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1 Introduction

When homogeneous players play Prisoner’s Dilemma, it is commonly understood that the best

outcome that players should aim for is mutual cooperation. If the game is one-shot, mutual

cooperation cannot be an equilibrium outcome, and thus the “Dilemma” arises. If players

can repeat the game with complete information, infinite repetition or unknown horizon admit

an equilibrium with repeated mutual cooperation, under the threat of future punishment and

sufficiently high discount factors (Friedman [7], Fudenberg and Maskin [8]). If players can only

repeat the game for finitely many times, reputation building may sustain repeated mutual

cooperation except for last periods, when there is a belief that the opponent may be of a

particular type (Kreps et al. [14]).

Recently, endogenously repeated model of Prisoner’s Dilemma type games is introduced

(e.g., Datta [3], Ghosh and Ray [11], Kranton [13], Fujiwara-Greve and Okuno-Fujiwara

[9], and McAdams [15].) This model is a natural extension of infinitely repeated Prisoner’s

Dilemma in a large society. It allows players to choose whether to keep the same partner or

to strategically end the partnership, after each round of Prisoner’s Dilemma. Players without

a partner can find a new partner in a random matching process without information flow.

However, because a player can defect, end the partnership, and find a new partner who cannot

know the past actions of the new partner, repeated mutual cooperation from the onset of a

new partnership is impossible in this model (e.g., Fujiwara-Greve and Okuno-Fujiwara [9],

henceforth GO2009).

A natural question is then how much efficiency can be achieved under the endogenous

repetition with no information flow to new partners. For symmetric (monomorphic) equi-

libria, GO2009 focused on trust-building strategies which play myopic D(efection) action for

some periods in a new partnership and then shift to C-trigger type strategy with ending the

partnership as punishment. (Since any in-game punishment can be avoided by unilateral

ending of a partnership, severance is the maximal equilibrium punishment.) It was shown

that sufficient length of trust-building periods would make a monomorphic equilibrium.

An alternative approach to efficiency is to consider asymmetric (polymorphic) equilibria
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including the most cooperative strategy, which starts with C with a new partner and continues

to play C as long as the partners maintain mutual cooperation and ends the partnership

otherwise. To make it a part of an equilibrium, the population must have another strategy

that defects initially. We consider two types of such strategies, the one-period trust-building

strategy, which is most efficient among trust-building strategies, and the most myopic strategy

which plays D in any partnership and end it in one period. The myopic strategy corresponds

to the irrational type players often assumed in the related incomplete information models

(e.g., Ghosh and Ray [11], Kranton [13], Rob and Yang [16], and McAdams [15]).

Our main results are as follows. First, the “fundamentally asymmetric” bimorphic equi-

librium consisting of the most cooperative strategy and the most myopic strategy always

exists for sufficiently high survival rate of players (effective discount factors), while other

combinations such as the monomorphic one-period trust-building strategy or the bimorphic

combination of the most cooperative strategy and the one-period trust-building strategy may

not constitute an equilibrium for any survival rate, depending on the payoff parameters.

Second, the fundamentally asymmetric equilibrium is also most efficient among all bi-

morphic equilibria involving the most cooperative strategy. Hence it is more efficient than

the bimorphic equilibrium of the most cooperative strategy and the one-period trust-building

strategy, if the latter exists. GO2009 has already shown that the latter is more efficient than

the monomorphic equilibrium of the one-period trust-building strategy, if it exists. However,

it is possible that the bimorphic equilibrium of the most cooperative strategy and the one-

period trust-building strategy does not exist but the monomorphic one-period trust-building

equilibrium exists. In this case we still need to compare the fundamentally asymmetric bi-

morphic equilibrium and the one-period trust-building equilibrium. We found that when

the payoffs of the Prisoner’s Dilemma satisfy the “small-stake condition”, the fundamentally

asymmetric equilibrium is more efficient than the monomorphic one-period trust-building

equilibrium. Therefore, among the various equilibria using the three focal strategies, the one

that allows defectors to occupy a part of the society forever is most efficient for a range of

payoff parameters. Note that the players come from a single symmetric population and thus
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in any equilibrium they obtain the same long-run payoff. The small-stake condition means

that the stake (difference between deviation payoff and cooperation payoff) is sufficiently

smaller than the merit of cooperation (difference between mutual cooperation payoff and

mutual defection payoff).

The ease of existence and the relative efficiency of the fundamentally asymmetric equi-

librium of cooperators and defectors are a striking contrast to the equilibrium structure of

ordinary repeated Prisoner’s Dilemma, where the symmetric efficient payoff is attained by the

symmetric C-trigger equilibrium. Our result may give a foundation to behavioral diversity

in real markets, particularly those with small deviation gain.

There is a related work by Cho and Matsui [1], [2], in which pairs are randomly formed

(from two finite populations) and the only choice of players is whether to agree to keep the

relationship or to unilaterally terminate it, depending on the value created by the match.

Their focus is how players settle with efficient “partnership values” in the long run. By

contrast, we show that relative efficiency may result even though some players never care to

establish a long-term cooperative relationship.

This paper is organized as follows. In Section 2 we formulate the Voluntarily Separable

Repeated Prisoner’s Dilemma, introduced by GO2009, and define the strategies of our focus.

In Section 3 we give sufficient conditions for the existence of the equilibria with various

combinations of the focal strategies. In Section 4 we compare efficiency of various equilibria

and derive the small-stake condition. In Section 5 we give additional observations. All proofs

are in Appendix.

