method and that the

use of material input (pig iron and scrap in our case), as per the idea adopted from Levinsohn and Petrin (2003), generates

unreasonable productivity estimates. The Levinsohn-Petrin approach has also been recently criticized by Ackerberg, Caves,

and Frazer (2005). Based on these findings in the previous version, this paper does not employ these methods to control for

unobserved productivity.
7Our data set is unsuitable for testing a hypothesis related to wage premium and human capital. The purpose of the

discussion in this paper is to illustrate the importance of controlling for self-selection in the choice of technology.
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3.1.2 Estimation Results

Table 2 presents four estimation results, based on methods without (column 2-A; hereafter “no-FE”) and

with the plant fixed effects (column 2-B, 2-C, and 2-D; hereafter “FE”) discussed earlier in this section.

Specification (2-B) estimates (1) under the assumption of constant returns to scale across multiple BOF’s

owned by a plant, while (2-D) allows for different coefficients of capital depending on the number of fur-

naces. Specification (2-C) responds to the concern on self-selection regarding the adoption of re-invented

technologies. The upper part of the table presents estimates of the regression coefficients. Our inference is

based on heteroskedasticity-robust standard errors. The measure of adjusted R2 indicates that the model

fits the data moderately well, accounting for more than 60 percent of the variation in steel output.

Several coefficients in (2-A) are precisely estimated; however, we are concerned about endogeneity in input

choice. In particular, it is plausible that a more productive plant may be able to make more efficient use of

intermediate inputs (labor and electricity) to produce a given amount of steel. This leads to a correlation

between the intermediate inputs and the unobserved productivity error. The FE estimator accounts for the

bias. The estimates show that the mean values of the electricity and labor coefficients are higher than those

in (2-A); however, the difference is statistically insignificant.

The coefficients of capacity size and years of BOF use are precisely estimated in (2-B). The capacity-size

coefficient is less than one, indicating the existence of decreasing returns to scale. The elasticity of steel

output with respect to the plant-level capacity size is estimated on average as 0.38. We further examine the

capacity-size variable in (2-D). As discussed in the previous section, the variable representing the number of

years for which a plant had used the BOF captures the two effects. The estimated coefficient implies that

the experience effect dominates the depreciation effect. If a plant uses the BOF for a duration that is greater

than the mean value by one year, the steel production would increase by 5 percent.

A plant’s decision regarding the adoption of the MHL and OG systems would be endogenous if there were a

persistent relationship between plant productivity and the adoption timings of the re-invented technologies.

This concern would make the variables of re-inventions to correlate with the error in the equation (1).

Specification (2-C) attempts to correct for the endogeneity in the variables of the re-inventions included in

(1) and (2) by using a two-stage least squared (2SLS) method. Note that the endogenous variables, MHLi,t

and OGi,t, are continuous, thereby indicating the extent to which the respective technological improvements

penetrated at the plant level. We assume that the penetration of each re-inventions depends on the following

three variables, along with the exogenous variables included in (1), and we treat them as the instruments.

First, plant age, representing the number of years for which a particular plant had operated until time t.

An older plant may find it more difficult to adopt the re-invented technologies, because the layout of the

plant may not be suitable for the installation of technological improvements. This is probably logical in

that the old plant, when built, did not anticipate the introduction of the MHL and OG systems. Note

that this variable differs from zi,t, i.e., years of BOF operation, because many plants existed prior to the

introduction of the BOF. The other two instruments represent the average penetration rates of the respective

re-inventions for the other plants owned by the same firm. It is possible that experience with re-inventions

may have spilled over not only within a plant but also between plants within a firm. These two instruments

may be considered as appropriate in the presence of a within-firm experience spillover.

It is known that the 2SLS method can produce severely biased estimates if the instruments are weak.
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We thus check the explanatory power of instruments, conditional on the included exogenous variables in the

first stage of the 2SLS method. Table 2 reports the values of the F-statistics for corresponding re-inventions.

We find that the instruments described above are not weak at the 99 percent confidence level of F-statistics.

The estimated coefficients in (2-C) are obtained by regressing the dependent variable onto the exogenous

and fitted values of endogenous variables. The results reported in (2-C) indicate that the model does not fit

the data well, and some estimates are found to be of little statistical significance. The estimated coefficients,

including those of the re-invention variables, are statistically indifferent from the estimates reported in (2-B).

To check for the endogeneity of the re-invention variables, we compare the OLS and 2SLS estimates by the

Hausman test. The results shown in the table indicate that the test does not reject the adequacy of the OLS

estimates.

Note that the coefficients of the re-invention variables are estimated to be statistically insignificant.

