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1 Introduction

The present paper studies a model of repeated Bertrand oligopoly, highlighting two typical
features colluding firms often confront. First, they simultaneously interact in two or more
markets (multimarket contact). Second, the demands in those markets are subject to
random shocks (demand fluctuations). For instance, large nationwide firms often compete
in many local markets simultaneously, and each local market is affected with idiosyncratic
demand shocks. Another example is conglomerates competing over several industries, each
of which has its own demand shocks.

In a framework of infinitely repeated games, existing results have clarified whether
each of the two features facilitates or hinders formation of cartels. First, Bernheim and
Whinston [1] point out that the multimarket contact never hinders collusion and sometimes
facilitates it. In contrast, demand fluctuations generally hinder collusion, as Rotemberg
and Saloner [4] show. The main purpose of this paper is to examine how these two
conflicting factors interact and affect the firms’ ability to collude.

In this paper, we set up a model of infinitely repeated games, which represents oligopoly
with identical firms simultaneously engaging in Bertrand price competition over M ex ante
identical markets every period. A key assumption is that the payoffs of each Bertrand game
are stochastic, being i.i.d. across the markets and over time. The payoffs of each period
get known only at the beginning of that period. Thus the firms only know the current
stage payoffs, without knowing the stage payoffs of any future period. This formulation
of payoff fluctuations follows Rotemberg and Saloner [4]. In this model, we examine the
symmetric subgame perfect equilibrium which is second-best in the sense that no other
symmetric subgame perfect equilibrium attains a greater profit.

Our main results are summarized as follows. Fix the probability distribution of payoffs
in the stage game. Then two threshold discount factors exist, δ and δ with δ > δ, such
that (i) if δ < δ, the second-best equilibrium is repeated play of a static equilibrium
regardless of the number of markets, and (ii) if δ ≥ δ, the second-best equilibrium attains
full collusion under any M . Next, fix δ ∈ (δ, δ). Then the difference between the profit
under full collusion and the second-best equilibrium profit converges to zero, if the number
of markets goes to infinity. Hence on this intermediate range of discount factors, the
collusion-deterrence effects of fluctuated demands completely vanish in the limit.1 Another
interpretation is that if the firms compete in a large number of markets, their ability to
maintain collusion is not much affected by demand fluctuations.

We are not the first to study the effect of multimarket contact under demand fluctua-
tions. Bernheim and Whinston [1] have already studied the case of two markets, and show
that the multimarket contact in general increases the per-market profit in comparison
with the case M = 1. In contrast, we consider an arbitrary number of markets and verify
that any possible profit loss due to demand fluctuations goes to zero when the number of
markets goes to infinity.

One important assumption in our setup is perfect monitoring; the players can directly
observe their past actions. This assumption considerably simplifies analysis, enabling us
to explicitly derive the second-best equilibrium payoff for any set of parameters. A more

1The result does not entirely deny the collusion-deterrence effects of demand fluctuations in the following
two senses. First, if δ ≤ δ < δ, full collusion cannot be sustained under any number of markets. Second,
the limit result does not hold at δ.
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realistic assumption would be that the players only receive a noisy signal of their actions
(imperfect monitoring). The effect of multimarket contact under imperfect monitoring,
especially its role in promoting cooperation and/or collusion, has been investigated by
Matsushima [3] and Kobayashi and Ohta [2].2 [2] derives the second-best equilibrium
payoff for any number of markets, assuming that the players are sufficiently patient. We
rather consider the case where the players are not so patient. [3] deals with the case of
heavy discounting but examines the profit per market in the limit case. We instead consider
any number of markets, and verify that the difference between the total equilibrium profit
and the profit under full collusion converges to zero if M goes to infinity.

The effects of multimarket contact when the number of markets is not that large are
also examined. We show that for any δ ∈ (δ, δ), the second-best equilibrium per-market
profit under M markets is no greater than that under M + 1 markets, and they are equal
only in rare cases to be explained below. That is, on this range of intermediate discount
factors, adding one more market almost always improves the per-market profit under the
most collusive equilibrium. The case where the per-market profit does not improve is rare
in the sense that it never occurs either if M = 1 or if two or more markets are added.

Our methodology is worth mentioning. While our main objective is the oligopoly with
multimarket contact under demand fluctuations, we rather formulate an abstract model
which includes the above oligopoly as a special case. Then we characterize the second-
best equilibrium payoff. Since the model is applicable to other contexts such as first-price
auctions and moral hazard in teams, which do not necessarily involve simultaneous play
of multiple games, we believe the characterization result is interesting in itself.