2 Voluntarily Separable Repeated Prisoner’s Dilemma

2.1 Model

Basic setting of the model is as in GO2009. Consider a large society of a continuum of

homogeneous players of measure 1, over the discrete time horizon. At the beginning of

each period, players without a partner enter a random matching process and form pairs.1

1For simplicity and following GO2009, we assume that a player finds a new partner for sure. This assump-
tion makes cooperation most difficult.
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Figure 1: Outline of the VSRPD

Newly matched players have no knowledge of the past action history of each other, and

they play the ordinary two-action Prisoner’s Dilemma of Table 1. The actions in the Prisoner’s

Dilemma are observable only by the partners. After observing the actions in the Prisoner’s

Dilemma, the partners simultaneously choose whether to keep the partnership (action k) or

to end it (action e). The partnership dissolves if at least one partner chooses action e. In

addition, at the end of a period, each player may exit from the society for some exogenous

reason (which we call a “death”) with probability 1 − δ, where 0 < δ < 1. If a player dies,

a new player enters into the society, keeping the population size constant. Players who lost

the partner for some reason, as well as newly born players enter the matching pool in the

next period. (This justifies the no-information-flow assumption because the players in the

matching pool can have different backgrounds.) Therefore a partnership continues if and

only if both partners choose action k and do not die. In this case the same partners play

the Prisoner’s Dilemma in the next period, skipping the matching process. The outline of

VSRPD is depicted in Figure 1.

The one-shot payoffs in the Prisoner’s Dilemma are shown in Table 1. Throughout the

paper we maintain the assumption that the payoff parameter combination (g, c, d, ℓ) satisfies
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g > c > d > ℓ and 2c ≧ g+ℓ. The latter is to make the symmetric action profile (C,C) efficient

in one-shot. We denote by PD = (g, c, d, ℓ) the payoff parameter combinations satisfying

these inequalities. We later specify additional conditions on the parameter combinations.

The game continues with probability δ from an individual player’s point of view. Thus

we focus on the expected total or average payoff, with δ being the effective discount factor of

a player.

2.2 Strategies

Under the no-information-flow assumption, we focus on match-independent strategies2 that

only depend on the period t = 1, 2, . . . within a partnership (not the calendar time in the whole

game) and the private history of actions within a partnership. Let Ht := [{C,D}×{C,D}]t−1

be the set of partnership histories3 at the beginning of t ≥ 2 and let H1 := {∅}.

Definition 1. A pure strategy s of VSRPD consists of (xt, yt)
∞
t=1 where:

xt : Ht → {C,D} specifies an action choice xt(ht) ∈ {C,D} given the partnership history

ht ∈ Ht, and

yt : Ht × {C,D}2 → {k, e} specifies whether to keep or end the partnership, depending on

the partnership history ht ∈ Ht and the current period action profile.

Since any new partnership starts with a null history ∅, a pure strategy plays the same

action x1(∅) ∈ {C,D} at the beginning of any partnership. Subsequent actions depend on the

history of actions within the current partnership only. The set of pure strategies of VSRPD

is denoted as S and the set of all strategy distributions in the population is denoted as P(S).

We investigate the evolutionary stability of stationary strategy distributions in the

matching pool. Although the strategy distribution in the matching pool may be different

from the distribution in the entire society, if the former is stationary, the distribution of

2Since the population is a continuum, “contagious” strategies used in Kandori [12] and Ellison [6] are not
useful in achieving cooperation.

3Note that only (k, k) throughout the past would allow players to choose actions. Hence the relevant
histories on which players can condition their actions are the action combinations in the Prisoner’s Dilemma
only.
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various states of matches is also stationary, thanks to the stationary death process.4 Since

each player is born into the random matching pool, the life-time payoff is determined by the

strategy distribution in the matching pool. We assume that each player uses a pure strategy,

which is natural in an evolutionary game and simplifies the analysis.

2.3 Lifetime and Average Payoffs

When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected length of the

match is denoted as L(s, s′) and is computed as follows. Notice that even if s and s′ intend

to maintain the match, it will only continue with probability δ2. Suppose that the planned

length of the partnership of s and s′ is T (s, s′) periods, if no death occurs. Then

L(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

The expected total discounted value of the payoff stream of s within the match with s′ is

denoted as V (s, s′). The average payoff that s expects to receive within the match with s′ is

denoted as v(s, s′) and defined as follows.

v(s, s′) :=
V (s, s′)

L(s, s′)
, or V (s, s′) = L(s, s′)v(s, s′).

Next we show the structure of the lifetime and average payoff of a player endowed with

strategy s ∈ S in the matching pool, waiting to be matched randomly with a partner. When

a strategy distribution in the matching pool is p ∈ P(S) and is stationary, we write the

expected total discounted value of payoff streams s expects to receive during his lifetime as

V (s; p) and the average payoff s expects to receive during his lifetime as

v(s; p) :=
V (s; p)

L
= (1− δ)V (s; p),

where L = 1 + δ + δ2 + · · · = 1
1−δ is the expected lifetime of s. Thanks to the stationary

distribution in the matching pool, we can write V (s; p) as a recursive equation. If p has a

4See GO2009 footnote 7 for details.
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finite/countable support, then we can write5

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′)

+[δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
, (1)

where supp(p) is the support of the distribution p, the sum δ(1−δ){1+δ2+ · · ·+δ2{T (s,s′)−2}}

is the probability that s loses the partner s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the probability

that the match continued until T (s, s′) and s survives at the end of T (s, s′) to go back to the

matching pool. Thanks to the stationarity of p, the continuation payoff after a match ends

for any reason is always V (s; p). Let L(s; p) :=
∑

s′∈supp(p) p(s
′)L(s, s′). By computation,

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]
=

∑
s′∈supp(p)

p(s′)V (s, s′) + {1− L(s; p)

L
}V (s; p). (2)

Hence the average payoff is a nonlinear function of the strategy distribution p:

v(s; p) :=
V (s; p)

L
=

∑
s′∈supp(p)

p(s′)V (s, s′)

L(s; p)
. (3)

2.4 Stability Concepts

We now define stability concepts.

