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1 Introduction

Since the Lucas’s (1972) pioneering work, a vast literature in economics and finance is based

on the stochastic overlapping generations (SOLG) model, including studies of social security,

asset pricing, the business cycle, the microeconomic foundation of banking, and the foundation

of monetary theory. One of the most important properties of the SOLG model is that the

competitive equilibria might be inefficient even when markets operate perfectly, as in the Arrow-

Debreu abstraction. It is understood that this sort of inefficiency is caused by the lack of market

clearing at infinity. Then, money is known for its financial intermediation role to remedy this

type of inefficiency. Therefore, the stationary monetary equilibrium, wherein money has positive

value, is of interest among the existing literature.

While the SOLG model can be studied at various level of generality, many of its basic prop-

erties and insights can be derived within the simple, but rather canonical, class consisting of one

good, finite Markov states, identical agents living for two periods, and having the opportunity

to trade money which is a single infinitely-lived outside asset, yielding no dividend, in constant

supply. For such a class, Manuelli (1990) and Magill and Quinzii (2003) provided distinct suffi-

cient conditions for the existence of stationary monetary equilibrium.1 However, the Manuelli’s

condition is hard to interpret, whereas the Magill and Quinzii’s condition can be interpreted as

the suboptimality of the initial endowment allocation. It can be deduced from the argument per

Aiyagari and Peled (1991) that the Magill and Quinzii’s condition is necessary as well as suffi-

cient for the existence of stationary monetary equilibrium. Therefore, the Manuelli’s condition

must imply the Magill and Quinzii’s condition.2

Further, Magill and Quinzii (2003) referred to the work per Gottardi (1996) for the fixed point

argument and did not provide a direct proof of the existence of stationary monetary equilibrium.

However, Gottardi dealt with a more complicated SOLG model with heterogeneous agents and

several securities. To our best knowledge, there is no work elsewhere in the literature, which

provides the direct proof of the sufficiency as well as the necessity of the suboptimality of initial

endowments for the existence of stationary monetary equilibrium in the SOLG model with

identical agents. Therefore, it seems worthwhile to provide a direct and simple proof of the

1To be more precise, Manuelli (1990) considered the model with a general state space, not a finite state space.
His proof was tailored to the model with a finite state space per Ohtaki (2011).

2In fact, one can easily construct an example the Manuelli’s condition is strictly stronger than the Magill and
Quinzii’s.

1



equivalency between the existence of stationary monetary equilibrium and the suboptimality of

the initial endowments, which is tailored to such a model of the monetary SOLG economy.

In this paper, we provide a direct and simple proof of the equivalency between the existence

of stationary monetary equilibrium and the suboptimality of the initial endowment allocation in

identical agents models. The stationary monetary equilibrium in such a model has a convenient

property, i.e., it can be identified with a positive solution for a certain system of equations. Our

proof finds such a solution by applying the Tarski’s fixed point theorem.3 The poof strategy is

similar to Manuelli’s. In fact, the construction of an appropriate mapping is nearly identical to

Manuelli’s. The crucial difference from his proof is the construction of an appropriate compact

and convex set. We construct such a set from the suboptimality of the initial endowment

allocation. Further, we demonstrate the uniqueness of stationary monetary equilibrium.

2 The Model

We consider a stationary, one-good, two-period, stochastic overlapping generations model.

Time is discrete and runs from 0 to ∞. Stochastic environment is modeled by a stationary

Markov process with its state space S, where S is a nonempty finite set and satisfies that 0 ̸∈ S.

The initial state s0 is treated as given.

After the realization of state st in each period t ≥ 1, one new agent is born, lives for two

periods, and dies. Her initial endowment and preference are assumed to depend only on the

realizations of the Markov state during her lifetime, not on time nor on the past realizations.

