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1 Introduction

In the overlapping generations (OLG) economy, competitive equilibrium might not achieve

an optimal allocation, even when markets operate perfectly, as in the Arrow-Debreu abstraction.

It is understood that this sort of inefficiency is caused by the lack of a transversality condition

at infinity. To design active policies (as social security) which remedy this type of inefficiency,

it is important to identify optimality with easily verifiable conditions.

Many of studies have characterized optimality in stochastic OLG models: Peled (1984),

Aiyagari and Peled (1991), Manuelli (1990), Chattopadhyay and Gottardi (1999), Chattopad-

hyay (2001, 2006), and Bloise and Calciano (2008) are such examples.1 However, deterministic

models have two primary optimality criteria: Pareto optimality and golden rule optimality. The

above-mentioned studies focused on conditional Pareto optimality (CPO) and ignored condi-

tional golden rule optimality (CGRO). Therefore, to complement the existing results on CPO,

it seems worthwhile to study CGRO.

To do so, this study considers a simple, but rather, canonical stochastic OLG model such

as that studied by Aiyagari and Peled (1991) and Chattopadhyay (2001). We then introduce

two optimality criteria, CPO and CGRO for stationary feasible allocations.2 According to these

criteria, agents’ welfare is evaluated by conditioning their utility on the state at the date of their

birth. Agents are thus distinguished not only by their type and date of birth but also by the

state at that date, and an agent’s preference is defined over a set of contingent consumption

streams available in the two periods of that agent’s lifetime. The difference between these two

criteria is clear: CPO copes with the welfare of the “initial old,” while CGRO does not.

This study first discusses the relationship between CPO and CGRO. It is often believed

that CGRO implies CPO and the set of CGRO allocations is strictly smaller than that of

CPO allocations. However, this study presents two examples violating these intuitions. One

of two examples is a situation wherein CGRO does not imply CPO. The other is a situation

wherein the sets of CPO and CGRO allocations coincide with each other, and thus there is no

CPO allocation which is not CGRO. We demonstrate that these two anomalous situations are

avoidable by imposing, for example, strict quasi-concavity and boundary conditions on lifetime

utility functions.

1These studies considered pure-endowment models, whereas Demange and Laroque (1999, 2000), Barbie et al.
(2007), and Gottardi and Kubler (2011) studied models with production.

2CPO was first proposed by Muench (1977).
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Under strict quasi-concavity of lifetime utility functions, this study characterizes both CPO

and CGRO of “stationary feasible” allocations, whereas the existing literature focuses on the

CPO of “(stationary) equilibrium” allocations. As an analogue of Pareto optimality in the

standard Arrow-Debreu economy, the all agents’ matrixes of marginal rates of substitution must

coincide with one another at a CPO or CGRO allocation. Although CPO of a stationary feasible

allocation is characterized by the dominant root of the matrix associated to the allocation being

less than or equal to unity, we find that CGRO of a stationary feasible allocation is characterized

by the dominant root of the matrix being exactly equal to unity. By these characterizations, we

might say that CGRO is stronger than CPO as an optimality criterion.

It is known that a stationary equilibrium allocation with valued money, if any, is CPO.3 By

applying our results to the issue of equilibrium welfare, this study concludes that a stationary

equilibrium allocation with valued money, if any, is not only CPO but also CGRO. This can be

interpreted as the first welfare theorem of the stochastic OLG economy with money. By the first

welfare theorem, we note that there might exist a CPO allocation that cannot be implemented

by any stationary monetary equilibrium with transfers. That is, the second welfare theorem

might not hold when we adopt CPO as an optimality criterion. By adopting CGRO, not CPO,

this study also provides the second welfare theorem, i.e., any interior CGRO allocation can be

achieved by a stationary monetary equilibrium under certain lump-sum transfers.

The organization of this paper is as follows: Section 2 presents details of the model. Section

3 defines CPO and CGRO and discusses the relationship between these two optimality criteria.

Section 4 characterizes CPO and CGRO for stationary feasible allocations under strict quasi-

concavity of utility functions. Section 5 introduces stationary equilibrium to the model and

applies results given in the previous section to equilibrium allocations. Section 6 presents welfare

theorems in the economy with financial assets. Section 7 concludes the paper. Proofs of results

are provided in the Appendix.

2 The Economy

This study considers a stationary, one-good, finite-state, pure-endowment stochastic over-

lapping generations model with finitely lived agents, as studied by Aiyagari and Peled (1991)

and Chattopadhyay (2001). Time is discrete and runs from t = 0 to infinity. Uncertainty is

3See also Sakai (1988).
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modeled by a stationary Markov process with its finite state space S such that 0 ̸∈ S. For each

t ≥ 0, we denote by st the state realized in period t, called period t state, where the initial state

s0 ∈ S is treated as given.4

After the realization of the state in each period t ≥ 1, a new generation, the members of

which are called newly born agents or simply agents, is born and lives for two periods. Let H

be a nonempty finite set of members of each generation. We will assume that the economy is

stationary, i.e., the endowments and preference structures of each agent depend only on the

realizations of the Markov state during his/her lifetime, not on time or on past realizations.