The rest of this paper is organized as follows. Section 2 introduces the model. Section 3
characterizes the second-best equilibrium and its payoff. Section 4 applies the result in the
previous section and studies effects of multimarket contact under demand fluctuations.

2 Model

Two players play a given normal-form game every period.3 Each player has an identical
set of stage actions, denoted by X. Their stage payoff depends not only on the action
pair selected in the period, denoted by (x1, x2) ∈ X × X, but also on the state of that
period. The set of possible states has M + 1 elements, where M is a natural number. We
call them state 0, state 1, . . . , state M . ui(x1, x2, k) denotes player i’s stage payoff of the
action pair (x1, x2) under state k. We assume symmetry, so that for any x1, x2 and k,
u1(x1, x2, k) = u2(x2, x1, k). For x ∈ X and k, we define U(x, k) = ui(x, x, k).4

We make the following assumptions, which capture some features of Bertrand compe-
tition. The stage game may as well be called games with proportional temptations.

Assumption 1 (i) The state of each period follows a common probability distribution,
and it is independent over time. For any given period, the state of that period is k

with probability pk ∈ (0, 1).

(ii) For any k, Δk ≡ maxx∈X U(x, k) exists and satisfies Δk > 0.

2In [2] and [3], the stage game is a prisoners’ dilemma. Since our stage game is quite similar to their
games, the main difference among those models is attributed to the players’ monitoring ability.

3An extension to the case of three or more players is straightforward.
4Due to symmetry, U(x, k) does not depend on choice of i.
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(iii) There exists K > 1 such that for any k and any u ∈ [0, Δk], x ∈ X exists such that

U(x, k) = u, sup
y

u1(y, x, k) = Ku. (1)

Moreover, for any k and any u ∈ [0, Δk], if x′ ∈ X satisfies U(x′, k) = u, then
supy u1(y, x′, k) ≥ Ku.

(iv) For each k, minx∈X supy∈X u1(y, x, k) exists and equals zero. Moreover, the normal
form game whose payoff function is given by ui(x1, x2, k) for each player i has a
unique Nash equilibrium payoff pair.

(v) We have Δ0 ≤ Δ1 ≤ · · · ≤ ΔM , and Δ0 < ΔM .

Assumption 1(i) states that the states are i.i.d. over time. Assumption 1(ii) guarantees
existence of a maximum symmetric action pair payoff under any state, which is the value of
full collusion under that state. Together with Assumption 1(iv), the maximum is greater
than each player’s minmax value given the state.5

Assumption 1(iii) is the assumption of proportional temptations. It first states that
given a state k, any payoff between the maximum symmetric action pair payoff and the
minmax value is attained by some symmetric action pair (x, x). It also states that for each
player, x is not optimal against x unless U(x, k) = 0, and each player can obtain either
exactly or approximately K times of U(x, k).6 Note that the coefficient K is independent
of k. For k and u ∈ [0, Δk], let xk(u) be an element of X satisfying (1). Assumption 1(iii)
also states that any other symmetric action pair (x′, x′) with a payoff u ∈ [0, Δk] under
state k gives each player no smaller temptation than xk(u); we have supy u1(y, x′, k) ≥ Ku.

Evaluating (1) at u = 0, we see that
(
xk(0), xk(0)

)
is a Nash equilibrium of the game

whose payoff function is ui(x1, x2, k) for each player i, and the equilibrium payoff pair is
(0, 0). Assumption 1(iv) states that it is the only Nash equilibrium payoff pair of that
game, and that it minmaxes both players.7 Since we will exclude randomized actions, the
minmax value is defined by pure actions. Finally, Assumption 1(v) states that the states
are ordered so that the values of full collusion are nondecreasing, and that the values are
not constant.

Let us denote this stage game by G. G has a unique Nash equilibrium payoff pair
(0, 0), and it is attained by the following simple equilibrium; if the state is k, the players
play

(
xk(0), xk(0)

)
.

We provide three examples of games satisfying Assumption 1(ii)–(v). Thus if we
additionally assume that the probabilities of the states satisfy Assumption 1(i), those
stage games satisfy Assumption 1.

Example 1 (Bertrand price competition) Let X = [0, p] with p > 0. Fix k, and let

u1(x1, x2, k) =

⎧⎪⎪⎨
⎪⎪⎩

x1D(x1; k) if x1 < x2,
1
2x1D(x1; k) if x1 = x2,

0 if x1 > x2,

5Precisely speaking, the value is the minimum of suprema, but we abuse terminology and call it the
minmax value.