Thus, she is endowed with ωst = (ωy
st , (ω

o
sts′

)s′∈S) ∈ ℜ++ ×ℜS
+ as the initial endowment, where

ωy
s and ωo

s = (ωo
ss′)s′∈S are endowments when young and old, and with U s : ℜ+×ℜS

+ → ℜ as the

lifetime utility preference. It is assumed that, for all s ∈ S, there exists a family {us, (vss′)s′∈S}

of increasing, strictly concave, continuously differentiable real-valued functions on ℜ++ such

that limx↓0 u
′
s(x) = ∞, limx↓0 v

′
ss′(x) = ∞, and

U s(cys , (c
o
ss′)s′∈S) = us(c

y
s) +

∑
s′∈S

vss′(c
o
ss′)

for each (cys , (coss′)s′∈S) ∈ ℜ++×ℜS
++, where c

y
s and cos = (coss′)s′∈S are consumption when young

and old, respectively. We also assume that v′ss′(ω
o
ss′ + x) + xv′′s (ω

o
ss′ + x) ≥ 0 for each s, s′ ∈ S

3As demonstrated in our proof, one can apply the Brouwer’s fixed point theorem instead of the Tarski’s.
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and each x > 0.4 Note that we do not explicitly assume the (objective/subjective) expected

utility hypothesis.

After the realization of state s1 in period 1, there also only one-period lived agent, called

the initial old. Her endowment is given by ωo
0s1

:= ωo
s0s1 and her consumption is denoted by

co0s1 ≥ 0.

Let S0 := {0} × S. Also let ω̄ss′ := ωy
s′ + ωo

ss′ for all (s, s′) ∈ S0 × S, which is the total

endowment at the Markov state s. A stationary feasible allocation of this economy is a family

of functions c = {cy, co} of cy : S → ℜ+ and co : S0 × S → ℜ+ such that cys′ + coss′ = ω̄ss′ for all

(s, s′) ∈ S0 × S. It is interior if cs = (cys , (coss′)s′∈S) ≫ 0 for all s ∈ S. Note that ω := (ωy, ωo) is

an interior stationary feasible allocation. For any stationary feasible allocations b and c, we say

that b CPO-dominates c if, for all s ∈ S, bo0s ≥ co0s and U s(bs) ≥ U s(cs) with strict inequality

somewhere. A stationary feasible allocation c is conditionally Pareto optimal (CPO) if there is

no stationary feasible allocation b which CPO-dominates c.

As a means to intergenerational trade, we introduce fiat money, which is an infinitely-lived

outside asset with no dividend. The stock of fiat money is constant over time and states and

normalized to one. A real money balance vector q∗ ∈ ℜS
++ is called a stationary monetary

equilibrium if there exist a stationary feasible allocation c∗ and a nominal money holdingm∗ ∈ ℜS

such that, for all s ∈ S,

(c∗s,m
∗
s) ∈ argmax

(cs,ms)

{
U s(xs)

∣∣∣∣ cys = ωy
s − q∗sms

(∀s′ ∈ S) coss′ = ω2
ss′ + q∗s′ms

}
and m∗

s = 1. Given the current restrictions on preferences, one can easily verify that q ∈ ℜS
++

is a stationary monetary equilibrium if and only if it satisfies that

qsu
′
s(ω

y
s − qs) =

∑
s′∈S

qs′v
′
ss′(ω

o
ss′ + qs′). (1)

for each s ∈ S. Therefore, we can identify a stationary monetary equilibrium with a positive

solution of this system of equations, which belongs to [0, ωy].5

3 The Result

For each stationary feasible allocation c, let M(c) := [mss′(c)]s,s′∈S , where mss′(c) :=

v′ss′(c
o
ss′)/u

′
s(c

y
s) for all s, s′ ∈ S. By strict monotonicity of preferences, M(c) is positive

4This assumption holds if, for example, −cv′′ss′(c)/v
′
ss′(c) ≤ 1 for each s, s′ ∈ S and each c > 0. In fact, it

follows from the facts that v′′ss′(c) < 0 and ωo
ss′ ≥ 0 that v′ss′(ω

o
ss′ + x)+ xv′′ss′(ω

o
ss′ + x) ≥ v′ss′(ω

o
ss′ + x)+ (ωo

ss′ +
x)v′′ss′(ω

o
ss′ + x) ≥ 0 for each x > 0.

5For each a, b ∈ ℜS , [a, b] :=
∏

s∈S [as, bs] and [a, b) :=
∏

s∈S [as, bs).
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square matrix for any interior stationary feasible allocations. Thus, it follows from the Perron-

Frobenius’ theorem that there exists a unique positive vector x(c) ∈ ℜS
++ (up to normalization)

such that M(c)x(c) = λ(c)x(c) for some positive number λ(c) > 0.6 This λ(c) is the dominant

root of M(c), i.e., its unique dominant eigenvalue. Note that, if ωo
ss′ = 0 for some s, s′ ∈ S, then

M(c) is not well-defined. Therefore, in such a situation, λ(c) and x(c) are no longer well-defined.

