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1 Introduction

This paper considers the stochastic overlapping generations (SOLG) economy. To our best

knowledge, it has not been given any graphical devices yet, whereas it is one of the most

important models in economics.1 Therefore, this paper develops a new, tractable graphic device

for analyzing the SOLG economy. This helps our intuitive understanding on the SOLG economy.

Our graphical device is similar to the Edgeworth box diagram in the sense that the set of all

stationary feasible allocations is depicted in an appropriate box. Adding to indifference curves

and the budget lines to the box diagram, we can draw the set of conditionally Pareto optimal

allocations and can find stationary equilibrium with a valued outside asset.2

Our box diagram has great possibility of applications and extensions. It will be able to

give us new insights to lots of economic phenomena. As an example of applications, this paper

reconsiders the stochastic bubbles studied per Weil [20]. In his setting, the box diagram is drawn

as a square. Stochastic bubbles are defined by a special case of stationary sunspot equilibrium.

By using the box diagram, we can find visually a necessary and sufficient condition for the

existence of stochastic bubbles.

The construction of this paper is as follows. Section 2 develops the graphical device: In

Subsection 2.1, we present a detail of the economy considered in this paper. Subsection 2.2

introduces the box that depicts the set of allocations, and adds indifference curves in the box

diagram. Subsection 2.3 draws CPO and CGRO allocations in the box diagram. Subsection 2.4

finds a stationary monetary equilibrium in the box. Here, we also demonstrate welfare theorems

by using the box diagram. Subsection 2.5 presents a numerical example. Section 3 provides an

application of the box diagram to the issue on the stochastic bubbles.

2 The Box Diagram

2.1 The Economy

This paper considers a stationary, two-state, one-good pure-endowment stochastic overlap-

ping generations model with two-period-lived identical agents. Time is discrete and runs from

t = 0 to infinity. Uncertainty is modeled by a stationary, two-state Markov process with its
1In fact, the SOLG economy is applied to a wide range of economics: social security designs [6, 7], financial

mechanism designs [11], monetary theory [21], business cycle theory [17], and banking theory [8] are such examples.
2Lots of theoretical studies on SOLG models exist: [1, 5, 6, 7, 14, 16, 18, 19] for optimality of allocations; and

[6, 9, 13, 14, 15] for existence of stationary monetary equilibrium, for example.
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state space S := {α, β}. The initial state s0 ∈ S is treated as given. For any t ≥ 1, we denote

by st the state realized in period t, which we simply call period t state.

The total endowment in period t ≥ 1 is denoted by ω̄t ∈ ℜ++. For any period t ≥ 1, it is

assumed that ω̄t depends only on the state st realized in that period, i.e., the total endowment

in period t can be rewritten as ω̄t = ω̄st . After the realization of the state in each period, one

new agent is born and lives for two periods. A contingent consumption stream of the agent born

at period t ≥ 1 is denoted by ct = (c1t , {c
2
t (st+1)}st+1∈S) ∈ ℜ+ × ℜ

S
+. Agent t ≥ 1 evaluates

the contingent consumption streams ct by a lifetime utility function U t : ℜ+ × ℜ
S
+ → ℜ. We

assume that agent t’s preference U t depends on st rather than t itself, so that we rewrite agent

t’s preference as U st . It is assumed that U s : ℜ+ × ℜ
S
+ → ℜ is increasing, quasi-concave, and

continuously differentiable for each s ∈ S. In addition, a one-period lived agent, called the initial

old, is born after the realization of period 1 state s1 ∈ S and is assumed to rank her consumption

streams c20(s1) ∈ ℜ+ according to a utility function u0(c
2
0(s1)) := c20(s1).

Let S0 := {0} ∪ S. To provide a tractable graphical device, we concentrate our attention on

not “all” feasible allocations but “stationary” feasible allocations. A stationary feasible allocation

is a family c = (c1, c2) of functions c1 : S → ℜ+ and c2 : S0 × S → ℜ+ such that

(∀(s, s′) ∈ S0 × S) c1s′ + c2ss′ = ω̄s′ , (1)

where c20s1 is the consumption of the initial old at period 1 state s1 and (c1st , (c
2
sts′

)s′∈S) is

the contingent consumption stream of the agent born at st in period t. A stationary feasible

allocation (c1, c2) is interior if c1s′ > 0 and c2ss′ > 0 for all s, s′ ∈ S.