6(1) is stated in terms of player 1, but the counterpart for player 2 also holds by symmetry.
7This is consistent with multiple Nash equilibria, because more than one x may satisfy (1) at u = 0.
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where D(p; k) is continuous and nonincreasing in p. We also assume D(0; k) > D(p; k) = 0.
u2 is derived from u1 by symmetry. This is a standard model of Bertrand duopoly, where
the costs are assumed to be zero for simplicity.

We have

U(x, k) =
1
2
xD(x; k).

By assumption, Δk = maxx∈X U(x, k) exists, and Δk > 0. Assumption 1(ii) thus holds.
For u ∈ [0, Δk], let xk(u) be the smallest x ∈ X such that U(x, k) = u. Since U(x, k)

is continuous in x, xk(u) indeed exists. By the definition of xk(u), we have xD(x; k) < 2u

for any x < xk(u). Hence by continuity,

sup
y∈X

u1

(
y, xk(u), k

)
= 2u. (2)

Furthermore, for any x such that U(x, k) = u, we have x ≥ xk(u). Since u1(x1, x2, k) is
nondecreasing in x2, it holds that

sup
y∈X

u1(y, x, k) ≥ sup
y∈X

u1

(
y, xk(u), k

)
= 2u. (3)

Since u ∈ [0, Δk] is arbitrary, (2) and (3) imply that Assumption 1(iii) holds for K = 2.
If this game is played only once under state k, its Bertrand structure immediately

means that each firm’s equilibrium profit is zero, and this equals its minmax value. Thus
Assumption 1(iv) is satisfied.

Finally, Assumption 1(v) holds if we assume D(p; k) > D(p; k − 1) for any k ≥ 1 and
any p < p. However, it holds under much weaker assumptions. While it does not hold if
we just assume D(p; k) ≥ D(p; k − 1) for any k ≥ 1 and any p (then it is possible that
Δ0 = Δ1 = · · · = ΔM ), it will hold under suitable strengthening of it.

Example 2 (first-price auctions) Let X = [0,∞). Fix k, and let

u1(x1, x2, k) =

⎧⎪⎪⎨
⎪⎪⎩

vk − x1 if x1 > x2 and x1 ≥ rk,
1
2(vk − x1) if x1 = x2 ≥ rk,

0 if x1 < min{rk, x2},

where vk > rk ≥ 0. This is interpreted as a first-price auction where under state k, two
buyers have a common valuation vk and the seller sets a reserve price rk.

We have

U(x, k) =

{
1
2(vk − x) if x ≥ rk,

0 if x < rk.

It is easy to see that Δk = (vk − rk)/2 > 0. Assumption 1(ii) is therefore satisfied.
For any k and any u ∈ [0, Δk], set xk(u) = vk − 2u. Then we have U

(
xk(u), k) = u. If

u > 0, no x �= xk(u) satisfies U(x, k) = u. Moreover, we have xk(u) < vk and therefore

sup
y∈X

u1

(
y, xk(u), k

)
= vk − xk(u) = 2u. (4)
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If u = 0, we have xk(u) = vk and therefore u1

(
y, xk(u), k

) ≤ 0 = 2u for any y ∈ X.
Hence (4) holds for u = 0, too. Since U(x, k) = 0 implies supy∈X u1(y, x, k) ≥ 0, Assump-
tion 1(iii) holds for K = 2.

For each k, the normal form game with a payoff function ui(x1, x2, k) has Bertrand
structure, so that any equilibrium payoff is zero, and it is also each buyer’s minmax value.
Hence Assumption 1(iv) is satisfied. Finally, Assumption 1(v) is satisfied if we assume
vk − rk is nondecreasing and v0 − r0 < vM − rM .

Example 3 (linear payoffs and multiplicative shocks) Let X = [0, 1]. For each k,
let

ui(xi, xj, k) = θk(αxj − xi),

where θk > 0 and α > 1. Therefore we have U(x, k) = θk(α−1)x, and Δk = θk(α−1) > 0.
Hence Assumption 1(ii) is satisfied.

For any u ∈ [0, Δk], the unique solution of U(x, k) = u is x = u/Δk. It is easily seen
that

sup
y

u1

(
y,

u

Δk
, k

)
= u1

(
0,

u

Δk
, k

)
=

αu

α − 1
.

Hence (1) holds for K = α/(α − 1) > 1. Assumption 1(iii) is therefore satisfied.
In the normal-form game with a payoff function ui(xi, xj , k), 0 is a dominant action

and minmaxes the other player. Hence 0 is indeed a minmax value, and it is also a Nash
equilibrium payoff. This guarantees Assumption 1(iv). Finally, Assumption 1(v) holds if
we assume θ0 ≤ θ1 ≤ · · · ≤ θM with θ0 < θM .