Thus, (i) the endowment stream of each agent h ∈ H born at state s ∈ S is denoted by

ωh
s = (ωh1

s , (ωh2
ss′)s′∈S) ∈ ℜ+ × ℜS

+ and (ii) his/her lifetime utility function is denoted by Uhs :

ℜ+ × ℜS
+ → ℜ, where ωh1

s and (ωh2
ss′)s′∈S describe the endowments at birth and all states in

the following period. It is assumed that ωh
s ≫ 0 and Uhs is strictly monotone increasing,

quasi-concave, and continuously differentiable on the interior of its domain.5

In addition, a one-period lived generation, the members of which are called initial old agents

or simply initial olds, is born after the realization of period 1 state s1 ∈ S. The set of the initial

olds is given by H as defined above. Each initial old h ∈ H born at period 1 state s1 is assumed

to be endowed with ω2h
0s1 := ω2h

s0s1 units of the consumption good in his/her lifetime and his/her

consumption streams ch20s1 ∈ ℜ+ is ranked according to a utility function u0(c
h2
0s1) := ch20s1 .

Let S0 := {0} ∪ S and ω̄ss′ :=
∑

h∈H(ω1h
s′ + ω2h

ss′) for each (s, s′) ∈ S0 × S, which is the total

endowment when the current and preceding states are s′ and s, respectively.6 We concentrate our

attention not on “all” feasible allocations but on “stationary” feasible allocations. A stationary

feasible allocation of this economy is a family c = {ch1, ch2}h∈H of functions ch1 : S → ℜ+ and

ch2 : S0 × S → ℜ+ such that

(∀(s, s′) ∈ S0 × S)
∑
h∈H

ch1s′ +
∑
h∈H

ch2ss′ = ω̄ss′ ,

where ch20s1 ∈ ℜ+ is the consumption of the initial old h born at period 1 state s1, and chs =

(ch1s , (ch2ss′)s′∈S) ∈ ℜ+×ℜS
+ is the consumption stream of the agent h born at the Markov state s.

Let A be the set of all stationary feasible allocations with its generic element c. Note that A is

4This study implicitly considers a standard date-event tree as seen in, for example, Chattopadhyay (2001).
Therefore, the initial state s0 can be interpreted as the root of the date-event tree.

5In the rest of this study, we denote by Uhs
1 (c1, c2) and Uhs

s′ (c
1, c2) the partial derivatives ∂Uhs(c1, c2)/∂c1 and

∂Uhs(c1, c2)/∂c2s′ for all h ∈ H, all s, s′ ∈ S, and all (c1, c2) ∈ ℜ+ ×ℜS
+, respectively.

6We introduce S0 to tell the consumption of the initial old from the agent’s consumption in the second period
of her life.
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nonempty, bounded, closed, and convex. A stationary feasible allocation c is interior if ch1s > 0

and ch2ss′ > 0 for all s, s′ ∈ S and all h ∈ H.

3 Optimality Criteria

This section introduces two criteria of optimality of stationary feasible allocations, CPO and

CGRO, and we discuss the relationship between these two criteria.

For any two stationary feasible allocations b, c ∈ A, we say that b CPO-dominates c if

(∀(h, s) ∈ H × S)
bh20s ≥ ch20s ,

Uhs(bhs ) ≥ Uhs(chs )

with strict inequality somewhere. CPO is then defined as follows:

Definition 1 A stationary feasible allocation c is said to be conditionally Pareto optimal if

there exists no other stationary feasible allocation b that CPO-dominates c.

CPO considers the welfare of the initial olds, whereas CGRO ignores it. For any two sta-

tionary feasible allocations b, c ∈ A, we say that b CGRO-dominates c if

(∀(h, s) ∈ H × S) Uhs(bhs ) ≥ Uhs(chs )

with strict inequality somewhere. CGRO is then defined as follows:

Definition 2 A stationary feasible allocation c is said to be conditionally golden rule optimal

if there exists no other stationary feasible allocation b that CGRO-dominates c.

These two criteria are analogues to those in a deterministic environment. In the rest of

this study, we often call a stationary CPO (CGRO) allocation, a CPO (CGRO) allocation. Let

CPO∗ and CGRO∗ be the sets of CPO and CGRO allocations, respectively.

Next we discuss the relationship between CPO and CGRO. It is often considered that

CPO∗ ⊃ CGRO∗, i.e., a CGRO allocation is also CPO. However, the following example demon-

strates that CGRO does not necessarily imply CPO.

Example 1 (CPO∗ ̸⊃ CGRO∗) The first example illustrates an anomalous situation such that

a CGRO allocation is not necessarily CPO. Consider the economy such that S = {α, β} and H

is a singleton. In this example, we ignore superscripts h (of endowments, consumptions, and

preferences), because H is a singleton. Suppose that ω2
ss′ is independent of the current state s for
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each s, s′ ∈ S. Note that, in this economy, we can rewrite the total endowment as ω̄ss′ ≡ ω̄s′ for

all s, s′ ∈ S. Also let U s(cs) = 2c1s+c2sα+c2sβ for each s ∈ S. In the current setting, one can easily

verify that, for every stationary feasible allocation c, it holds that Uα(cs) = ω̄α+ω̄β+c1α−c1β and

Uβ(cs) = ω̄α + ω̄β − c1α + c1β. Define the stationary feasible allocation x = {x1, x2} by x1s′ = ω̄s′

and x2ss′ = 0 for each (s, s′) ∈ S0 × S. Obviously, allocation x is well-defined and CGRO, not

CPO. In fact, for sufficiently small ε > 0, define the stationary feasible allocation y = {y1, y2}

by y1s′ = ω̄s′ − ε and y2ss′ = ε for each (s, s′) ∈ S0 × S. This allocation is well-defined. Further,

y CPO-dominates x, because it improves the initial old’s welfare.