2.2 The Box and Indifference Curves

By Eq.(1), one can easily observe that every stationary feasible allocation (c1, c2) satisfies

that c20s′ = ω̄s′ − c1s′ = c2ss′ for each s, s′ ∈ S. This observation says that an agent’s consumption

in the second period of her lifetime depends only on the state realized in that period, not on the

state at which she is born. Henceforth, we often identify a stationary feasible allocation (c1, c2)

with (x1, x2) ∈ ℜS
+ ×ℜ

S
+ satisfying that (x1s′ , x

2
s′) = (c1s′ , c

2
0s′) for all s

′ ∈ S. Thus, the condition

(1) can degenerate into the system of at most two equations:

x1α + x2α = ω̄α and x1β + x2β = ω̄β .

Note that these equations imply that, for any stationary feasible allocation, there is one-to-one

relation between the first- and the second-period consumption vectors. Therefore, we can depict
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Figure 1: Range of Stationary Feasible Allocations

the range of stationary feasible allocations in the at most two-dimensional Euclidean space as

shown in Figure 1. In the box of this figure, the vertical axis measures the total amount of the

commodity β and the horizontal axis does that of the commodity α. The width and the height

of the box are ω̄α, the total endowment of the commodity α, and ω̄β , the total endowment of

the commodity β. In the box, the southwest corner is the origin to measure the second-period

contingent consumption plan, O2, and the northeast corner is the origin to measure the first-

period consumption contingent upon the realization of states, O1. At the point W in the box,

for example, agent born at state st = s ∈ S consumes ω1
s and (ω2

α, ω
2
β) in the first- and the

second-period, respectively. Similarly, the initial old born at s1 = s consumed ω2
s at W .

We now add indifference curves to the box. Let Xs := {(x2α, x
2
β) ∈ ℜ

2
+ : x2s ≤ ω̄s} for

s ∈ S. Since our attention is concentrated on the space of stationary feasible allocations, which

is depicted by Figure 1, we restrict the preference of agent st ∈ S as follows:

(∀(x2α, x
2
β) ∈ Xs) Ũ s(x2α, x

2
β) = U s(ω̄s − x2s, x

2
α, x

2
β).

Since lifetime utility functions are quasi-concave, the upper contour set of Ũ s with the utility

level a, {x ∈ Xs : Ũ s(x) ≥ a}, is a convex set for each s ∈ S. By totally differentiating the
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(a) (b)

Figure 2: Indifference Curves: (a) For newly born agent α, (b) For β

(a) (b)

Figure 3: Indifference Curves: (a) For the initial old α, (b) For β

restricted lifetime utility function, we can obtain the slope of an indifference curve at x2 ∈ Xs:

∆x2β
∆x2α

=
Uα
1 (ω̄α − x2α, x

2
α, x

2
β)− Uα

α (ω̄α − x2α, x
2
α, x

2
β)

Uα
β (ω̄α − x2α, x

2
α, x

2
β)

for the agent born at α and

∆x2β
∆x2α

=
Uβ
α (ω̄β − x2β , x

2
α, x

2
β)

Uβ
1 (ω̄β − x2β, x

2
α, x

2
β)− Uβ

β (ω̄β − x2β , x
2
α, x

2
β)

for the agent born at β, where U s
1 = ∂U s/∂c1s and U s

s′ = ∂U s/∂c2ss′ for s, s
′ ∈ S. Therefore, by im-

posing the boundary conditions such that limc1s↓0
U s
1 (c

1
s, c

2
sα, c

2
sβ) =∞ and limc2ss↓0

U s
s (x, c

2
sα, c

2
sβ) =

∞ on lifetime utility functions in addition to (strict) quasi-concavity, we can observe that each

of indifference curves of agents born in and after period 1 is depicted by the U-shaped curve
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Figure 4: The Box Diagram

as in Figure 2.3 As shown in this figure, one can easily verify that the lifetime utility of agent

s ∈ S increases when the consumption of commodity s′ 6= s increases. On the other hand, we

can draw the initial olds’ indifference curves as the straight lines as shown in Figure 3. This is

because they are interested in only their consumption at the Markov state which they observed.