This is a game with very simple structure, but it includes moral hazard in teams and
public goods provision with linear technology as examples.

Note that in all these examples, Δk is the maximum of the stage payoff sum, even if we
take asymmetric action pairs into account under state k.

The players play G in periods 0, 1, 2, . . . . Each player knows the state of each period at
the beginning of that period, but does not know the state of any future period until that
period arrives. We also assume perfect monitoring. Namely, the players can observe what
the other players have selected, together with a sequence of past states. In the present
paper, we limit attention to pure strategies. Thus each player i’s strategy of this repeated
game is a function which maps a history at each period t, consisting of

(
x1(τ), x2(τ)

)t−1

τ=0

and
(
k(τ)

)t

τ=0
, where xi(τ) is the action player i played in period τ and k(τ) is the realized

state of period τ , to an element of X. Note that a history at period t includes the state
of period t. Given a strategy pair, player i’s payoff of the repeated game is:

(1 − δ)E
[ ∞∑

t=0

δtui

(
x1(t), x2(t), k(t)

)]
,

where δ ∈ (0, 1) is a common discount factor, and the expectation is taken with respect
to the states of the entire periods.

Let us denote this infinitely repeated game by G(δ). Our solution concept for G(δ) is
symmetric subgame perfect equilibrium. A strategy pair is symmetric if at no history the
players’ actions are different.
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3 Second-Best Equilibrium

In what follows, we examine the symmetric subgame perfect equilibrium that is second-
best in the sense that no other symmetric subgame perfect equilibrium has a greater payoff
for each player. We call such an equilibrium the second-best equilibrium. In this section,
we derive the second-best equilibrium and its payoff for any given G(δ).

This task is closely related to the following constrained maximization problem.

max
(Bk)M

k=0

M∑
k=0

pkBk (5)

subject to (1 − δ)(K − 1)Bk ≤ δ
M∑
l=0

plBl ∀k (6)

0 ≤ Bk ≤ Δk ∀k (7)

For any (Bk)M
k=0 satisfying the constraints (6) and (7), we have a corresponding trigger

strategy pair, defined as follows.

(i) In period 0 with state k(0), the players play
(
xk(0)(Bk(0)), xk(0)(Bk(0))

)
.

(ii) In period t (t ≥ 1), given the corresponding history
(
a(τ)

)t−1

τ=0
and

(
k(τ)

)t

τ=0
,

(a) if x1(τ) = x2(τ) = xk(τ)(Bk(τ)) for any τ ≤ t − 1, then the players play(
xk(t)(Bk(t)), xk(t)(Bk(t))

)
, and

(b) otherwise, they play
(
xk(t)(0), xk(t)(0)

)
.

(7) ensures that this strategy pair is well-defined.
For this strategy pair, (6) states that any one-shot deviation on the path at a period

with state k does not improve each player’s payoff; its left-hand-side is a supremum of
the additional stage payoff from a deviation, and its right-hand-side is the difference in
the continuation payoffs. Since this strategy pair has Nash reversion, subgame perfection
at any history off the path is satisfied. Consequently, if (Bk)M

k=0 is feasible in the above
maximization problem,

∑M
k=0 pkBk is a symmetric subgame perfect equilibrium payoff.

Moreover, no symmetric subgame perfect equilibrium of G(δ) has a payoff greater than
the value of this problem.8 Thus we can concentrate on the task of solving it. Our first
observation is that the solution is simple if δ is sufficiently small. Let us define

δ =
K − 1

K
. (8)

Proposition 1 Let δ < δ. Then a unique solution of the maximization problem (5)–(7)
is Bk = 0 for any k, and the value is zero.

8An informal proof is as follows. Fix a symmetric subgame perfect equilibrium of G(δ). For each k, let
Xk be the set of all actions prescribed at some history whose current state is k. Define Bk = supx∈Xk

U(x, k)

for each k. Then the vector (Bk)M
k=0 satisfies (7). Since the sum

�M
k=0 pkBk is no less than the continuation

payoff at any history, (Bk)M
k=0 also satisfies (6). Thus (Bk)M

k=0 is feasible, and
�M

k=0 pkBk is no less than
the equilibrium payoff, which establishes the claim.

6



Proof. Fix (Bk)M
k=0 satisfying the constraints. Take a weighted sum of (6) over k, where

the weight for the k-th inequality is pk;

(1 − δ)(K − 1)
M∑

k=0

pkBk ≤ δ
M∑

k=0

pkBk.