Definition 2. Given a stationary strategy distribution in the matching pool p ∈ ∆(S), s ∈ S

is a best reply against p if, for all s′ ∈ S,

v(s; p) ≧ v(s′; p),

and is denoted as s ∈ BR(p).

Definition 3. A stationary strategy distribution in the matching pool p ∈ ∆(S) is a Nash

equilibrium if, for all s ∈ supp(p), s ∈ BR(p).

5Theorem 1 and Remark 1 of Duffie and Sun [4] show that the matching probability of a particular strategy
is the fraction of the strategy in the pool.
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From the evolutionary perspective, a Nash equilibrium is a robust distribution against

single (measure zero) entrants. Let us introduce a stronger stability concept which requires

robustness against a positive measure of entrants. Different stability concepts are obtained

by the difference in the potential set of entrants. The next notion restricts entrants to be

incumbent strategies only.

Definition 4. A stationary strategy distribution in the matching pool p ∈ ∆(S) is a Locally

Stable Nash equilibrium if,

(i) p is a Nash equilibrium; and

(ii) for any s′ ∈ supp(p), there exists ϵ̄ ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ̄) and any s ∈

supp(p) \ {s′},

v(s; (1− ϵ)p+ ϵs′) ≧ v(s′; (1− ϵ)p+ ϵs′),

and there exists s̃ ∈ supp(p) \ {s′} such that

v(s̃; (1− ϵ)p+ ϵs′) > v(s′; (1− ϵ)p+ ϵs′).

As it becomes clear below, local stability selects among asymmetric Nash equilibria, con-

sisting of multiple strategies in the population. Note, however, that for monomorphic Nash

equilibria (consisting of a single strategy played by all players), local stability is vacuous.

There is a stronger notion of neutrally stable distribution (GO2009), which requires the dis-

tribution be robust against any entrant (not just incumbent strategies) of a small measure.

Since we focus on the payoff efficiency, not stability, we refer our readers to GO2009 and

Fujiwara-Greve and Okuno-Fujiwara [10] for a further stability analysis of the strategies of

our focus.

2.5 Strategies of Focus

We investigate the equilibrium payoffs among cooperative players and defectors. For cooper-

ative strategies, GO2009 focused on the following trust-building strategies.

Definition 5. For any T = 0, 1, 2, . . ., let cT -strategy be a strategy6 as follows:
6To be very precise, we are not specifying off-path actions. Thus one can think that we are dealing with a

class of cT -strategies for each T = 0, 1, 2, . . .. Alternatively, we can fix a strategy in each class of cT -strategies,
without loss of generality.
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t ≦ T : Play D and keep the partnership if and only if (D,D) is observed in the current

period.

t ≧ T + 1: Play C and keep the partnership if and only if (C,C) is observed in the current

period.

The trust-building strategies start a new partnership with D, but after T periods, shift to

C-trigger type behavior with ending the partnership as punishment. Ending the partnership

is the maximal equilibrium punishment in VSRPD, since any in-match punishment can be

avoided by unilateral severance. Note that the above definition includes the degenerate

strategy c0, which cooperates with a stranger.

GO2009 focused on this class of strategies, particularly for T ≧ 1, because, when players

can unilaterally end a partnership without information flow, any strategy combination that

starts with C is never an equilibrium in VSRPD. Against such strategy combinations, a player

who plays D and end the partnership immediately would earn the highest one-shot payoff g

in every partnership.

Lemma 1. (GO2009) For any δ ∈ (0, 1), any strategy distribution p ∈ P(S) such that all

strategies in the support start with C in t = 1 is not a Nash equilibrium.

Lemma 1 applies to the monomorphic distribution of c0-strategy, which is the most ef-

ficient symmetric strategy combination. This is a striking contrast to ordinary repeated

Prisoner’s Dilemma where the monomorphic distribution of the C-trigger strategy consti-

tutes a subgame perfect equilibrium for sufficiently high δ. The problem of VSRPD is the

lack of information flow to new partners. Because no personalized punishment is possible, the

strategy combination must embed punishment. One way to do it is the initial trust-building

periods. However, the initial trust-building periods is a welfare loss.7

Alternatively, we can construct polymorphic equilibria including c0-strategy. To consti-

tute an equilibrium, there must be other strategies in the society that play D initially. While

7Eeckhout [5] adds initial correlation stage to selectively cooperate with some strangers, which improves
efficiency. In this paper we do not assume that joint randomization is possible among strangers.
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any non-degenerate trust-building strategy can be a candidate, and among them c1-strategy is

most efficient, we also consider the most myopic strategy, denoted as d0-strategy, as follows.
8

Definition 6. Let d0-strategy be a strategy as follows:

Play D and end the partnership regardless of the observation in this period.