Figure 4 adds indifference curves to the box introduced above, i.e., the figure summarizes

Figures 1, 2, and 3. This box diagram is our graphical device for analyzing SOLG economy.4

2.3 Conditional Optimality

This paper introduces two optimality criteria: conditional Pareto optimality (CPO) and

conditional golden rule optimality (CGRO). This subsection depicts the sets of CPO and CGRO

allocations in our box diagram. A stationary feasible allocation (c1, c2) is conditionally Pareto

optimal if there is no other stationary feasible allocation (b1, b2) such that

(∀s′ ∈ S) b20s′ ≥ c20s′ ,

(∀s, s′ ∈ S) U s(b1s, b
2
sα, b

2
sβ) ≥ U s(c1s, c

2
sα, c

2
sβ)

3If the boundary conditions are not satisfied, indifference sets will not necessarily be U-shaped curves. Quasi-
linear utility functions are such examples.

4The author welcomes future generations who call our box diagram the Ohtaki box.
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Figure 5: Conditional Pareto Optimality

with strict inequality somewhere. On the other hand, a stationary feasible allocation (c1, c2) is

conditionally golden rule optimal if there is no other stationary feasible allocation (b1, b2) such

that

(∀s, s′ ∈ S) U s(b1s, b
2
sα, b

2
sβ) ≥ U s(c1s, c

2
sα, c

2
sβ)

with strict inequality somewhere.5 In Figure 4, one can easily find that the given stationary

feasible allocation W is neither CPO nor CGRO. In fact, the shaded area in Figure 4 depicts

the set of stationary feasible allocations, which improve the stationary feasible allocation W in

the sense of CPO.

We now turn to depict CPO and CGRO allocations in the box diagram. The set of CPO

and CGRO allocations can be drawn as the Pareto set and the golden rule curve in Figure 5,

respectively. One should notice that, by the definition of CGRO, each CGRO allocation can be

drawn as the point, at which the indifference curves of both agents α and β are tangent to each

other. This is an analogue of how to draw Pareto optimal allocations in the Edgeworth box.

Also notice that CPO of shaded area in Figure 5 follows from the fact that, in the area, one
5CPO copes with welfare on the initial olds, while CGRO does not. The relationship between these two criteria

was studied in detail by [16].
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must make at least one agent or at least one initial old worth off to improve welfare of either of

them.6

2.4 Stationary Monetary Equilibrium and Welfare Theorems

In the previous subsection, we have studied optimal allocations. As a device of implementing

such allocations, this subsection considers stationary monetary equilibrium. Before introducing

such an equilibrium, we suppose the private ownerships on the endowment. For any s = α, β,

let (ω1
s , ω

2
α, ω

2
β) ∈ ℜ

3
++ be the initial endowment stream of the agent born at s. We denote by

ω the initial allocation associated with the initial endowments. Of course, it must satisfy that

ω1
s + ω2

s = ω̄s for all s ∈ S. An infinitely-lived outside asset, which yields no dividend and is

often called fiat money, is also introduced. We normalize its supply to one. We can then define

a stationary monetary equilibrium: A pair (q, c) of real price vector q ∈ ℜS
+ of money and a

stationary feasible allocation c = (c1, c2) is a stationary equilibrium if there exists some m ∈ ℜS

such that

• for any s ∈ S, (cs,ms) belongs to the set

argmax
(ds,z)∈(ℜ+×ℜ

S
+
)×ℜ

{

U s(ds) :
d1s = ω1

s − qsz
(∀s′ ∈ S) d2ss′ = ω2

s′ + qs′z

}

,

• for all s ∈ S, ms = 1.

It is called a stationary monetary equilibrium if q ≫ 0.

As shown by Aiyagari and Peled [1], a stationary monetary equilibrium exists if the initial

allocation is conditionally Pareto suboptimal. In the box diagram, this condition means that

the initial allocation ω, which is depicted by W in Figure 6, does not belong to the Pareto set.