This example, surprisingly, also illustrates a situation such that CPO∗ ̸⊃ CGRO∗ and

CPO∗ ⊂ CGRO∗, i.e., the set of CPO allocations is a proper subset of the set of CGRO

allocations. In fact, all stationary feasible allocations are CGRO and the set of CPO allocations

is given by {c ∈ A : c1α = 0} ∪ {c ∈ A : c1β = 0} in this example. The following proposition

provides a sufficient condition for avoiding situations illustrated in Example 1.

Proposition 1 CPO∗ ⊃ CGRO∗, i.e., every conditionally golden rule optimal allocation is

conditionally Pareto optimal if either

(a) for any x = (x1, x2), y = (y1, y2) ∈ ℜ+ × ℜS
+ with x1 ̸= y1, any α ∈ (0, 1), and any

(h, s) ∈ H × S, Uhs(αx+ (1− α)y) > min{Uhs(x), Uhs(y)}; or

(b) for any x = (x1, x2), y = (y1, y2) ∈ ℜ+ × ℜS
+ with x2 ̸= y2, any α ∈ (0, 1), and any

(h, s) ∈ H × S, Uhs(αx+ (1− α)y) > min{Uhs(x), Uhs(y)}

holds.

Proof of Proposition 1. See the Appendix. Q.E.D.

Note that both conditions (a) and (b) provided in this proposition hold, for example, under

strict quasi-concavity of lifetime utility functions. Thus, as a corollary of Proposition 1, we

can observe that CPO∗ ⊃ CGRO∗, provided that lifetime utility functions are strictly quasi-

concave. We can now say that CGRO is not a weaker criterion of optimality than CPO under

strict quasi-concavity of lifetime utility functions.

We have provided sufficient conditions that ensure that CGRO implies CPO. The natural

question following this result is whether CPO implies CGRO under such conditions. Although
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it may seem that there always exists a CPO allocation that is not CGRO, the following example

illustrates an anomalous situation, wherein such a CPO allocation does not exist, because the

sets of CPO and CGRO allocations coincide with each other.

Example 2 (CPO∗ = CGRO∗) The second example illustrates an anomalous situation such

that the sets of CPO and CGRO allocations coincide with each other. Consider the same

economy as Example 1 except for preferences. Let U s(cs) = c1s + ω̄α ln c
2
sα + ω̄β ln c

2
sβ for each

s ∈ S.7 This lifetime utility function satisfies the condition (b) of Proposition 1. In the current

setting, one can easily verify that, for every stationary feasible allocation c, it holds that U s(cs) =

c1s + ω̄α ln(ω̄α − c1α) + ω̄β ln(ω̄β − c1β) =: f s(c1α, c
1
β) for each s ∈ S. Note that (∂f s/∂c1s)(c

1
α, c

1
β) =

1 − ω̄s/(ω̄s − c1s) < 0 and (∂f s/∂c1s′)(c
1
α, c

1
β) = −ω̄s′/(ω̄s′ − c1s′) < 0 for any stationary feasible

allocation c with 0 < c1s < ω̄s and any s ̸= s′ ∈ S. Therefore, the stationary feasible allocation

x = {x1, x2} defined by x1s′ = 0 and x2ss′ = ω̄s′ for each (s, s′) ∈ S0 × S is the unique CGRO

allocation. Note that x is also the unique CPO allocation, and thus there is no CPO allocation

that is not CGRO in this economy.

This example illustrates an anomalous situation such that the set of CPO allocations is too

small to be distinguished from the set of CGRO allocations. In this example, such a situation

is caused by quasi-linearity of lifetime utility functions. As shown in the following proposition,

we can avoid situations such as those illustrated in Example 2 by imposing certain boundary

conditions on preferences.

Proposition 2 CPO∗ ⊃ CGRO∗ but CPO∗ ̸⊂ CGRO∗, i.e., there exists a conditionally Pareto

optimal allocation that is not conditionally golden rule optimal if, in addition to the condition

in the previous proposition, limch1s ↓0 U
hs
1 (ch1s , xh2s ) = ∞ for all xh2s ∈ ℜS

++ and all (h, s) ∈ H × S

holds.

Proof of Proposition 2. See the Appendix. Q.E.D.

This section concludes with the following example of Proposition 2, demonstrating the exis-

tence of a CPO allocation that is not CGRO.

Example 3 (CPO∗ ⊃ CGRO∗ but CPO∗ ̸⊂ CGRO∗) The third example illustrates a situa-

tion such that the sets of CGRO allocations will be a proper subset of the set of CPO allocations.
7In this and the next examples, we consider that ln(0) to be well defined at −∞.
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Consider the same economy as Example 1 except for preferences. Let U s(cs) = ω̄s ln c
1
s+c2sα+c2sβ

for each s ∈ S. This lifetime utility function satisfies both the condition (a) of Proposition

1 and the boundary condition of Proposition 2. Note that the stationary feasible allocation

x = {x1, x2} defined by x1s′ = 0 and x2ss′ = ω̄s′ for each (s, s′) ∈ S0 × S is a CPO alloca-

tion. In the current setting, one can easily verify that, for every stationary feasible allocation

c, U s(cs) = ω̄s ln c
1
s − c1α − c1β + (ω̄α + ω̄β) =: gs(c1α, c

1
β) for each s ∈ S holds. Note that

(∂gs/∂c1s)(c
1
α, c

1
β) = ω̄s/c

1
s−1 > 0 and (∂gs/∂c1s′)(c

1
α, c

1
β) = −1 < 0 for any stationary feasible al-

location c with 0 < c1s < ω̄s and any s ̸= s′ ∈ S. Therefore, the allocation x is not CGRO. In fact,

one can verify that, for sufficiently small ε > 0, the stationary feasible allocation y = {y1, y2}

defined by y1s′ = ε and y2ss′ = ω̄s′−ε for each (s, s′) ∈ S0×S is well-defined and CGRO-dominates

x, because it improves the welfare of newly born agents.