Since δ < δ, we must have
∑M

k=0 pkBk ≤ 0. Then from (7), we must have Bk = 0 for any
k. Since this is the only vector satisfying the constraints, it is trivially a unique solution
of the problem. The value is obviously zero. Q.E.D.

Note that Bk = 0 for any k corresponds to a symmetric subgame perfect equilibrium
where a static equilibrium is played at any history. Proposition 1 reveals that it is a
second-best equilibrium if δ is small.9 Hence no cooperation is possible at all.

If δ ≥ δ, the following inequality is important.

b ≤
M∑

k=0

pk min
{

Δk,
δb

(1 − δ)(K − 1)

}
. (9)

It is easy to see that (9) holds at b = Δ0 (this is due to δ ≥ δ), and (9) does not hold if b is
sufficiently large. By continuity, the largest b such that (9) holds exists, which we denote
by b∗. Note that b∗ ≥ Δ0, and that (9) holds with equality at b∗. Note also that the
right-hand-side of (9) is a concave function of b. If δ > δ, (9) holds with strict inequality
at b = Δ0, and due to concavity, no b′ ∈ (Δ0, b

∗) satisfies (9) with equality.

Proposition 2 If δ ≥ δ, the value of the maximization problem (5)–(7) is b∗.

Proof. Fix (Bk)M
k=0 satisfying (6) and (7), and define B = maxk Bk. From (6) and (7),

we have

(1 − δ)(K − 1)B ≤ δ
M∑

k=0

pkBk ≤ δ
M∑

k=0

pk min
{
Δk.B

}
.

This implies that

1 − δ

δ
(K − 1)B ≤ b∗,

from which we obtain

M∑
k=0

pkBk ≤
M∑

k=0

pk min
{
Δk, B

} ≤
M∑

k=0

pk min
{

Δk,
δb∗

(1 − δ)(K − 1)

}
= b∗. (10)

(10) thus implies that the value of the maximization problem (5)–(7) is at most b∗.
Next, define B∗ and (B∗

k)M
k=0 as

B∗ =
δb∗

(1 − δ)(K − 1)
, B∗

k = min
{
Δk, B

∗}.

9The result does not imply uniqueness of the second-best equilibrium, because Assumption 1(iv) is
consistent with multiple stage-game equilibria.
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(B∗
k)M

k=0 clearly satisfies (7). Since (9) holds with equality at b∗, we have

(1 − δ)(K − 1)B∗
k ≤ (1 − δ)(K − 1)B∗ = δ

M∑
k=0

pk min
{
Δk, B

∗} = δ
M∑

k=0

pkB
∗
k

for any k. Therefore, (6) also holds. Since

M∑
k=0

pkB
∗
k =

(1 − δ)(K − 1)
δ

B∗ = b∗,

(10) implies that the value of the problem is b∗. Q.E.D.

A special case of Proposition 2 is the one where full collusion can be sustained. That
is, (Bk)M

k=0 = (Δk)M
k=0 is a solution of the maximization problem, and b∗ =

∑M
k=0 pkΔk.

This happens if and only if

ΔM ≤ δ

(1 − δ)(K − 1)

M∑
k=0

pkΔk, ∴ δ ≥ δ ≡ (K − 1)ΔM

(K − 1)ΔM +
∑M

k=0 pkΔk

. (11)

If δ < δ, the second-best equilibrium only attains partial collusion.
Another special case is when δ = δ. In this case, (9) reduces to

b ≤
M∑

k=0

pk min
{
Δk, b

}
,

and it is easy to see that b∗ = Δ0. Thus the second-best equilibrium payoff equals the
payoff of full collusion under the lowest state.

It is also easy to see from (9) that b∗ is increasing in δ on [δ, δ]. Hence on this range,
more patience allows to achieve more collusive outcomes.

The proof of Proposition 2 reveals that the second-best equilibrium is a strategy pair
with a “payoff target” B. Namely, in its cooperative phase, the players play a symmetric
action pair whose payoff is min{Δk, B} under state k. Unless full collusion is sustainable
(if this is the case, the target can be set at ΔM ), the players must give up full collusion
under higher states. The payoff target strategy pair stipulates that the players sustain the
same payoff level under those states. This is indeed an effective way to collude, because
that duplicates the incentive conditions (6) under higher states.

Finally we point out that (9) is important even when δ < δ. In this case, the largest b

satisfying (9) is zero, which equals the second-best equilibrium payoff of this case (Propo-
sition 1). Therefore, the largest solution of (9) completely characterizes the second-best
equilibrium payoff.