By the sequential budget constraints of the agent born at s ∈ S, we can obtain that

c1s + c2ss = ω̄s

6More precisely, one can verify that a stationary feasible allocation c is (a) CPO iff it holds that

0 <
Uβ

α (c
1
β , c

2
βα, c

2
ββ)

U
β
1 (c

1
β , c

2
βα, c

2
ββ)− U

β

β (c
1
β , c

2
βα, c

2
ββ)

≤
Uα

1 (c
1
α, c

2
αα, c

2
αβ)− Uα

α (c
1
α, c

2
αα, c

2
αβ)

Uα
β (c

1
α, c

2
αα, c

2
αβ)

and (b) CGRO iff it holds that

Uα
1 (c

1
α, c

2
αα, c

2
αβ)− Uα

α (c
1
α, c

2
αα, c

2
αβ)

Uα
β (c

1
α, c

2
αα, c

2
αβ)

=
Uβ

α (c
1
β , c

2
βα, c

2
ββ)

U
β
1 (c

1
β , c

2
βα, c

2
ββ)− U

β

β (c
1
β , c

2
βα, c

2
ββ)

.
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Figure 6: Stationary Monetary Equilibrium and the First Welfare Theorem

and

c2sβ =
qβ
qα

c2sα −
qβ
qα

ω2
α + ω2

β .

The last equation is something like the budget line between two commodities contingent upon

states α and β. One of possible “budget lines” is depicted by the line through W with slope

qβ/qα in Figure 6. Each agent born in and after period 1 must choose her consumption stream

in this “budget line” to maximize her lifetime utility. Then, a stationary monetary equilibrium

allocation can be drawn as the point E in Figure 6. At a stationary monetary equilibrium

allocation, the “budget line” must be tangent to indifference curves of both agent α and β.7

One should note that the point E lies on the golden rule curve, i.e., that a stationary monetary

equilibrium achieves CGRO. This can be interpreted as the first welfare theorem in SOLG models

with money.

7To be more precise, one can obtain that

qβ

qα
=

Uα
1 (c

1
α, c

2
αα, c

2
αβ)− Uα

α (c
1
α, c

2
αα, c

2
αβ)

Uα
β (c

1
α, c

2
αα, c

2
αβ)

=
Uβ

α (c
1
β , c

2
βα, c

2
ββ)

U
β
1 (c

1
β , c

2
βα, c

2
ββ)− U

β

β (c
1
β , c

2
βα, c

2
ββ)

at any stationary monetary equilibrium (q, c).
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Figure 7: The Second Welfare Theorem

Similar to the first welfare theorem, we can also argue on the second welfare theorem in

the box diagram. To do so, we extend the definition of stationary equilibrium by allowing

some lump-sum transfer: Given τ ∈ ℜS , a pair (q, c) of real price vector of money q : ℜS
+ and

a stationary feasible allocation c = (c1, c2) is a stationary equilibrium with transfer τ if there

exists some m : S → ℜ such that

• for any s ∈ S, (cs,ms) belongs to the set

argmax
(ds,z)∈(ℜ+×ℜ

S
+
)×ℜ

{

U s(ds) :
d1s = ω1

s − τs − qsz
(∀s′ ∈ S) d2ss′ = ω2

s′ + τs′ + qs′z

}

,

• for all s ∈ S, ms = 1.

Suppose now that an authority is willing to implement the CGRO allocation A in Figure 7 as

an allocation at stationary monetary equilibrium with some transfer. In such a situation, the

authority can adopt the transfer rule such as τ in Figure 7. Then, allocation A can be achieved

by a stationary monetary equilibrium with τ .8

8See also Theorem 4 of [16].
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Figure 8: (a) Range of Stationary Feasible Allocations, (b) Box Diagram, (c) Pareto-improving
Allocations

2.5 Numerical Example

In this subsection, we provide an numerical example by specifying the economy.9 Let the

total endowment be (ω̄α, ω̄β) = (6, 4) and the private endowment be (ω1
α, ω

1
β , ω

2
α, ω

2
β) = (4, 3, 2, 1).

The space of stationary feasible allocations is then depicted by Figure 8 (a).

Preferences are assumed to have the form:

U s(c1s, c
2
sα, c

2
sβ) :=

(c1s)
1−γ

1− γ
+ δ

(

(c2sα)
1−γ

1− γ
πsα +

(c2sβ)
1−γ

1− γ
πsβ

)

,

where γ, δ, and π := [πss′ ]s,s′∈S are the index of relative risk aversion, the time preference,

and the transition probability matrix, respectively. While the current economy is too simple

to properly calibrate the model to match historic prices and quantities as similar to [10], we

want to consider a specification of preferences, which is ‘roughly consistent’ with those of SOLG

models in the existing literature which takes a unit of period to be 20–40 years.10 In this paper,

we choose γ = 2 and δ = 0.44. Moreover, the transition probability matrix is assumed to be

given by
[

παα παβ
πβα πββ

]

=

[

1/4 3/4
3/4 1/4

]

.