Based on the discussion in the previous section, we conjecture that this is due to the rapid penetration of

the re-invented technologies. The effect of re-inventions, particularly the MHL, is likely to be compounded

by year-specific effects, μt, included in (1). Indeed, the first-stage regression performed in (2-C) shows that

it is only the year dummy variables indicating the period from 1964 to 1968 that explain the diffusion of

the MHL. Combining with the Hausman-test result, we conclude that the endogeneity in the adoption of

re-invented technologies is not severe, because such endogenous decisions are primarily explained by the

year-specific components, which are already included in (2-B).

Finally, the specifications discussed so far do not explicitly consider discontinuity in capacity size and

assume constant returns to scale across multiple furnaces owned by a plant that implemented the same

technology. All plants possessed multiple BOF’s, and the capacity size, in particular, changed only with

the number of furnaces operated by a plant. In order to test whether shifting from n- to (n+1)- furnace

operation (where n is an integer greater than zero) changes the capital elasticity of productivity, we estimate

different coefficients of capital by the number of furnaces. Due to the small sample size, we employ only

the following three cases of plant operation; zero-furnace operations, one- or two-furnace operations, and

operations with three or more furnaces. Thus, the model is specified as follows.

yi,t = αi,t + βlli,t + βxxi,t + βk1ki,t × 1 (0 < Ni,t ≤ 2) + βk2ki,t × 1 (2 < Ni,t) + βzzi,t + ui,t (3)

where Ni,t denotes the number of furnaces for plant i in year t, and 1 (·) is an indicator equal to one

if the expression within parenthesis is true. Hence, βk1 (or βk2) measures the differences in the capital

elasticities between zero-furnace operations and one- or two-furnace (or three- or more furnace) operations.

The other variables and parameters have already been introduced in the previous section. The estimation

result is reported in (2-D). The specification uses the fixed-effect method. As observed from (2-D), decreasing

returns to scale in capital are observed, and the estimated coefficients in the capacity-size variables are neither

economically nor statistically different from those reported in (2-B).

The estimates in the coefficients of γMHL and γOG indicate that both re-inventions improved the pro-

ductivity of steelmaking. The coefficient of the OG-system variable reported in (2-B) is estimated to be

significant both statistically and economically. For example, the estimates imply that Yawata, when it first

installed the OG system in 1962, achieved a productivity increase of 11.8 percent. 8 Moreover, the estimated

8Yawata installed the OG system for two BOF’s out of a total of seven furnaces; thus OGi,1962 takes the value of 0.286.
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MHL coefficient reported in (2-B) indicates that the re-invention, when fully penetrated across plants, en-

hanced the productivity by 6.4 percent. The estimated impact of the MHL appears to be consistent with

the information obtained from the trade journal. According to the Iron and Steel Institute of Japan (1982:

169), the MHL, when introduced in Yawata, boosted yield by 0.8 to 1.7 percent and shortened the hours

required for steel refining by a maximum of 5 percent (i.e., a reduction of about two minutes in the refining

process of approximately 45 minutes). The sum of these productivity increases, as documented in the trade

journal, turns out to be similar in magnitude to that inferred from our MHL estimate.

We analyze the extent to which re-inventions improved the aggregated TFP of the steel industry. We use

the estimates obtained from (2-B). Our productivity measure comprises the contributions of user-developed

re-inventions (represented by the second and third terms in the RHS of (2), and disembodied technical

progress (represented by ui,t). Industry productivity is calculated annually as the share-weighted average

of furnace and plant productivity. Thus, re-inventions are considered to improve industry productivity by

the corresponding share-weighted estimates of γMHL · MHLi,t + γOG · OGi,t. Figure 2 illustrates that the

re-inventions play an essential role in the growth of industry productivity. The estimated contribution of

re-inventions toward industry productivity is denoted by the dotted line. This shows that the adoption

of the MHL and OG systems accounts for more than 30 percent of industry productivity. The estimated

industry TFP shown in the figure indicates a high correlation with steel output, wherein the correlation

coefficient is 0.80. This finding corroborates with the observation made in Enos (1962), in that “in an industry

where startling innovations are relatively infrequent, accumulated improvements [namely, re-inventions in

this paper] tend to contribute just as much to technological progress.” (Enos, 1962: ix).

3.2 Simulation Analysis

In the previous section, our discussion was based on the production-function estimate that re-inventions

improved the productivity of steelmaking. In this section, we measure the impact of re-inventions on the

growth in industry output by examining the implications on the steel market if Japanese plants had not

installed the re-invented technologies and had continued with their BOF refining operation.