We are now ready to state our main theorem:

Theorem.

(a) A stationary monetary equilibrium exists if and only if either ωo
ss′ = 0 for some

s, s′ ∈ S or λ(ω) > 1 holds; and

(b) the equilibrium is unique.

Proof. Let c(q) := (ωy
s − qs, ω

o
ss′ + qs′)s,s′∈S for all q ∈ ℜS . By its definition, c(0) = ω.

We first demonstrate (a). (only if ) Suppose the contrary that ωo ≫ 0 and λ(ω) ≤ 1,

whereas a stationary monetary equilibrium q ∈ ℜS
++ exists. Note that Eq.(1) can be rewritten

as q = M(c(q))q. Hence, it follows from the Perron-Frobenius’ theorem that λ(c(q)) = 1.

Because us and vss′ are strictly concave and q ∈ ℜS
++, we can obtain that mss′(c(q)) < mss′(ω)

for all s, s′ ∈ S. Therefore, it also follows from the Perron-Frobenius’ theorem that 1 = λ(c(q)) <

λ(ω) ≤ 1, which is a contradiction. This completes the proof of the only if part of (a).

(if ) For each s ∈ S, let Qs := [0, ωy
s ] and its interior be denoted by int.Qs. For each s ∈ S,

define the function fs : Qs × ℜ+ → ℜ by fs(q, ξ) := qu′s(ω
y
s − q) − ξ for each (q, ξ) ∈ Qs × ℜ+.

Note that, for each s ∈ S and each ξ > 0, fs(•, ξ) is continuous on int.Qs, fs(0, ξ) = −ξ < 0,

and limq↑ωy
s
fs(q, ξ) = ∞ > 0. Therefore, for each s ∈ S and each ξ > 0, the intermediate

value theorem ensures that there is at least one q̂s ∈ int.Qs such that fs(q̂s, ξ) = 0. We claim

that such q̂s is unique. Suppose the contrary that, for some s ∈ S and some ξ > 0, there are

distinct q̂s and q̃s such that fs(q̂s, ξ) = 0 and fs(q̃s, ξ) = 0, respectively. Assume without loss

of generality that q̂s < q̃s. Then, it follows from the fact that ∂(qu′s(ω
y
s − q))/∂q > 0 that

ξ = q̂su
′
s(ω

y
s − q̂s) < q̂su

′
s(ω

y
s − q̂s) = ξ, which is a contradiction. This completes the proof of

claim. By this claim, we can write q̂s(ξ) rather than q̂s. We also claim that q̂s(ξ) > q̂s(ξ
′) for

each s ∈ S and each ξ, ξ′ ∈ ℜ++ with ξ > ξ′. Suppose the contrary that q̂s(ξ) ≤ q̂s(ξ
′) for

some s ∈ S and some ξ, ξ′ ∈ ℜ++ with ξ > ξ′. Then, it follows that ξ = q̂s(ξ)u
′
s(ω

y
s − q̂s(ξ)) ≤

6See Takayama (1974) for more details on the Perron-Frobenius’ theorem.

4



q̂s(ξ
′)u′s(ω

y
s − q̂s(ξ

′)) = ξ′ < ξ, which is a contradiction. Therefore, q̂s(•) is increasing on ℜ++

for each s ∈ S.

Define the mapping ϕ : ℜS
++ → ℜS

++ by ϕ(ξ) := (q̂s(ξs))s∈S for each ξ = (ξs)s∈S ∈ ℜS
++.

Also define the mapping ψ : ℜS
++ → ℜS

++ by ψ(q) :=
(∑

s′∈S qs′v
′
ss′(ω

o
ss′ + qs′)

)
s∈S for each

q = (qs)s∈S ∈ ℜS
++. Note that ϕ is increasing and ϕ is nondecreasing. The strict monotonicity

of ϕ is follows immediately from the fact that q̂s is increasing for each s ∈ S, whereas the

monotonicity of ϕ follows from the assumption that v′ss′(ω
o
ss′ + x) + xv′′ss′(ω

o
ss′ + x) ≥ 0. Then,

define the mapping Φ : ℜS
++ → ℜS

++ by Φ(ξ) := ψ(ϕ(ξ)) for each ξ ∈ ℜS
++. By the monotonicity

of ϕ and ψ, Φ is nondecreasing.