By adding agents’ indifference curves through the initial allocation to Figure 8 (a), we can obtain

Figure 8 (b). Stationary feasible allocations, each of which improves the initial allocation, are

depicted by the shaded area in Figure 8 (c).

9Figures in this subsection are drawn by Mathematica 8.0.
10See, for example, [2].

10



Pareto Set
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Figure 9: (a) Pareto Set, (b) Stationary Monetary Equilibrium

At the current specification, CPO allocations can be depicted as the shaded area in Figure 9

(a). As shown in Subsection 2.3, the Pareto set spreads to the northeast area over the golden rule

curve. Moreover, a stationary monetary equilibrium allocation can be numerically calculated as

(c1α, c
1
β , c

2
0α, c

2
0β) ≈ (3.207, 2.619, 2.793, 1.381). This is drawn in Figure 9 (b). One should notice

that the equilibrium lies on the golden rule curve.

3 An Application

The box diagram has great possibility of applications. We will be able to have new insights

to lots of economic phenomena. As an example, this section applies our box diagram to the

issue on the stochastic bubbles theoretically studied per Weil [20]. According to his setting, we

assume the separability of preferences: there exist some u1, u2 : ℜ+ → ℜ and some transition

probability matrix π := [πss′ ]s,s′∈S such that

U s(c1s, c
2
sα, c

2
sβ) = u1(c

1
s) + u2(c

2
sα)πsα + u2(c

2
sβ)πsβ

for each s ∈ S, where u1 and u2 are strictly monotone increasing, strictly concave, and continu-

ously differentiable and satisfy limx↓0 u
′
i(x) =∞ for i = 1, 2. The total and private endowments

are given by ω̄ ∈ ℜ++ and (ω1, ω2) ∈ ℜ2
++, which are independent of realizations of states.

Uncertainty in this setting is often called extrinsic uncertainty or sunspot, since it has no effect

on both endowments and von Neumann-Morgenstern index functions. A stationary equilibrium

(q, c) is then called a stationary sunspot equilibrium if qα 6= qβ.

We now explore a stationary sunspot equilibrium (q, c) such that qα > 0 and qβ = 0, provided

that παs > 0 for s ∈ S, πβα = 0, and πββ = 1. Such an equilibrium is interpreted as stochastic

11



(a) (b)

Figure 10: Indifference Curves: (a) For agent α, (b) For agent β

bubbles, since the bubbles on money burst with probability παβ. Before exploring a stationary

sunspot equilibrium with stochastic bubbles, one should remark the shapes of indifference curves

in the box diagram. Now let c2∗β be a unique solution of the optimization problem:

max
c2
β
∈[0,ω̄]

u1(ω̄ − c2β) + u2(c
2
β).

Since belief of the agent born at state α is such that παs > 0 for each s ∈ S, she has U-shaped

indifference curves as in Figure 10 (a). On the other hand, indifference curves of the agent born

at state β are depicted by straight lines as in Figure 10 (b), since her belief is such that πβα = 0

and thus she is no longer interested in the second-period consumption at state α.

Under extrinsic uncertainty, the space of stationary feasible allocations is drawn by a square

as in Figure 11. Since we explore a stationary sunspot equilibrium with qα > 0 and qβ = 0, the

“budget lines” which agents face at the equilibrium are drawn by the straight line parallel to

the horizontal axis, which passes through the point W . Adding agents’ indifference curves to

the box, we can find a stationary equilibrium with stochastic bubbles as the point E in Figure

11.

One can visually find that a sunspot equilibrium with stochastic bubbles exists when and

only when the slope of agent α’s indifference curve at the initial endowment is negative. To be

more precise, a necessary and sufficient condition for the existence of sunspot equilibrium with

stochastic bubbles is that

∆c2β
∆c20α

=
Uα
1 (ω

1, ω2, ω2)− Uα
α (ω

1, ω2, ω2)

Uα
β (ω

1, ω2, ω2)
=

u′1(ω
1)− u′2(ω

2)παα
u′2(ω

2)παβ

12



Figure 11: Stochastic Bubbles

is negative. This condition is equivalent to the necessary and sufficient condition provided by

[20, Proposition 1]: u′1(ω
1)/u′2(ω

2) < παα. Also note that our condition ensures that c2∗β > ω2.
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