4 Characterizations of Optimality Criteria

In the previous section, we examined the relationship between CPO and CGRO. It has been

shown that CGRO implies CPO under strict convexity of preferences. Under such conditions,

this section explores differences in the characterizations of these two optimality criteria. Thus,

we strengthen the restrictions on the economy by assuming that Uhs is strictly quasi-concave

for all (h, s) ∈ H × S in the rest of this paper.

Given an interior stationary feasible allocation c, let mh
ss′(c) = Uhs

s′ (c
h
s )/U

hs
1 (chs ) and let

Mh(c) = [mh
ss′(c)]s,s′∈S , where Uhs

1 (chs ) = ∂Uhs(chs )/∂c
h1
s and Uhs

s′ (c
h
s ) = ∂Uhs(chs )/∂c

h2
ss′ . The

current restrictions on preferences imply that Mh(c) is a positive square matrix. By the Perron-

Frobenius theorem,8 any positive square matrix M has a unique dominant root. This paper

denotes by λf (M) the dominant root of a positive square matrix M .

This study now characterizes CPO and CGRO. The following result extends Aiyagari and

Peled (1991, Theorem 1) by characterizing the CPO of not an interior stationary “equilibrium”

allocation but of an interior stationary “feasible” allocation.

Theorem 1 An interior stationary feasible allocation c is conditionally Pareto optimal if and

only if there exists a S × S matrix M with positive coefficients such that

(∀h ∈ H) M = Mh(c)

8See, for example, Debreu and Herstein (1953) and Takayama (1974) for more details on the Perron-Frobenius
theorem.
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and its dominant root, λf (M), is less than or equal to unity.

Proof of Theorem 1. See the Appendix. Q.E.D.

By Proposition 1 and Theorem 1, we now know that a CGRO allocation satisfies λf (M) ≤ 1

for an appropriate positive square matrix M . However, can we characterize CGRO by a sharper

condition than this? The next result gives us more information on the characterization of CGRO

allocations, i.e., a CGRO allocation satisfies λf (M) = 1 for some appropriate positive square

matrix M :

Theorem 2 An interior stationary feasible allocation c is conditionally golden rule optimal if

and only if there exists a S × S matrix M with positive coefficients such that

(∀h ∈ H) M = Mh(c)

and its dominant root, λf (M), is equal to unity.

Proof of Theorem 2. See the Appendix. Q.E.D.

This section characterized optimality criteria of stationary feasible allocations by the domi-

nant root of a matrix related to them in an economy with strictly convex preferences. While the

dominant root of a matrix related to a CGRO allocation must be equal to one, whereas that to

a CPO allocation is allowed to be less than one.

Note that the dominant root criterion of CPO, not CGRO, provided in this section might

not be applied to linear lifetime utility functions. We conclude this section by presenting such

an example.

Example 4 (Linear Preferences) The fourth example illustrates an anomalous situation such

that the dominant root criterion is inapplicable. Consider the same economy as Example 1 ex-

cept for preferences. Let U s(cs) = δc1s + c2sα+ c2sβ for each s ∈ S, where δ > 0. For every interior

stationary feasible allocation c, one can easily calculate the dominant root λf of the matrix

M(c) as λf = 2/δ. We can thus obtain that λf < 1 if δ > 2, λf = 1 if δ = 2, and otherwise

λf > 1, where λf is the dominant root of the matrix M(c). For δ ∈ (0, 2)∪ (2,∞), the dominant

root criterion is applicable, i.e., all interior stationary feasible allocations are CPO if δ > 2 but

are not CPO if δ < 2. However, for δ = 2, all interior stationary feasible allocations are CGRO,

but not CPO, as shown in Example 1, although λf = 1.
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Strict quasi-concavity of lifetime utility functions, as assumed in this section, avoids the

anomalous situation illustrated in this example.

5 Optimality of Stationary Equilibrium Allocations

The previous section characterized optimality criteria of stationary “feasible” allocations.

These results also correspond to welfare analysis of stationary equilibrium. This section examines

the relationship between optimality criteria and stationary “equilibrium” allocations.

This section defines a stationary equilibrium such that, in each single period, the one-period

contingent claim market is complete:9

Definition 3 A pair (Π, c) of a positive price matrix Π = [πss′ ]s,s′∈S of contingent commodities

and a stationary feasible allocation c = (chs )(h,s)∈H×S is called a stationary equilibrium if

• for all (h, s) ∈ H × S, chs belongs to the set

argmax
(xh1

s ,xh2
s )∈ℜ+×ℜS

+

Uhs(xhs ) : x
h1
s +

∑
s′∈S

xh2ss′πss′ ≤ ωh1
s +

∑
s′∈S

ωh2
ss′πss′

 ,

• for all s, s′ ∈ S,
∑

h∈H(ch1s′ + ch2ss′) = ω̄ss′ .

In this definition, the former condition is the optimization problem of each agent (h, s) ∈

H × S, and the latter is the market clearing conditions.