4 Multimarket Contact

This section presents an application of the results in the previous section, which is a
main motivation of this paper. Namely, we investigate effects of multimarket contact in
Bertrand price competition with demand fluctuations. We first describe the environment
and then discuss how it can be formulated as a game satisfying Assumption 1.
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There are M ex ante identical markets, and in each market two identical firms compete
in price. Each market is subject to demand fluctuations, depending on which it is either
in high demand or low demand.10 The demands are independent across the markets and
over time. The probability that a given market is in high demand is μ ∈ (0, 1). We assume
that each market is associated with the Bertrand price competition game we described in
Example 1, except that we now have only two states; ones corresponding to high demands
and low demands, respectively. Let πH (πL, respectively) be each firm’s profit under full
collusion (the value corresponding to Δk), when the demand is high (low). We assume
πH > πL > 0. Define π = μπH + (1 − μ)πL, which is the expected value of full collusion
per market.

At the beginning of each period, the firms learn which of the M markets are in high
demands in that period. This amounts to observing a subset of the set {1, 2, . . . , M},
which is the set of markets in high demand. Given that, they decide prices in all mar-
kets. Formally, the number of states is 2M , and the set of actions is X = [0, p]M . Since
each market satisfies Assumption 1, it is easy to see that this environment also satisfies
Assumption 1. Let M be the set of all subsets of {1, 2, . . . , M}. If M ′ ∈ M is the current
set of high-demand markets, the maximum symmetric action pair profit is:

ΔM ′ = MπL + |M ′|(πH − πL) > 0.

Let us denote the repeated game with this stage game by G(δ, M), where δ is the discount
factor.

As in the argument in Section 3, the second-best equilibrium profit is the value of the
following maximization problem (note that this environment satisfies Assumption 1(iii)
for K = 2, because each market satisfies it for K = 2).

max
(BM ′ )M ′∈M

∑
M ′∈M

μ|M ′|(1 − μ)M−|M ′|BM ′

subject to (1 − δ)BM ′ ≤ δ
∑

M ′′∈M
μ|M ′′|(1 − μ)M−|M ′′|BM ′′ ∀M ′ ∈ M

0 ≤ BM ′ ≤ ΔM ′ ∀M ′ ∈ M

Recall that ΔM ′ depends only on |M ′|. Therefore the solution of this problem must
be such that BM ′ = BM ′′ whenever |M ′| = |M ′′|. This observation implies that we
have an alternative problem that also specifies the second-best equilibrium profit. For
k ∈ {0, 1, . . . , M}, let pk be the probability that exactly k markets are in high demand.
Also, let Δk = ΔM ′ , where M ′ is such that |M ′| = k. Then the maximization problem
that exactly coincides with the one (5)–(7) also specifies the second-best equilibrium profit.
Thus we will hereafter work with it.

Fix δ, and let b∗M be the second-best equilibrium profit of G(δ, M). Define β∗
M ≡ b∗M/M ,

which is the second-best equilibrium per-market profit of G(δ, M). Our objective is to
examine how b∗M and β∗

M depend on M .
Since K = 2 in this setup, δ and δ defined by (8) and (11) are

δ =
1
2
, δ =

πH

πH + π
,

10The analysis, in principle, extends to the case of three or more demand states.
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respectively. Note that they are independent of M . Based on the results in the previous
section, three observations are in order.

(I) If δ < δ = 1/2, b∗M = β∗
M = 0 for any M . Therefore any collusion is impossible,

regardless of the number of markets. In this case, multimarket contact does not
help at all.

(II) If δ = 1/2, b∗M = Δ0 and β∗
M = πL for any M . That is, independent of the number

of markets, the second-best equilibrium profit equals the value of full collusion when
all markets are in low demand. This is another case where multimarket contact does
not help.

(III) If δ ≥ δ, b∗M = Mπ and β∗
M = π for any M . Namely, full collusion is sustainable

regardless of the number of markets. In this case, multimarket contact does not
matter.

The remaining case is δ < δ < δ. Our first result shows how β∗
M varies with M .