Suppose now that either ωo
jk = 0 for some j, k ∈ S or λ(ω) > 1 holds. One can easily observe

that either of these conditions implies the existence of x0 ∈ ℜS
++ satisfying that

x0su
′
s(ω

y
s ) <

∑
s′∈S

x0s′v
′
ss′(ω

o
ss′)

for each s ∈ S.7 Then, there exists a sufficiently small ε > 0 satisfying that

(∀s ∈ S) εx0su
′
s(ω

y
s − εx0s) <

∑
s′∈S

εx0s′v
′
ss′(ω

o
ss′ + εx0s′), (2)

because of strict concavity and continuity of the utility index functions. Let ξ := (ξ
s
)s∈S

and ξ := (ξs)s∈S , where ξs := εx0su
′
s(ω

y
s − εx0s) and ξs :=

∑
s′ ω

y
s′v

′
ss′(ω

o
ss′ + q̂s′(ξs′)) for each

s ∈ S, respectively. Obviously, ξ ≫ 0. Note that, for each s ∈ S, q̂s(ξs)u
′
s(ω

y
s − q̂s(ξs)) =

ξ
s
= εx0su

′
s(ω

y
s − εx0s) by the definitions of q̂s and ξ

s
. Therefore, it follows from the fact that

∂(qu′s(ω
y
s − q))/∂q > 0 that q̂s(ξs) = εx0s ∈ int.Qs. For notational convenience, let q

0 := εx0.

We claim that ξ ≪ ξ. By their definitions, we can obtain that, for each s ∈ S,

ξ
s
:= q0su

′
s(ω

y
s − q0s) <

∑
s′∈S

q0s′v
′
ss′(ω

o
ss′ + q0s′) <

∑
s′∈S

ωy
s′v

′
ss′(ω

o
ss′ + q0s′) =: ξs,

where the first inequality follows from Eq.(2) and the second one follows from the fact that

q0s′ ∈ int.Qs′ for each s′ ∈ S. This completes the proof of the claim. We also claim that

ξ ≪ Φ(ξ) ≪ ξ for each ξ ∈ [ξ, ξ]. Note that, for each s ∈ S and each ξ ∈ [ξ,∞), we can obtain

that
∑

s′∈S q̂s′(ξs′)v
′
ss′(ω

o
ss′ + q̂s′(ξs′)) <

∑
s′∈S ω

y
s′v

′
ss′(ω

o
ss′ + q0s′) =: ξs, where the inequality

follows from the facts that q̂s′ < ωy
s′ , v

′′
ss′ > 0, and q̂s′(•) is increasing for each s ∈ S. This implies

that Φ(ξ) ≪ ξ for each ξ ∈ [ξ,∞). Also note that ξ ≪ Φ(ξ), because ξ
s
:= q0su

′
s(ω

y
s − q0s) <

7This observation is easy to verify when ωo
jk = 0 for some j, k ∈ S, because limx↓0 v

′
jk(x) = ∞. Therefore,

suppose that ωo ≫ 0 and λ(ω) > 1. Let x0 := x(ω). Then, the observation follows from the fact that M(ω)x0 =
λ(ω)x0 ≫ x0.
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∑
s′∈S q

0
s′v

′
ss′(ω

o
ss′+q

0
s′). By the monotonicity of Φ, this implies that ξ ≪ Φ(ξ) for each ξ ∈ [ξ,∞).

Therefore, we can obtain that ξ ≪ Φ(ξ) ≪ ξ for each ξ ∈ [ξ, ξ].

Now, let Ξ := [ξ, ξ] ⊂ ℜS
++. Of course, Ξ is a complete partial ordered set. Further, we have

demonstrated that Φ is a nondecreasing mapping from Ξ into itself. Therefore, the Tarski’s

fixed point theorem ensures the existence of ξ∗ ∈ Ξ such that Φ(ξ∗) = ξ∗.8 Because ξ∗ ≫ 0,

q∗s := q̂s(ξ
∗
s ) ∈ int.Qs for each s ∈ S. It is straightforward to verify that q∗ := (q∗s)s∈S is a

stationary monetary equilibrium. This completes the proof of the if part of (a).