Let (Π, c) be a stationary equilibrium with chs ≫ 0 for all (h, s) ∈ H × S, if any. Since, for

all (h, s) ∈ H × S, chs must be a solution of the optimization problem of agent (h, s), it follows

from the Kuhn-Tucker theorem that there exists some λhs ≥ 0 such that

Uhs
1 (chs ) =

∂Uhs

∂ch1s
(chs ) = λhs,

(∀s′ ∈ S) Uhs
s′ (c

h
s ) =

∂Uhs

∂ch2s′
(chs ) = λhsπss′ ,

where λhs is the Lagrange multiplier of the lifetime budget constraint. Note that λhs > 0,

because Uhs is strictly monotone increasing. Thus, we can observe that

(∀h ∈ H) Π = [πss′ ]s,s′∈S =

[
Uhs
s′ (c

h
s )

Uhs
1 (chs )

]
s,s′∈S

= Mh(c).

Therefore, the stationary equilibrium contingent claim price matrix Π can be always represented

by the matrix of marginal rates of substitution at the stationary equilibrium allocation c. This
9That is, we consider economy with sequentially complete markets.
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observation also states that all agents in the same generation must agree with the contingent

claim price matrix at stationary equilibrium.

The next two propositions follow immediately from the previous observation and Theorems

1 and 2, respectively.

Proposition 3 (Aiyagari and Peled,1991) For every stationary equilibrium (Π, c) with chs ≫

0 for all (h, s) ∈ H × S, c is conditionally Pareto optimal if and only if λf (Π) ≤ 1.

Proposition 4 For every stationary equilibrium (Π, c) with chs ≫ 0 for all (h, s) ∈ H × S, c is

conditionally golden rule optimal if and only if λf (Π) = 1.

These propositions characterize optimality of stationary equilibrium allocations. While the

CPO of stationary equilibrium allocations is characterized by the dominant root of the contingent

claim price matrix being less than or equal to one, their CGRO has the dominant root exactly

equal to one. Note that Proposition 3 extends Theorem 1 of Aiyagari and Peled (1991) by

allowing possibilities of heterogenous beliefs and nonseparability of preferences.

6 Welfare Theorems in Financial Economy

We described the optimality of stationary equilibrium allocations in the previous section.

One of the important implications of the previous propositions is that stationary equilibrium

allocations might be suboptimal even when markets are sequentially complete. It is known

that an introduction of an infinitely lived outside asset such as fiat money can remedy such

inefficiency. It is well known in the literature that an equilibrium with valued fiat money is

CPO. In this section, we use the previous analysis to show that a monetary equilibrium is

actually CGRO, and to show that the first and second theorems of welfare economics hold if the

criterion of optimality is CGRO. In order to introduce the possibility transfers, needed for the

second welfare theorem, we introduce in addition to fiat money a mondatory unfunded social

security system.

Mandatory unfunded social security. We consider lump-sum transfers as a social security

system. Each young h ∈ H pays τh1s′ at the current state s′ ∈ S. In contrast, each old

h ∈ H born at state s ∈ S0 receives τh2ss′ at the current state s′ ∈ S. It is assumed that

the transfer τ = {τh1, τh2}h∈H satisfies that τh11 < ωh1
s and τh2ss′ > −ωh2

ss′ for all (s, s
′) ∈ S0 × S.

10



It is also assumed that the authority’s policy is balanced, i.e.,
∑

h∈H τh1s′ =
∑

h∈H τh2ss′ for all

(s, s′) ∈ S0 × S.

The financial asset. There exists an infinitely-lived outside asset, fiat money, which is avail-

able in positive supply, is normalized to unity, and yields no dividend. As in the previous

section, we also consider sequentially complete contingent claim markets. We then introduce a

stationary monetary equilibrium:

Definition 4 A triplet (q,Π, c) of a real price vector of money q ∈ ℜS
++, a nonnegative matrix

Π = [πss′ ]s,s′∈S of contingent claims, and a stationary feasible allocation c = (chs )(h,s)∈H×S is

called a stationary monetary equilibrium with transfers τ if there exists money holdings m ∈

ℜH×S
+ , and portfolios of contingent claims [θhss′ ]s,s′∈S,h∈H ∈ (ℜS)H×S such that

• for all (h, s) ∈ H × S, (chs ,m
h
s , θ

h
s ) belongs to the set

argmax
(xh

s ,z,ξ)∈(ℜ+×ℜS
+)×ℜ×ℜS

{
Uhs(c) :

xh1s ≤ ωh1
s − τh1s − qsz −

∑
s′∈S πss′ξs′

(∀s′ ∈ S)xh2ss′ ≤ ωh2
ss′ + τh2ss′ + qs′z + ξs′

}
,

• for all s, s′ ∈ S,
∑

h∈H(ch1s′ + ch2ss′) = ω̄ss′ ,
∑

h∈H mh
s = 1, and

∑
h∈H θhs = 0.

In this definition, the former condition is the optimization problem of each agent (h, s) ∈ H ×S

with sequential budget constraints and the latter is the market clearing conditions. Remark

that, per Gottardi (1996), a stationary monetary equilibrium with transfers exists generically

and is locally isolated.10

We now demonstrate that the relationship between stationary monetary equilibrium and

CGRO is analogous to the fundamental theorems of welfare economics (welfare theorems) in the

standard Arrow-Debreu economy.

Theorem 3 Every stationary monetary equilibrium with transfers, if it exists and its allocation

is interior, achieves conditional golden rule optimality.