Proposition 3 Let δ ∈ (δ, δ). For any M ≥ 1, we have β∗
M ≤ β∗

M+1, and the equality
holds if and only if there exists k̂ ∈ {0, 1, . . . , M − 1} such that

δ

1 − δ
β∗

M = πL +
k̂

M
(πH − πL). (12)

Proof. Fix δ ∈ (δ, δ) and M ≥ 1, and consider G(δ, M). For a later purpose, we explicitly
write down pl, the probability that l out of M markets are in high demand. That is,

pl =
M !

l!(M − l)!
μl(1 − μ)M−l. (13)

Similarly, let ql (l ∈ {0, 1, . . . , M + 1}) be the probability that l out of M + 1 markets are
in high demand;

ql =
(M + 1)!

l!(M + 1 − l)!
μl(1 − μ)M+1−l. (14)

From (13) and (14), we have the following equations;

p0(1 − μ) = q0, (15)

pl−1μ
{

πL +
l − 1
M

(πH − πL)
}

+ pl(1 − μ)
{

πL +
l

M
(πH − πL)

}
= ql

{
πL +

l

M + 1
(πH − πL)

}
, ∀l ∈ {1, 2, . . . , M − 1}

(16)

pkμ +
M∑

l=k+1

pl =
M+1∑
l=k+1

ql ∀k ≤ M (17)

In (17), read
∑M

l=k+1 pl = 0 in case of k = M .
Let k̂ be the greatest integer k such that

πL +
k

M
(πH − πL) ≤ δ

1 − δ
β∗

M . (18)
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Since δ < δ < δ, we have πL < β∗
M < π. Thus (18) holds at k = 0, but not at k = M .

Hence 0 ≤ k̂ ≤ M − 1.
Since (9) for G(δ, M) holds with equality at b∗M , we obtain

β∗
M =

k̂∑
l=0

pl

{
πL +

l

M
(πH − πL)

}
+

M∑
l=k̂+1

pl · δ

1 − δ
β∗

M . (19)

Rearranging (19) yields

β∗
M =

k̂∑
l=1

[
pl(1 − μ)

{
πL +

l

M
(πH − πL)

}
+ pl−1μ

{
πL +

l − 1
M

(πH − πL)
}]

+ p0(1 − μ)πL + pk̂μ
{

πL +
k̂

M
(πH − πL)

}
+

M∑
l=k̂+1

pl · δ

1 − δ
β∗

M

=
k̂∑

l=0

ql

{
πL +

l

M + 1
(πH − πL)

}
+

M+1∑
l=k̂+2

ql · δ

1 − δ
β∗

M

+ pk̂μ
{

πL +
k̂

M
(πH − πL)

}
+ pk̂+1(1 − μ) · δ

1 − δ
β∗

M ,

(20)

where (20) holds because of (15)–(17). Due to the definition of k̂ and (16), it follows that

pk̂μ
{
πL +

k̂

M
(πH − πL)

}
+ pk̂+1(1 − μ) · δ

1 − δ
β∗

M

≤ qk̂+1 min
{[

πL +
k̂ + 1
M + 1

(πH − πL)
]
,

δ

1 − δ
β∗

M

}
,

(21)

where the equality holds if and only if (12) holds with equality.
Note that the definition of k̂ also implies

πL +
k̂

M + 1
(πH − πL) <

δ

1 − δ
β∗

M < πL +
k̂ + 2
M + 1

(πH − πL). (22)

Hence, substituting (21) into (20) and then using (22), we obtain

β∗
M ≤

M+1∑
l=0

ql min
{

πL +
l

M + 1
(πH − πL),

δ

1 − δ
β∗

M

}
,

where the equality holds if and only if (12) holds with equality. Therefore, β∗
M ≤ β∗

M+1,
and β∗

M = β∗
M+1 holds if and only if (12) holds with equality. Q.E.D.

Proposition 3 implies that if the firms are relatively patient and thus can only attain
partial collusion, adding one more market never reduces the second-best equilibrium per-
market profit, and increases it in most cases. However, in rare cases where (12) holds,
adding one more market does not change the second-best equilibrium per-market profit.
In other words, the irrelevance result by Bernheim and Whinston [1] is not entirely denied
in this case.

Nevertheless, we may as well claim that the irrelevance result generally fails. First,
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if M = 1, no k satisfies (12). Thus β∗
1 < β∗

2 . Second, the irrelevance result fails if two
or more markets are added. To see this, note that if (12) holds and therefore we have
β∗

M = β∗
M+1, it follows that

πL +
k̂

M + 1
(πH − πL) < β∗

M+1 < πL +
k̂ + 1
M + 1

(πH − πL).

Hence we have β∗
M+2 > β∗

M . Those observations are summarized by the following corollary.

Corollary 1 Let δ ∈ (δ, δ). Then we have (i) β∗
1 < β∗

2 , and (ii) for any M ≥ 1 and any
M ′ ≥ M + 2, β∗

M < β∗
M ′.

The next result is about the total profit in the second-best equilibrium.