We then demonstrate (b). Define the sequence of elements of ℜS
++, (q

(n))∞n=0, by q
(0) := ωy

and, for all n ≥ 1,

(∀s ∈ S) q(n)s u′s(ω
y
s − q(n)s ) =

∑
s′∈S

q
(n−1)
s′ v′ss′(ω

o
ss′ + q

(n−1)
s′ ),

inductively. We first claim that (q(n))∞n=0 is a well-defined positive sequence. For n = 0, q(0) ≫ 0

is obviously well-defined. Let k ≥ 1 be an integer and suppose that q(k) ≫ 0 is well-defined. We

then demonstrate that q(k+1) ≫ 0 is well-defined. Note that it follows from the monotonicity

of vss′ and the hypothesis that q(k) ≫ 0 is well-defined that
∑

s′∈S q
(k)
s′ v

′
ss′(ω

o
ss′ + q

(k)
s′ ) is well-

defined and positive value. Because xu′s(ω
y
s − x) is continuous and increasing with respect

to x and satisfies that limx↓0 xu
′
s(ω

y
s − x) = 0 and limx↑ωy

s
xu′s(ω

y
s − x) = ∞, it follows from

the intermediate value theorem that there exists a unique q
(k+1)
s for each s ∈ S such that

0 < q
(k+1)
s < ωy

s and

(∀s ∈ S) q(k+1)
s us(ω

y
s − q(k+1)

s ) =
∑
s′∈S

q
(k)
s′ vss′(ω

o
ss′ + q

(k)
s′ ).

This implies that q(k+1) is well-defined. Therefore, (q(n))∞n=0 is a well-defined positive sequence.

We next claim that (q(n))∞n=0 is nonincreasing. By the proof of the previous claim, we have

q(1) ≪ ωy = q(0). Let k ≥ 1 be an integer and suppose that q(k) ≤ q(k−1). We then show that

q(k+1) ≤ q(k). Suppose the contrary that q
(k+1)
s̃ > q

(k)
s̃ for some s̃ ∈ S. Because xv′ss′(ω

o
ss′ + x)

is nondecreasing with respect to x and q(k) ≤ q(k−1), it follows that

(∀s ∈ S)
∑
s′∈S

q
(k)
s′ v

′
ss′(ω

o
ss′ + q

(k)
s′ ) ≤

∑
s′∈S

q
(k−1)
s′ v′ss′(ω

o
ss′ + q

(k−1)
s′ ). (3)

However, by the definition of (q(n))∞n=0, the monotonicity of xus(ω
y
s − x), and the hypothesis

that q
(k+1)
s̃ > q

(k)
s̃ , we have∑

s′∈S
q
(k)
s′ v

′
s̃s′(ω

o
s̃s′ + q

(k)
s′ ) = q

(k+1)
s̃ u′s̃(ω

y
s̃ − q

(k+1)
s̃ ) > q

(k)
s̃ u′s̃(ω

y
s̃ − q

(k)
s̃ ) =

∑
s′∈S

q
(k−1)
s′ v′s̃s′(ω

o
s̃s′q

(k−1)
s′ ),

8See Topkis (1998, Section 2.5) for more details on the Tarski’s fixed point theorem. One can verify that Φ is
continuous. Therefore, the Brouwer’s fixed point theorem is also available for finding the fixed point.
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which contradicts with Eq.(3). This implies that q(k+1) ≤ q(k). Therefore, (q(n))∞n=0 is nonin-

creasing.

We also claim that (q(n))∞n=0 satisfies that q(n) ≥ q̂ for any q̂ satisfying Eq.(1) and all n ≥ 0.

Note that we have demonstrated in the proof of (a) that at least one q̂ satisfying Eq.(1) exists.

Because q̂ ∈ [0, ωy], it follows that q(0) = ωy ≥ q̂. Let k ≥ 1 be an integer and suppose that

q(k) ≥ q̂. We then demonstrate that q(k+1) ≥ q̂. Suppose the contrary that q
(k+1)
s < q̂s for some

s ∈ S. Then, it follows that

∑
s′∈S

q̂s′v
′
ss′(ω

o
ss′ + q̂s′) = q̂su

′
s(ω

y
s − q̂s)

> q(k+1)
s u′s(ω

y
s − q(k+1)

s )

=
∑
s′∈S

q
(k)
s′ v

′
ss′(ω

o
ss′ + q

(k)
s′ )

≥
∑
s′∈S

q̂s′v
′
ss′(ω

o
ss′ + q̂s′),

where the first equality follows from the fact that q̂ satisfies Eq.(1), the second inequality follows

from the monotonicity of xu′s(ω
y
s −x), the third equality follows from the definition of (q(n))∞n=0,

and the last inequality follows from the monotonicity of xvss′(ω
o
ss′ + x) and the hypothesis that

q(k) ≥ q̂. However, this is a contradiction. Therefore, q(n) ≥ q̂ for all n ≥ 0.