The d0-strategy is often assumed to occupy a positive fraction in the society (permanently)

in incomplete information versions of VSRPD (e.g., Ghosh and Ray[11], Kranton [13], Rob

and Yang [16], and McAdams [15]). A motivation of the incomplete information models

is to construct a symmetric cooperative equilibrium among “rational players” from which

bilateral deviation is also impossible. Incomplete information with the possibility that a

randomly met opponent never plays C serves as an incentive device for rational players to

establish a cooperative relationship as soon as possible. However, it has not been investigated

whether the non-cooperative type players can fare as well as rational players.9

3 Existence

GO2009 gives a sufficient condition on the payoff parameters which warrants that c1-strategy

played by all players is a Nash equilibrium (and moreover neutrally stable). Among monomor-

phic trust-building strategy equilibria, clearly this is most efficient.

Remark 1. (GO2009) For any PD= (g, c, d, ℓ) such that g − c < c− d, let

δc1 :=

√
g − c

c− d
.

Then δc1 ∈ (0, 1) and for any δ ∈ (δc1, 1), the monomorphic distribution of c1-strategy is a

Nash equilibrium.

Next, we turn to bimorphic equilibria involving c0-strategy. Our first result is to establish

that for any payoff parameter combination, for sufficiently high δ, there is a locally stable

Nash equilibrium consisting of c0- and d0-strategy.

8In GO2009, this strategy is denoted as d̃-strategy.
9The companion paper by Fujiwara-Greve and Okuno-Fujiwara [10] considers a larger class of defecting

strategies (see also Section 5) and analyzes evolutionary stability of the c0-d0 equilibrium.
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Figure 2: Existence of δc0d0 and the c0-d0 equilibrium

Proposition 1. For any PD= (g, c, d, ℓ), there exists δ ∈ (0, 1) such that for any δ ∈ (δ, 1),

there exists αcd(δ) ∈ (0, 1) such that αcd(δ)c0 + {1 − αcd(δ)}d0 is a locally stable Nash equi-

librium. Let the smallest such δ be δc0d0.

We give an intuition for the above result, which will be useful in the later analysis as well.

The average payoffs of c0- and d0-strategies, when the stationary matching pool distribution

is αc0 + (1− α)d0, are as follows.

v(c0;αc0 + (1− α)d0) =
α · c

1−δ2
+ (1− α)ℓ

α · 1
1−δ2

+ 1− α
(4)

v(d0;αc0 + (1− α)d0) = αg + (1− α)d. (5)

To explain, the numerator of v(c0;αc0+(1−α)d0) is the expected total payoff of c0-strategy

from two kinds of partnerships, and the denominator is the expected length of the two kinds

of matches. The c0-strategy ends the partnership as soon as d0-strategy plays D in the

first period. The average payoff of d0-strategy is also the expected payoff from two kinds of

partnerships, both of which end in one period.

The average payoff of c0-strategy is concave in its share α in the matching pool, while

that of d0-strategy is linear. As δ increases, the average payoff of c0-strategy becomes more
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concave and at some δc0d0 ∈ (0, 1), it touches the average payoff function of d0-strategy from

below. See Figure 2. Above δc0d0 , there will be two intersections between the two average

payoffs. Let the intersection with a larger share of c0-strategy be αcd(δ), then the bimorphic

distribution αcd(δ)c0 + {1− αcd(δ)}d0 is payoff-equalizing and locally stable. (See Figure 2.)

It turns out that payoff-equivalence implies the Best Reply Condition, which is a sufficient

condition for a Nash equilibrium (GO2009). Let vM be the common average payoff of strate-

gies in the matching pool. Then the Best Reply Condition requires that a one-step deviation

is not beneficial, that is

g + δ
vM

1− δ
≦ c

1− δ2
+

δ(1− δ)

1− δ2
· vM

1− δ
⇐⇒ vM ≦ 1

δ2
{c− (1− δ2)g} =: vBR. (6)

Lemma 2. For any δ ∈ (0, 1) and any α ∈ (0, 1) such that

v(d0;αc0 + (1− α)d0) = v(c0;αc0 + (1− α)d0),

the common average payoff is strictly less than vBR, that is, the payoff-equalizing distribution

αc0 + (1− α)d0 is a Nash equilibrium.

Hence the payoff-equalizing distribution αcd(δ)c0+{1−αcd(δ)}d0 is a locally stable Nash

equilibrium. (The other payoff-equalizing distribution with a smaller share of c0-strategy is

also a Nash equilibrium but not locally stable.)

We now show a sufficient condition of payoff parameters to warrant the existence of a

locally stable Nash equilibrium consisting of c0- and c1-strategy. The idea is as follows. First,

notice that, for any strategy s0 which plays D in the first period of a partnership, the average

payoff of c0-strategy facing the stationary strategy distribution αc0 + (1 − α)s0 is the same

as the one for αc0 + (1− α)d0, since the play path of c0-strategy is the same.

Second, the average payoff of c1-strategy facing αc0 + (1−α)c1 in the matching pool is a

convex function of α as below (see also GO2009).

v(c1;αc0 + (1− α)c1) =
α · g + (1− α)(d+ δ2 c

1−δ2
)

α · 1 + (1− α) 1
1−δ2

. (7)

To explain, the numerator is the expected in-match payoff for c1-strategy when it is matched

with a c0-strategy (first term) and with a c1-strategy (second term). The match with a
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c0-strategy ends immediately by c0-strategy’s severance, while the match with a c1-strategy

continues as long as the partners live. This makes the denominator.

We need to find the minimum δ which makes the average payoff function v(c0;αc0 +(1−

α)c1) “touch” the average payoff function v(c1;αc0 + (1 − α)c1) from below. However, the

average payoff of c1-strategy is higher than that of d0-strategy (see Figure 3) as long as the

average payoff is not more than c, which is the range of the average payoff of c0-strategy.