This theorem is an analogue of the first welfare theorem. As mentioned above, it has been

well-known that a stationary monetary equilibrium allocation (with sequentially complete mar-

ket) is CPO. However, since the definition of a stationary equilibrium does not any special role

10Further, for a stochastic overlapping generations economy, in which preferences are additively separable and H
is singleton, Ohtaki (2011) provides sufficient conditions for the existence and uniqueness of a stationary monetary
equilibrium.

11



to an initial date, so that the equilibrium is implicitly considered on (−∞,+∞), the equilibrium

allocation is actually CGRO.

Note that there might exist a CPO allocation that cannot be implemented as a stationary

monetary equilibrium, because stationary monetary equilibrium always achieves CGRO. There-

fore, the second welfare theorem might not hold in stochastic OLG models if we adopt CPO as

an optimality criterion. However, the following theorem shows that the second welfare theorem

holds when we adopt CGRO, not CPO, as an optimality criterion.

Theorem 4 Every interior conditionally golden rule optimal allocation, if any, can be achieved

by a stationary monetary equilibrium with transfers.

This theorem is an analogue of the second welfare theorem. As noted above, we might not

be able to obtain this theorem when we adopt CPO instead of CGRO as an optimality criterion.

Theorem 4 has an important implication, i.e., any interior CGRO allocation can be implemented

as a stationary monetary equilibrium under an appropriate social security system.11

7 Conclusion

In a stochastic overlapping generations model, there exist two familiar criteria of optimality:

conditional Pareto optimality (CPO) and conditional golden rule optimality (CGRO). This study

has examined the relationship between these two criteria. Contrary to a familiar intuition, this

study presents an example such that the set of CPO allocations become a proper subset of CGRO

allocations. It has been shown that such an anomalous situation is avoidable by assuming strictly

convex preferences.

The study has also examined how these two concepts are distinguished in their character-

izations under such preferences. We have shown that both these criteria are characterized by

conditions on the dominant root of the agents’ common matrix of marginal rates of substitution.

While CPO allows the dominant root of the matrix to be less than unity, CGRO requires that

it is exactly equal to unity, because CPO copes with an initial condition, whereas CGRO does

not. Thus, on the basis of their characteristics, we might say that CGRO is stronger than CPO

as a criterion of optimality.

11Demange and Laroque (1999) also provided welfare theorems similar to ours. However, while their results
were given in an economy with identical agents, our results are shown in an economy with heterogenous agents.
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It has been known that a stationary monetary equilibrium achieves CPO. By applying our

results to welfare on stationary monetary equilibrium, we can conclude that a stationary mon-

etary equilibrium achieves not only CPO but also CGRO. This result can be interpreted as the

first welfare theorem. Further, by adopting CGRO rather than CPO as an optimality criterion,

this study has presented the second as well as the first welfare theorems in financial economy.

These results complement existing results for CPO.

Appendix

Proof of Proposition 1. Suppose the contrary that there exists some CGRO allocation c ∈ A

that is not CPO. Because c is not CPO, there exists some stationary feasible allocation b that

CPO-dominates c, i.e., b satisfies that

(∀(h, s) ∈ H × S)
bh20s ≥ ch20s ,

Uhs(bhs ) ≥ Uhs(chs )

with strict inequality somewhere. If b satisfies that

(∃(h, s) ∈ H × S) Uhs(bhs ) > Uhs(chs ),

then c is not CGRO and contradicts the hypothesis that c is also. Thus, we assume without loss

of generality that

(∃(k, τ) ∈ H × S) bk20τ > ck20τ .

We first claim that bi1j ̸= ci1j for some (i, j) ∈ H × S. Suppose the contrary that bh1s = ch1s

for all (h, s) ∈ H × S. Because both c and b are stationary feasible allocations, it follows that

(∀s′ ∈ S) ω̄0s′ −
∑
h∈H

bh20s′ =
∑
h∈H

bh1s′ =
∑
h∈H

ch1s′ = ω̄0s′ −
∑
h∈H

bh20s′ ,

which implies that
∑

h∈H bh20s′ =
∑

h∈H bh20s′ . However, this contradicts the hypothesis that bh20s ≥

ch20s for all (h, s) and bk20τ > ck20τ , which implies that
∑

h∈H bh20s′ >
∑

h∈H bh20s′ . Therefore, bi1j ̸= ci1j

for some (i, j) ∈ H × S.

We then claim that bi
′2
j′ ̸= ci

′2
j′ for some (i′, j′) ∈ H ×S. Suppose the contrary that bh2s = ch2s

for all (h, s) ∈ H × S. Because both c and b are stationary feasible allocations, we obtain that,

for all s, s′ ∈ S,∑
h∈H

(ch20s′ − ch2ss′)

= ω̄0s′ − ω̄ss′

=
∑
h∈H

(bh20s′ − bh2ss′),
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which implies that

(∀s′ ∈ S)
∑
h∈H

ch20s′ =
∑
h∈H

bh20s′ ,

because bh2s = ch2s for all (h, s) ∈ H×S. However, this contradicts the hypothesis that bh20s ≥ ch20s

for all (h, s) and bk20τ > ck20τ . Therefore, b
i′2
j′ ̸= ci

′2
j′ for some (i′, j′) ∈ H × S.