Because (q(n))∞n=0 is nonincreasing and bounded from below, q∗ := limn↑∞ q(n) exists and

satisfies that q∗ ≥ q̂ for any q̂ satisfying Eq.(1) and

(∀s ∈ S) q∗su
′
s(ω

y
s − q∗s) =

∑
s′∈S

q∗s′v
′
ss′(ω

o
ss′ + q∗s′),

i.e., q∗ also satisfies Eq.(1). Note that we have already shown the existence of q̂ ∈
∏

s∈S int.Qs,

so that q∗ must be also an interior solution.

Recall that λ(c(q)) = 1 for any q ≫ 0 satisfying Eq.(1). Suppose now that there exists an

interior solution q̄ such that q∗ > q̄. Because of the strict concavity of us and vss′ , mss′(c(q̄)) ≥

mss′(c(q
∗)) with at least one strict inequality. Then, it follows from the Peoorn-Frobenius’

theorem that λ(c(q̄)) > λ(c(q∗)), which contradicts λ(c(q∗)) = λ(c(q̄)) = 1. Thus, q∗ is the

unique interior stationary monetary equilibrium. Q.E.D.

It is well-known that an interior stationary feasible allocation c is CPO if and only if λ(c) ≤

1.9 Further, one can immediately verify that ω is not CPO when ωo
ss′ = 0 for some s, s′ ∈ S,

9This can be deduced from Ohtaki (2012, Theorem 1). To be more precise, the dominant root criterion λ(c) ≤ 1
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because we assume that limx↓∞ v′ss′(x) = ∞. Therefore, as a corollary of the previous theorem,

we can say that the existence of a stationary monetary equilibrium is equivalent to the conditional

Pareto suboptimality of the initial endowment.

Remark that the literature imposed an assumption that ωo ≫ 0.10 This restriction plays an

important role to apply the Perron-Frobenius’ theorem, because M(ω) is no longer well-defined

if ωo
ss′ = 0 for some s, s′ ∈ S. Note that our result includes such an anomalous situation. In this

sense, the result of this paper can be applied to a broader range of models than the literature.

References

Aiyagari, S.R. and D. Peled (1991) “Dominant root characterization of Pareto optimality and

the existence of optimal equilibria in stochastic overlapping generations models,” Journal of

Economic Theory 54, 69–83.

Chattopadhyay, S. and P. Gottardi (1999) “Stochastic OLG models, market structure, and

optimality,” Journal of Economic Theory 89, 21–67.

Gottardi, P. (1996) “Stationary monetary equilibria in overlapping generations models with

incomplete markets,” Journal of Economic Theory 71, 75–89.

Lucas, R.E. Jr. (1972) “Expectations and the neutrality of money,” Journal of Economic Theory

4, 103–124.

Magill, M. and M. Quinzii (2003) “Indeterminacy of equilibrium in stochastic OLG models,”

Economic Theory 21, 435–454.

Manuelli, R. (1990) “Existence and optimality of currency equilibrium in stochastic overlapping

generations models: The pure endowment case,” Journal of Economic Theory 51, 268–294.

Ohtaki, E. (2011) “A note on the existence of monetary equilibrium in a stochastic OLG model

with a finite state space,” Economics Bulletin 31(1), 485–492.

Ohtaki, E. (2012) “Golden rule optimality in stochastic OLG economies” Mathematical Social

Sciences, forthcoming.

is equivalent to the absence of the nonstationary as well as stationary feasible allocations that CPO-dominate c.
See also Chattopadhyay and Gottardi (1999, Theorem 4).

10See Gottardi (1996) and Magill and Quinzii (2003) for example.

8



Takayama, A. (1974) Mathematical Economics. The Dryden Press: Hinsdale. IL.

Topkis, D.M. (1998) Supermodularity and Complementarity. Princeton University Press: Prince-

ton.

9