Lemma 3. For any pure strategy s0 that plays D in the first period of a newly formed match,

v(c1;αc0 + (1− α)c1) ≧ v(d0;αc0 + (1− α)s0) ⇐⇒ c ≧ v(d0;αc0 + (1− α)s0).

Therefore, even if the lower average payoff function v(d0;αc0 + (1− α)s0) intersects with

v(c0;αc0 + (1 − α)s0) (i.e., the c0-d0 equilibrium exists), the higher average payoff function

v(c1;αc0 + (1 − α)c1) may not intersect. This means that it is more difficult to warrant a

c0-c1 equilibrium to exist. (See Corollary 1 below.) In order to guarantee that the average

payoff functions of c1- and c0-strategy intersect at some δ ∈ (0, 1), we need to restrict payoff

parameters as follows.
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Proposition 2. For any PD= (g, c, d, ℓ) such that g− c < (c−d)2

4(c−ℓ) , there exists δ ∈ (0, 1) such

that, for any δ ∈ (δ, 1), there exists a locally stable Nash equilibrium with support {c0, c1}.

Let the smallest of such δ be δc0c1.

Corollary 1. For any PD= (g, c, d, ℓ) such that g − c < (c−d)2

4(c−ℓ) , δc0d0 < δc0c1.

We can also show that the existence of c1-monomorphic equilibrium is easier than that of

c0-c1 equilibrium. This is because, even if the average payoff functions of c0- and c1-strategy

do not intersect, the latter at α = 0 (which is the case of c1-monomorphic distribution in the

matching pool) can be below vBR. (GO2009 has a similar argument. See also Figure 3.)

Corollary 2. For any PD= (g, c, d, ℓ) such that g − c < (c−d)2

4(c−ℓ) , δc1 < δc0c1.

Finally, whether c1-monomorphic equilibrium is easier to exist than c0-d0 equilibrium

depends on the size of the “stake” g−c (which must be smaller than c−d for c1-monomorphic

equilibrium to exist) as follows.

Corollary 3. For any PD = (g, c, d, ℓ) such that g− c < c− d, when g ↓ c, then δc1 < δc0d0.

When g ↑ (2c− d), then δc1 > δc0d0.

In words, when the stake g − c is close to c − d, the fundamentally asymmetric c0-d0

equilibrium is easier to exist.

4 Efficiency

4.1 Small-Stake Condition

From Lemma 3 and the fact that v(c0;αc0 + (1− α)s0) (where s0 is any strategy that plays

D in the first period of a match) is increasing in the share α of c0-strategy, if both of c0-d0

equilibrium and c0-c1 equilibrium exist, the one that involves d0-strategy has a higher share

of c0-strategy. This is easy to see from Figure 3 as well. In fact, we can show a stronger result

that c0-d0 equilibrium is most efficient among any bimorphic Nash equilibrium involving

c0-strategy.
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Proposition 3. For any PD= (g, c, d, ℓ) and any δ ∈ (0, 1), let s ∈ S be any pure strategy

such that there exists α ∈ (0, 1) such that αc0 + (1− α)s is a Nash equilibrium. Then

v(c0;αcd(δ)c0 + {1− αcd(δ)}d0) ≧ v(c0;αc0 + (1− α)s).

From Proposition 3, it is immediate that even if c0-c1 equilibrium exists, c0-d0 equilibrium

is more efficient.

Corollary 4. For any PD= (g, c, d, ℓ) such that g − c < (c−d)2

4(c−ℓ) and any δ ∈ (δc0d0 , 1), the

bimorphic locally stable Nash equilibrium with the support {c0, d0} is more efficient than the

bimorphic locally stable Nash equilibrium with the support {c0, c1}.

In GO2009, it is also shown that a bimorphic trust-building strategy equilibrium is more

efficient than a symmetric equilibrium using the longer trust-building strategy.

Remark 2. (GO2009) For any PD= (g, c, d, ℓ) and any δ ∈ (0, 1) such that the c0-c1 bimor-

phic equilibrium exists, it is more efficient than the (most efficient) monomorphic equilibrium

consisting of c1-strategy.

To combine the results, if the c0-c1 bimorphic equilibrium exists, by the payoff transitiv-

ity, the c0-d0 bimorphic equilibrium is more efficient than the c1-monomorphic equilibrium.

However, as we have seen, the c0-c1 bimorphic equilibrium may not exist, even if the other two

equilibria exist. Thus, let us compare the efficiency between the c0-d0 bimorphic equilibrium

and the c1-monomorphic equilibrium without the payoff transitivity.

Proposition 4. For any PD= (g, c, d, ℓ) such that

g − c <
(c− d)2

c− ℓ
, (8)

there exists δ̂ ∈ [max{δc0d0 , δc1}, 1) such that the bimorphic locally stable Nash equilibrium

αcd(δ)c0 + {1− αcd(δ)}d0 is more efficient than the monomorphic equilibrium of c1-strategy,

for any δ ∈ (δ̂, 1)

Therefore, if condition (8) is satisfied, then the fundamentally asymmetric equilibrium of

c0- and d0-strategy is most efficient among the equilibria of our focus, for sufficiently high
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Figure 4: Comparison of δc0d0 , δc0c1 , δc1 , and δ̂

δ. Note also that among symmetric trust-building strategy equilibria, the c1-monomorphic

equilibrium is most efficient, and hence c0-d0 equilibrium is more efficient than any symmetric

trust-building strategy equilibria.

We call (8) the small-stake condition. An interpretation is that the “stake” g − c is

sufficiently smaller (recall that c−d
c−ℓ < 1) than the merit c − d of cooperation. For example,

when the D action means petty crimes or cheating in small value transactions, the small-stake

condition is plausible.