Now, let d := αc+(1−α)b for some α ∈ (0, 1). It is a stationary feasible allocation, because∑
h∈H

dh1s′ +
∑
h∈H

dh2ss′

= α
∑
h∈H

(ch1s′ + ch2ss′) + (1− α)
∑
h∈H

(bh1s′ + bh2ss′)

= ω̄ss′

for all (s, s′) ∈ S0 × S. It also follows from quasi-concavity of utility functions that

(∀(h, s) ∈ H × S) Uhs(dhs ) ≥ Uhs(chs )

with strict inequality at either (i, j) or (i′, j′), where the strict inequality follows from the

restrictions (a) and (b) on lifetime utility functions, the facts that bi1j ̸= ci1j and bi
′2
j′ ̸= ci

′2
j′ , and

the hypothesis that Uhs(bhs ) ≥ Uhs(chs ) for all (h, s) ∈ H × S. This contradicts the hypothesis

that c is a CGRO allocation. Q.E.D.

Proof of Proposition 2. It is obvious that the stationary feasible allocation x = {x1, x2} defined

by xh1s′ = 0 and xh2ss′ = ω̄ss′ for every (s, s′) ∈ S0 ×S is well-defined and CPO, because any other

stationary feasible allocation revises the initial olds’ welfare for the worse. It is sufficient to show

that this x is not CGRO. However, the existence of a stationary feasible allocation that CGRO-

dominates x follows immediately from the given boundary condition that limch1s ↓0 U
hs
1 (ch1s , ch2s ) =

∞ for all ch2s ∈ ℜS
++ and all (h, s) ∈ H × S. Q.E.D.

Proof of Theorem 1. Let c be an interior stationary feasible allocation. It is easy to verify that

c is CPO if and only if there exist Pareto weights γ : H × S → ℜ++ and γ0 : H × S → ℜ+ such

that

c ∈ argmax
b∈A

 ∑
(h,s)∈H×S

γhsUhs(bhs ) +
∑

(h,s)∈H×S

γhs0 bh20s

 .

Define the Lagrangian L by

L =
∑

(h,s)∈H×S

(
γhsUhs(chs ) + γhs0 ch20s

)
−

∑
(s,s′)∈S0×S

λss′

ω̄ss′ −
∑
s′∈S

(ch1s′ + ch2ss′)

 ,
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where λ is the Lagrange multipliers for the resource constraint. Note that the objective function

is strictly quasi-concave. Therefore, by Arrow and Enthoven (1961), the CPO of c can be

completely characterized by the existence of Pareto weights γ : H×S → ℜ++ and γ0 : H×S →

ℜ+ and Lagrange multipliers λ : S0 × S → ℜ+, which satisfy that

(∀(h, s) ∈ H × S) γhsUhs
1 (chs ) =

∑
s′∈S

λs′s + λ0s, (1)

(∀(h, s) ∈ H × S)(∀s′ ∈ S) γhsUhs
s′ (c

h
s ) = λss′ , (2)

(∀(h, s) ∈ H × S) γhs0 − λ0s ≤ 0 with equality if ch20s > 0. (3)

Therefore, we should claim equivalence between the existence of γ, γ0, and λ, satisfying Eqs.(1)–

(3), and the existence of a positive square matrix M satisfying that

(∀h ∈ H) M = Mh(c)

and λf (M) ≤ 1. This study, however, omits the proof of this claim because it is nearly identical

to that of Theorem 1 of Aiyagari and Peled (1991). Q.E.D.

Proof of Theorem 2. We first claim that, for each interior stationary feasible allocation c and

each s ∈ S, there exists some h′ ∈ H such that ch
′2

0s > 0. To verify this claim, let c be an interior

stationary feasible allocation and s ∈ S. Because c is a stationary feasible allocation, we can

obtain that, for all s ∈ S,∑
h∈H

ch1s +
∑
h∈H

ch2s̃s

= ωs̃s

= ω0s

=
∑
h∈H

ch1s +
∑
h∈H

ch20s ,

which implies that

(∀s ∈ S) 0 <
∑
h∈H

ch2s̃s =
∑
h∈H

ch20s ,

where the first inequality follows from the fact that c is interior. Therefore, for each s ∈ S, there

exists at least one element h′ ∈ H such that ch
′2

0s > 0 because ch20s ≥ 0 for every (h, s) ∈ H × S.

Let c be an interior stationary feasible allocation. It is easy to verify that c is a CGRO

allocation if and only if there exist Pareto weights γ : H × S → ℜ++ such that

c ∈ argmax
b∈A

∑
(h,s)∈H×S

γhsUhs(bhs ).
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Define the Lagrangian L by

L =
∑

(h,s)∈H×S

γhsUhs(chs )−
∑

(s,s′)∈S0×S

λss′

ω̄ss′ −
∑
s′∈S

(ch1s′ + ch2ss′)

 ,

where λ is the Lagrange multipliers for the resource constraint. Note that the objective function

is strictly quasi-concave. Therefore, by Arrow and Enthoven (1961), the CGRO of c can be

completely characterized by the existence of Pareto weights γ : H × S → ℜ++ and Lagrange

multipliers λ : S0 × S → ℜ+ which satisfy that

(∀(h, s) ∈ H × S) γhsUhs
1 (chs ) =

∑
s′∈S

λs′s + λ0s, (4)

(∀(h, s) ∈ H × S)(∀s′ ∈ S) γhsUhs
s′ (c

h
s ) = λss′ , (5)

(∀(h, s) ∈ H × S) − λ0s ≤ 0 with equality if ch20s > 0. (6)

Note that, by the previous claim, we can treat λ0s as zero for each s ∈ S, because, for each

s ∈ S, there exists h′ ∈ H such that ch
′2

0s > 0 and λ0s is independent of index h. Therefore, we

can ignore Eq.(6) and remove λ0s from Eq.(4).