We conduct the following simulation exercise to determine a plant’s output level, while excluding long-

run strategies such as the level of production capacity as constant.9 We assume no adoption of re-invented

technologies in the period from 1962 to 1968. This assumption is equivalent to both OGi,t and MHLi,t that

take the value of zero, and thus αi,t in (2) equals γ0. We then calculate the new plant output for each year.

Since the introduction of re-inventions made no changes in the technical features of the BOF steel refining

process, we retain the nature of the production function (1) described in the previous section.

We assume that each plant chooses an amount of factor inputs that maximizes its own short-run profit

in each year t. 10 The production function (1) contains two factor inputs, namely, labor and electricity. We

assume that labor input cannot be chosen by plants in the short-run, because most Japanese companies,

including steel producers, vigorously adopted a permanent employment system. Indeed, turnover and layoffs
9Our simulation exercises do not allow for plant entry and exit. It is probably unreasonable to consider that the absence of

re-invented technologies triggers a plant’s entry, which is a decision that involves large sunk costs.
10Alternatively, we could assume that the firm maximizes its profits by solving its allocation problem across plants. Although

this alternative approach may be more realistic, modeling the multi-plant feature requires complex computational issues, which

are beyond the scope of this paper.
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were rarely observed during the study period. We thus consider electricity as the choice variable in the plant’s

optimization problem. The markets, both for steel output and factor inputs, are assumed to be competitive

with regard to the steel price pt and the electricity price ωt.11 Hence, plant i’s profit-maximization problem

in year t is given by.

max
Xi,t

ptYi,t − ωtXi,t − FCi,t (4)

s.t. (1)

where Yi,t and Xi,t denote the exponential transformation of yi,t and xi,t used in (1), and FCi,t denotes

the short-run fixed cost, including capital and labor costs for plant i in year t. To assess the counterfactual

scenario, we use the estimates from (2-B) in Table 2, replacing the estimated coefficients of OGi,t and

MHLi,t in (2) with zeros, and simulate the counterfactual plant output by solving the above optimization

problem (4). The obtained simulated output and input for plant i is denoted by Y 0
i,t and X0

i,t. Following

the same procedure, we simulate the model (4) with the actual values of OGi,t and MHLi,t, and obtain

the predicted values of the steel output for plant i, i.e., Y 1
i,t. We also denote the corresponding input by

X1
i,t. The industry outputs are calculated by summing over the obtained outputs across all plants as follows:

Y 0
t ≡ ∑

i Y 0
i,t and Y 1

t ≡ ∑
i Y 1

i,t. The results are presented in Figure 3. In order to facilitate comparisons

among the actual output and the two output estimates, we normalize them to be 100 in the year of 1961.

Note that re-invented technologies were introduced in the subsequent year. The comparison between Yi,t

and Y 1
i,t indicates that the model prediction understates the actual output level; however, the annual growth

rates of the two output measures are at a similar level of approximately 40 percent.

Figure 3 shows a significant contribution of re-inventions to the growth of Japanese steel output. To

obtain a conservative estimate, we compare the values of the simulated values of Y 0
t and Y 1

t . The difference

between the two series diverged as re-invented technologies penetrated across plants. The comparison of the

estimates shows that re-inventions increased the level of steel output by 23.2 percent, and the rate of output

growth by 5 percent. When the improvements were fully distributed in 1968, the re-inventions enhanced the

steel output by more than 28 percent. The figure illustrates that re-inventions accounted for approximately

a quarter of the steel output in the 1960s.

The adoption of re-invented technologies must have been profitable because the plants voluntarily installed

the MHL and OG systems. It would be interesting to examine if the benefits from plants adopting re-invented

technologies were equally obtained by firms adopting re-inventions or if they were concentrated to a particular

plant, especially a lead-user plant. While case studies have been conducted in the literature, including von

Hippel (1986), to conclude that the latter scenario is more likely to occur, little empirical research has been

available on the extent to which the innovation benefits are distributed across plants. To investigate this

issue, we use the model (4) and simulate the short-run profit for each plant. We maintain the assumption

of perfect competition for both the product and factor markets of steel, and assume that the values of the

fixed costs, FCi,t, are unaltered, regardless of whether or not plants installed the MHL and the OG systems.

The profit accrued to plant i that adopted the re-invented technologies is simulated as follows.
11The steel production process converts pig iron and scrap into crude steel. Thus, our price measure pit is the price of crude

steel, netted out of the sum of the pig iron and scrap prices.
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Π1
i,t − Π0

i,t ≡ (
ptY

1
i,t − ωtX

1
i,t − FCi,t

) − (
ptY

0
i,t − ωtX

0
i,t − FCi,t

)

= pt

(
Y 1

i,t − Y 0
i,t

) − ωt

(
X1

i,t − X0
i,t

)
,

where Π1
i,t (or Π0

i,t) represents plant i’s simulated profit in year t under the assumption that both OGi,t

and MHLi,t take the actual values (or take the values of zeros). Thus, the difference between Π1
i,t and

Π0
i,t indicates the additional monetary benefits obtained from a plant’s adoption of re-invented technologies.