4.2 Synthesis of Existence and Efficiency Conditions

The above various conditions are comparable as conditions on the size of the stake, g − c.

Let us illustrate the sufficient minimum survival rate δ in relation to the size of the stake. In

Figure 4, we marked two regions of δ in which the presence of defectors d0-strategy gives the

most efficient equilibrium.
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The horizontal axis of Figure 4 represents the “stake” g − c (which is bounded by c − ℓ

under the convexity assumption of the one-shot payoffs) and the vertical axis is the survival

rate δ. As the stake increases, the minimum discount factors that warrant the existence

of various equilibria increases, since larger stake means bigger temptation to deviate. The

efficiency-related minimum discount factor is δ̂ above which the fundamentally asymmetric

equilibrium is most efficient among all equilibria consisting of trust-building strategies. The

boundary of g − c at which δ̂ hits 1 is the bound imposed by the small-stake condition. In

addition, if other equilibria fail to exist, the c0-d0 equilibrium is trivially most efficient.

Figure 4 also illustrates that the c0-d0 equilibrium always exists for sufficiently large δ,

while other kinds of equilibria disappear as the stake increases.

5 Concluding Remarks

We have shown that, for sufficiently high survival rates, the fundamentally asymmetric c0-d0

equilibrium exists (Proposition 1), and that, for a range of payoff parameters, it is most

efficient among the equilibria we focus (Proposition 3). Since longer trust-building periods

would reduce the payoffs, if the c0-d0 equilibrium is more efficient than c1-monomorphic

equilibrium, then it is more efficient than any cT -monomorphic equilibrium with T ≧ 1.

An important application of Proposition 3 is that many bimorphic distributions involving

c0-strategy fail to become an equilibrium. Let us extend the notion of d0-strategy by adding

initial trust-building periods.

Definition 7. For any T = 1, 2, . . ., let dT -strategy be a strategy as follows:

t ≦ T : Play D and keep the partnership if and only if (D,D) is observed in the current

period.

t ≧ T + 1: Play D and end the partnership regardless of observation.

We can show that any bimorphic distribution of the form c0-cT (for sufficiently large T )

or c0-dT (for any T ≧ 1) cannot be a locally stable Nash equilibrium. This is because the

value of the average payoff function of cT - (for sufficiently large T ) or dT -strategy is lower

than that of d0-strategy, as functions of α, when it intersects with the average payoff function
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Figure 5: Average payoff functions of c0-, d0-, c1-, and c2-strategy

of c0-strategy from below. Figure 5 illustrates this property for c2-strategy. Hence, if there

is a locally stable payoff-equalizing combination, the average payoff function of c0-strategy

intersects with that of the other strategy at a higher α than αcd(δ), but by Proposition 3,

such a distribution violates the Best Reply condition (6).

Corollary 5. For any PD= (g, c, d, ℓ) and any δ ∈ (δc0d0, 1), there exists T ≧ 2 such that

for any s ∈ {cT , cT+1, . . . , } ∪ {d1, d2, . . .}, any bimorphic distribution consisting of c0- and

s-strategy cannot be a locally stable Nash equilibrium.

In general, c1-monomorphic equilibrium may not exist so that this paper’s comparison be-

tween c0-d0 equilibrium and c1-equilibrium may be irrelevant. However, for sufficiently large

T , cT -monomorphic equilibrium exists, and our analysis can be extended to a comparison

between cT -monomorphic equilibrium and cT−1-dT−1 equilibrium.

Finally, note that the bimorphic equilibrium of c0- and d0-strategy has a weakness that it

is vulnerable to a coordinated invasion of c1-strategy (Fujiwara-Greve and Okuno-Fujiwara

[10] and Vesely and Yang [17]). In other words, it is not neutrally stable. This is because

the c1-strategy behaves like d0-strategy when it meets one of the incumbents but cooperates
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from the second period on when meeting the same strategy. However, a possible problem of

the positive measure of c1-strategy entrants is that they must coordinate on the timing to

shift to cooperation, but the source of such “group norm” is unclear.

Moreover, in the companion paper, Fujiwara-Greve and Okuno-Fujiwara [10], it is shown

that (i) the bimorphic equilibrium is robust against a large class of “diverse” entrant distribu-

tions, and (ii) among payoff-equivalent Nash equilibria, the bimorphic equilibrium is locally

stable for any δ ≧ δc0d0, while others are not. Hence, we can conclude that the fundamentally

asymmetric equilibrium is reasonably stable.
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Appendix

Proof of Lemma 2 : Fix any δ ∈ (0, 1) and any α ∈ (0, 1) such that

v(d0;αc0 + (1− α)d0) = v(c0;αc0 + (1− α)d0).

For notational brevity, let p = αc0 + (1 − α)d0 and v be the common average payoff of c0-

and d0-strategy in the matching pool;

v := v(d0;αc0 + (1− α)d0) = v(c0;αc0 + (1− α)d0).

We show that the Best Reply Condition (6), which is equivalent to

g + δ
v

1− δ
≦ c

1− δ2
+

δ(1− δ)

1− δ2
· v

1− δ
⇐⇒ g − c

1− δ2
+

δ2

1− δ2
v ≦ 0

holds with the strict inequality.

From the payoff-equivalence and the fact that v(d0; p) = V (d0; p), we have

L(c0; p)V (d0; p)− V (c0; p) = 0,
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where

L(c0; p) = α · 1

1− δ2
+ (1− α) = 1 + δ2

α

1− δ2

V (d0; p) = αg + (1− α)d

V (c0; p) = α
c

1− δ2
+ (1− α)ℓ.