We should now claim the equivalence between the existence of γ and λ satisfying Eqs.(4)

and (5) with λ0s = 0 and the existence of positive square matrix M satisfying

(∀h ∈ H) M = Mh(c)

and λf (M) = 1. Assume the existence of γ and λ satisfying Eqs.(4) and (5) with λ0s = 0 to

show the existence of positive square matrix M satisfying λf (M) = 1. Note that, by strict

monotonicity of Uhs, mh
ss′(c) is positive for all h and all s, s′ ∈ S. We can then obtain from

Eqs.(4) and (5) with λ0s = 0 that

(∀h ∈ H)(∀s, s′ ∈ S) mh
ss′(c) =

λss′∑
τ∈S λτs

,

so that we can ignore the superscript h (and c) of mh
ss′(c), i.e., for all s, s

′ ∈ S, there exists some

positive number mss′ such that mss′ = mh
ss′(c) for all h ∈ H. Then, it follows that

(∀s, s′ ∈ S) λss′ =
∑
τ∈S

λτsmss′ .

Summing this equation over s ∈ S, we have

(∀s, s′ ∈ S) α = αM,

where αs :=
∑

τ∈S λτs and M := [mss′ ]s,s′∈S = Mh(c) for all h ∈ H. Note that M is an S × S

matrix with positive coefficients. Therefore, it follows from the Perron-Frobenius theorem that

λf (M) = 1.
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Assume now that the existence of positive square matrix M satisfying

(∀h ∈ H) M = Mh(c)

and λf (M) = 1. Because M is an S × S matrix with positive coefficients, we can pick up the

row eigenvector α ≫ 0 of M . Note that it satisfies that α · (I −M) = 0, where I is the S × S

identity matrix. For all h ∈ H and all s, s′ ∈ S, define γhs and λss′ by

γhs :=
αs

Uhs
1 (chs )

,

λss′ := γhsUhs
s′ (c

h
s ).

By their definitions, we can obtain that

(∀s, s′ ∈ S) λss′ = αs
Uhs
s′ (c

h
s )

Uhs
1 (chs )

= αsmss′ ,

so that αs′ =
∑

s∈S λss′ for all s
′ ∈ S. It is now easy to verify that γ and λ satisfies Eqs.(4) and

(5) with λ0s = 0. This completes the proof. Q.E.D.

Proof of Theorem 3. By the sequential budget constraints of an agent, we can obtain the agent’s

lifetime budget constraint such that: for all (h, s) ∈ H × S,

dh1s +
∑
s′∈S

dh2ss′πss′ ≤ ωh1
s − τh1s +

∑
s′∈S

(ωh2
ss′ + τhsss′)πss′ +

∑
s′∈S

πss′qs′ − qs

 z.

By this equation, we can obtain the no arbitrage condition when the money price is positive,

i.e., q = Π · q for any stationary monetary equilibrium (q,Π, c) with transfers. To show this, we

should verify that

(∀s ∈ S) qs =
∑
s′∈S

πss′qs′ .

Suppose the contrary that qs ̸=
∑

s′∈S πss′qs′ for some s ∈ S. If qs <
∑

s′∈S πss′qs′ , then, for

all h ∈ H, agent (h, s) will choose ∞ as z and his/her optimization problem has no solution.

However, if qs >
∑

s′∈S πss′qs′ , then, for all h ∈ H, agent (h, s) will choose −∞ as z and

his/her optimization problem has no solution. In any cases, we obtain a contradiction, so that

qs =
∑

s′∈S πss′qs′ for all s ∈ S.

Let (q,Π, c) be a stationary monetary equilibrium (q,Π, c) with chs ≫ 0 for all (h, s) ∈ H×S.

We have obtained that Π · q = q. Because qs is now positive for all s ∈ S, it follows from the

Perron-Frobenius theorem that the S × S matrix Π with positive coefficients has the dominant
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root equal to unity. This completes the proof of Theorem 3. Q.E.D.

Proof of Theorem 4. Let c = {c1, c2} be an interior CGRO allocation. Because it is CGRO,

there exists some positive matrix Π = [πss′ ]s,s′∈S such that Π = Mh(c) for all h ∈ H and its

dominant root is equal to one, i.e., λf := λf (Π) = 1. By the Perron-Frobenius theorem, there

exists a unique q ∈ ℜS
++ (up to normalization) such that Π · q = λfq. Choose the Euclidean

norm of q to be small enough and take any m = {mh
s}(h,s)∈H×S ∈ ℜH×S

++ , any τ = {τh1, τh2}h∈H ,

and any θ = [θhs,s′ ]s,s′∈S,h∈H to satisfy (a) the budget constraint in the first period of each agent

(h, s) ∈ H × S:

ch1s = ωh1
s − τh1s − qsm

h
s −

∑
s′∈S

πss′θ
h
ss′ ; (7)

(b) ωh1
s > τh1s and τh2ss′ > ωh2

ss′ for h ∈ H and s, s′ ∈ S; (c)
∑

h∈H mh
s = 1 and

∑
h∈H θhs = 0 for

s ∈ S; and (d)
∑

h∈H τh1s =
∑

h∈H τh2s′s for all (s′, s) ∈ S0 × S.12 By their constructions, the first

order conditions of all agents’ optimization problems at the stationary monetary equilibrium are

satisfied. Q.E.D.
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