Proposition 4 Let δ ∈ (δ, δ), and fix ε > 0 arbitrarily. Then there exists M such that
for any M ≥ M , b∗M > πM − ε. In other words, limM→∞(πM − b∗M ) = 0.

Proof. Fix δ ∈ (δ, δ) and ε > 0. Since δ > δ, a rational number μ̂ ∈ (μ, 1) exists such that

δ

1 − δ
π =

δ

1 − δ

{
πL + μ(πH − πL)

}
> πL + μ̂(πH − πL).

It then follows that

δ

1 − δ
(πM − ε) > M

{
πL + μ̂(πH − πL)

}
for all large M . Therefore,

M∑
l=0

pl min
{

Δl,
δ

1 − δ

(
πM − ε

)} ≥
M∑
l=0

pl min
[
Δl, M

{
πL + μ̂(πH − πL)

}]

=
M∑
l=0

pl

[
Δl + min

{
0, (Mμ̂ − l)(πH − πL)

}]

=πM − (πH − πL)
M∑
l=0

pl max
{
0, l − Mμ̂

}

for all large M . In Appendix A, we prove that

lim
M→∞

M∑
l=0

pl max
{
0, l − Mμ̂

}
= 0. (23)

We thus obtain

πM − ε <
M∑
l=0

pl min
{

Δl,
δ

1 − δ

(
πM − ε

)}

for all large M . In view of (9), this implies that b∗M > πM − ε for all large M , which
completes the proof. Q.E.D.

Proposition 4 shows that given relatively patient firms, the difference between the
profit under full collusion and the second-best equilibrium total profit converges to zero if
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the number of markets goes to infinity. Namely, the collusion-deterrence effects of demand
fluctuations completely vanish in the limit.

From the proof of Proposition 4, we see that the second-best equilibrium when M is
large enough sets a payoff target greater than M

{
πL + μ̂(πH − πL)

}
, where μ̂ > μ. That

is, the per-market target is greater than the average full collusion profit. By the law of
large numbers, the probability that the fraction of high-demand markets is greater than
μ̂ converges to zero, if the number of markets goes to infinity. In fact, the convergence is
so fast that it converges to zero even if it is multiplied by M . This implies that the firms
can fully collude except upon an event with a negligible probability, and that the expected
efficiency loss due to demand fluctuations is also negligible. Consequently, full collusion is
approximately attained.

A Appendix: Proof of (23)

The left-hand-side of (23) can be further calculated as

M∑
l=0

pl max
{
0, l − Mμ̂

}
=

M∑
l=�Mμ̂�

pl(l − Mμ̂) < (1 − μ̂)M
M∑

l=�Mμ̂�
pl,

where 
k� is the smallest integer not less than k. Note that

pl+1

pl
=

(M − l)μ
(l + 1)(1 − μ)

<
(1 − μ̂)μ
μ̂(1 − μ)

≡ κ

for any l ≥ 
Mμ̂�. Since κ < 1 from μ̂ > μ, we have

(1 − μ̂)M
M∑

l=�Mμ̂�
pl <

1 − μ̂

1 − κ
Mp�Mμ̂�.

Therefore, if we define

αM ≡ Mp�Mμ̂� = M
M !


Mμ̂�!(M − 
Mμ̂�)!μ�Mμ̂�(1 − μ)M−�Mμ̂�,

it suffices to prove that limM→∞ αM = 0.
Since μ̂ is rational, we can choose two natural numbers y and Y such that μ̂ = y/Y .

Since

μy(1 − μ)Y −y < μ̂y(1 − μ̂)Y −y,

there exists η > 0 such that

(
μ

μ̂

)y(1 − μ

1 − μ̂

)Y −y

< 1 − η. (24)
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We also have

αM+Y

αM
=

M + Y

M
·

[∏Y
k=1(M + k)

]
μy(1 − μ)Y −y[∏y

k=1

(
Mμ̂� + k
)][∏Y −y

k=1

(
M − 
Mμ̂� + k

)] (25)

for each M , because
⌈
(M + Y )μ̂

⌉
= 
Mμ̂� + y.

Since Mμ̂ ≤ 
Mμ̂� < Mμ̂ + 1 for any M , it follows that

lim
M→∞


Mμ̂�
M

= μ̂.

Applying this to (25) and using (24), we have

lim
M→∞

αM+Y

αM
=

(
μ

μ̂

)y(1 − μ

1 − μ̂

)Y −y

< 1 − η.

Therefore, for any z = 1, 2, . . . , Y , the sequence
(
αKY +z

)∞
K=0

converges to zero. This
proves that limM→∞ αM = 0.
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