Hence

0 = L(c0; p)V (d0; p)− V (c0; p)

=
{
1 + δ2

α

1− δ2

}
{αg + (1− α)d} − {α c

1− δ2
+ (1− α)ℓ}

=α{g − c

1− δ2
+

δ2

1− δ2
v(d0; p)}+ (1− α)(d− ℓ).

Since d > ℓ and α ∈ (0, 1),

g − c

1− δ2
+

δ2

1− δ2
v < 0

i.e., (6) holds with the strict inequality.

Proof of Proposition 1 : In view of Lemma 2, it suffices to prove that the average payoff

functions of c0- and d0-strategy intersect.

From (5), the average payoff of d0-strategy against the distribution p = αc0 + (1 − α)d0

is a linear function of α. From (4), the average payoff of c0-strategy against p is concave in

α. To see this, note that

∂v(c0; p)

∂α
=

(1− δ2)(c− ℓ)

{1− δ2(1− α)}2
,

which is decreasing in α. Moreover, as δ increases, the concavity also increases, i.e., for any

α ∈ (0, 1),

∂v(c0; p)

∂δ
=

2(1− α)αδ(c− ℓ)

{1− δ2(1− α)}2
> 0.

Hence, if the two average payoff functions intersect, the payoff-equalizing α’s exist in (0, 1).

Let the “effective” average payoff difference be

f(α; δ) := (1− δ2)(
α

1− δ2
+ 1− α)

{
v(c0; p)− v(d0; p)

}
= −δ2(g − d)α2 + {(c+ d)− (g + ℓ) + δ2(g + ℓ− 2d)}α− (d− ℓ)(1− δ2).
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We show that the quadratic equation of α, f(α; δ) = 0, has two real roots for sufficiently high

δ, which is equivalent to the discriminant of the quadratic equation to be positive.

Let us write down the discriminant.

D(δ) = {(c+ d)− (g + ℓ) + δ2(g + ℓ− 2d)}2 − 4δ2(1− δ2)(g − d)(d− ℓ),

= {(g + ℓ− 2d)2 + 4(g − d)(d− ℓ)}δ4

+2[{(g − d)− (d− ℓ)}{(c+ d)− (g + ℓ)} − 2(g − d)(d− ℓ)]δ2

+{(c+ d)− (g + ℓ)}2.

Letting x := δ2, we have

D(x) = AD · x2 +BD · x+ {(c+ d)− (g + ℓ)}2, (9)

where

AD = (g + ℓ− 2d)2 + 4(g − d)(d− ℓ) > 0;

BD = 2[{(g − d)− (d− ℓ)}{(c+ d)− (g + ℓ)} − 2(g − d)(d− ℓ)].

D(x) is a quadratic and convex function of x. It is easy to see thatD(0) = {(c+d)−(g+ℓ)}2 >

0 and D(1) = (c−d)2 > 0 as well. By computation, the discriminant of the (again quadratic)

10The parameter combination is (g, c, d, ℓ) = (9, 7, 1, 0.1) and δ = 0.9 for the left figure.

21



equation D(x) = 0 is

16(c− ℓ)(d− ℓ)(g − c)(g − d) > 0. (10)

Therefore, there exist two solutions to D(x) = 0. Moreover, by computation,

∂D

∂x
(x) = 2{(c+ d)− (g + ℓ) + x(g + ℓ− 2d)}(g + ℓ− 2d)− 4(g − d)(d− ℓ)(1− 2x), (11)

∂D

∂x
(0) = 2{(c+ d)− (g + ℓ)}{(g − d)− (d− ℓ)} − 4(g − d)(d− ℓ)

= 2
[
(g − d){c+ d− g − ℓ− 2(d− ℓ)} − {c+ d− (g + ℓ)}(d− ℓ)

]
= 2

[
(g − d){−(g − c)− (d− ℓ)} − (d− ℓ){−(g − c) + (d− ℓ)}

]
= −2{(g − d)(g − c) + (d− ℓ)(c− ℓ)} < 0, (12)

∂D

∂x
(1) = 2(c− d){(g − d)− (d− ℓ)}+ 4(g − d)(d− ℓ)

= 2
[
(c− d)(g − d)− (c− d)(d− ℓ) + 2(g − d)(d− ℓ)

]
= 2{(c− ℓ)(g − d) + (g − c)(d− ℓ)} > 0. (13)

Together with the fact that the two end-point values D(0) and D(1) are both positive, the

derivative properties imply that there exists x ∈ (0, 1) such that D(x) > 0 for any x > x.

Then, there exist two solutions to f(α; δ) = 0 (or, v(c0; p) = v(d0; p)) for any δ > δ =
√
x.

Local stability is obvious from the concavity of v(c0; p) and the linearity of v(d0; p). This

can be also seen from the left figure of Figure 6 that, only at the larger solution αcd(δ) to

f(α; δ) = 0, if c0-strategy increases the share, the value difference becomes negative.

Proof of Lemma 3 : The equation (7) can be rearranged as

v(c1;αc0 + (1− α)c1) =
αg + (1− α)d+ (1− α)δ2 c

1−δ2

1 + (1− α)δ2 1
1−δ2

= v(d0;αc0 + (1− α)d0)

+
(1− α) δ2

1−δ2

1 + (1− α)δ2 1
1−δ2

{c− v(d0;αc0 + (1− α)s0)}.