The simulation results presented in Table 3 show that the inventing company, Yawata, was the largest

beneficiary of re-inventions; in our data set, Yawata’s benefit from the re-inventions was about 30 percent

larger than that of the second largest beneficiary, Fuji, and eighteen times larger than that of the company

that benefitted the least. This finding appears to indicate that Yawata, with the largest BOF production

in the Japanese steel market, was most motivated to create the MHL and OG systems. The results from

our ex-post simulation exercise analyzed in this section are consistent with the hypothesis proposed in von

Hippel (1986) that Yawata fits the lead-user role in the creation of the MHL and OG system.

4 Conclusion

New technologies often appear in a rough form. A long process of improvements is usually required in order

for such technologies to successfully prevail in the economy. This process of improvements occurs on the

sides of both producers as well as users. In this paper, we focused on the role of users in technological

improvements. It is anticipated, especially in the area of computer software, that users are playing an

increasingly important role in such innovative activities. Moreover, there has been scarce empirical research

to identify and assess the importance of re-inventions.

Using the unique example of the Japanese steel market, this paper empirically examined the economic

significance of re-invented technologies. The paper investigated two such re-inventions that were created

in Japan, namely, the MHL and OG systems. Both resolved technical problems inherent in the use of

BOF steel refining technology and improved its performance. The distinctive feature of these technological

improvements is that the MHL and OG systems were created by a user and not by a manufacturer of the

BOF. This paper examined the extent to which re-inventions affected industry output and productivity. The

estimates of the production function indicated that the re-invented technologies accounted for approximately

40 percent of the steel making productivity. The simulation results showed that the steel output in Japan

would have lowered by 20 percent without re-inventions. The paper also illustrated that the benefits of re-

invented technologies were concentrated to the innovating company, Yawata. This paper subscribed to the

view stated in trade journals and argued that re-inventions in the Japanese steel refining process in the 1960s

are consistent with the “lead-user” hypothesis proposed in von Hippel (1986). This paper corroborated that

Yawata benefitted most from re-inventions and states that Yawata freely disclosed pertinent information

concerning the technical details and the performance of their technological improvements to their domestic

competitors.

Although it focused on one specific example of steel refining technology, this paper quantitatively iden-

tified the fact that re-invented technologies contributed significantly to industry growth and presumably to

12



the economy. It is, however, important to note that the paper’s analysis is ex-post; that is, we considered

successful re-inventions with the benefit of retrospection. Although it is extremely difficult to collect data,

one avenue for future empirical research on re-inventions is to choose examples, preferably drawn from a

random sample based on ex-ante perspective. This will enable the study of not only successful re-invented

technologies but also failed or ineffectual innovations.

A Data Appendix

Our data set comprises annual plant-level data describing 19 plants and 8 Japanese steel firms for the period

1957 — 1968. The output and input data (except for labor and physical capital, as described below) were

obtained from the Japan Steel Federation (1955 – 1970). The data cover approximately 95 percent of the

total steel production throughout the study period. We focused on crude steel as the output. With regard

to the input, we collected data on the amount of electricity. Over 90 percent of the plants covered in the

data operated more than one furnace in a given year.

Data concerning labor input were constructed from the following two data sets: the number of workers at

the plant level (obtained from the Japan Steel Federation, 1955 – 1970) and the actual work hours averaged

over workers at the firm level (obtained from the Tekko Shimbun Co, 1955 – 1970). Data concerning the

number of workers were not disaggregated by furnace, unlike the other input data obtained from the same

source. This construction of the labor data is due to the fact that plant workers often operated both

types of furnaces. The labor input used for the estimation is expressed in terms of total man hours, which

is constructed from the number of plant-level workers multiplied by the actual work hours averaged over

workers at the firm level. Data pertaining to furnace capacity by plant was obtained from companies’

semiannual financial reports, which identify all furnace capacities for the 19 plants covered in our data. The

data recorded the capacity at the end of year t, and an investment was made only when a new furnace was

built.
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Yawata 1875.1

Annual Profits Generated by

TABLE 3

 the Adoption of Re-inventions

Fuji 1444.6
Sumitomo 1284.5

Nisshin 828.9
NKK 365.8

Kawasaki 306.1
Osaka 158.1
Kobe 100.0

Note:
  The values are obtained by the simulation 
method described in Section 3.
  They are normalized at 100
for the amount of profit yielded to Kobe.
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