Hence, c ≥ v(d0;αc0 +(1−α)s0) if and only if v(c1;αc0 +(1−α)c1) ≥ v(d0;αc0 +(1−α)d0)

holds．

Proof of Proposition 2 : First, we show that, if v(c0;αc0+(1−α)c1) = v(c1;αc0+(1−α)c1)

holds, then αc0+(1−α)c1 satisfies the Best Reply condition (6), i.e., it is a Nash equilibrium.
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Lemma 3 showed that the average payoff function of c1-strategy is higher than that of

d0-strategy (when facing the same fraction α of c0-strategy) as long as the average payoff is

not more than c. Hence, if v(c0; α̃c0 + (1 − α̃)c1) = v(c1; α̃c0 + (1 − α̃)c1) holds for some

α̃ ∈ (0, 1) (then the common average payoff is less than c), then there exists ᾱ ∈ (α̃, 1) such

that v(c0; ᾱc0 + (1− ᾱ)d0) = v(d0; ᾱc0 + (1− ᾱ)d0) holds. (See Figure 3.) By Lemma 2, the

latter distribution ᾱc0 + (1− ᾱ)d0 satisfies (6). Since v(c0;αc0 + (1−α)s0) is increasing in α

for any s0 that plays D in the first period of a match, the former distribution α̃c0+(1− α̃)c1

also satisfies (6), i.e., it is also a Nash equilibrium.

Thus it suffices to prove that the average payoff functions of c0- and c1-strategy intersect

within (0, 1). As in the Proof of Proposition 1, let the “effective” payoff difference be

fc0c1(α) := (1− α+ α
1

1− δ2
){α+ (1− α)

1

1− δ2
}(1− δ2)

×{v(c0;αc0 + (1− α)c1)− v(c1;αc0 + (1− α)c1)}

= −α2δ2(g + c− d− ℓ)

+α{−g + c+ d− ℓ+ (g + 2c− 2d− ℓ)δ2}

−{(1− δ2)d+ δ2c− ℓ}.

Since v(c0;αc0 + (1 − α)c1) is concave in α and v(c1;αc0 + (1 − α)c1) is convex in α (this

is proved in GO2009), and v(c1;αc0 + (1 − α)c1) > v(c0;αc0 + (1 − α)c1) for the two end-

points α = 0, 1, if fc0c1(α) = 0 has two solutions, they are within (0, 1). The discriminant of

fc0c1(α) = 0 is as follows.

Dc0c1(δ) := {−g + c+ d− ℓ+ (g + 2c− 2d− ℓ)δ2}2

−4δ2(g + c− d− ℓ){(1− δ2)d+ δ2c− ℓ}

= {2c2 − (g − ℓ)2 + d(g + ℓ)− c(2d+ g + ℓ)}δ4 + (g − ℓ)2δ2 + (g − c− d+ ℓ)2.

Dc0c1(δ) is a quadratic function of x := δ2. At x = 1, Dc0c1(1) > 0 ⇐⇒ g − c < (c−d)2

4(c−ℓ) .

Hence if the latter inequality is satisfied, there is x ∈ (0, 1) (or δ =
√
x ∈ (0, 1)) such that

for any x > x (or δ > δ), two payoff-equivalent α’s exist. The larger solution satisfies local

stability.
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Figure 7: Intuitions for Corollaries 1 and 2

Proof of Corollary 1 : By Lemma 3, if α < c−d
g−d (where v(d0;αc0 + (1 − α)c1) = c),

v(c1;αc0 + (1 − α)c1) > v(d0;αc0 + (1 − α)d0). Consider δ = δc0d0 . In this case v(c0;αc0 +

(1−α)d0) “touches” v(d0;αc0 + (1−α)d0) from below (see the left figure of Figure 7). That

is, v(d0;αc0 + (1 − α)d0) ≧ v(c0;αc0 + (1 − α)d0) for any α ∈ [0, 1]. Therefore, for any

α < c−d
g−d and any s0-strategy that plays D in the first period of a match (including d0- and

c1-strategy),

v(c1;αc0 + (1− α)c1) > v(d0;αc0 + (1− α)d0) ≧ v(c0;αc0 + (1− α)s0).

This means that c0-c1 equilibrium does not exist at δ = δc0d0 .

Proof of Corollary 2 : Recall that v(c1;αc0 + (1 − α)c1) and v(c0;αc0 + (1 − α)c1) are

both increasing in α. If these have intersections in (0, 1) and the Best Reply condition (6)

is satisfied, then letting α = 0, v(c1; c1) < vBR must also hold. Hence, if c0-c1-equilibrium

exists, then c1-monomorphic equilibrium exists, i.e., δc1 ≦ δc0c1 . In addition, the inequality

must be strict. At δ = δc0c1 , the average payoff functions of c1- and c0-strategy give the same

value at a unique α ∈ (0, 1) and in this case also v(c1; c1) < vBR holds. (See the right figure

of Figure 7.)

Proof of Corollary 3 : Recall the Proof of Proposition 1. When g ↓ c, (10) is 0. That is,
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D(x) = 0 has a unique double root. From (12) and (13), even when g ↓ c,

∂D

∂x
(0) < 0,

∂D

∂x
(1) > 0.

Together with D(0) > 0 and D(1) > 0, the double root x must be between 0 and 1, and

hence δc0d0 =
√
x is strictly between 0 and 1. On the other hand, when g ↓ c, δc1 =

√
g−c
c−d

converges to 0. This proves the first statement.

When g ↑ 2c− d then (10) is

32(c− ℓ)(d− ℓ)(c− d)2 > 0.

This means that D(x) = 0 has two solutions. By the same logic as above, the larger solution

is x and this is between (0, 1), i.e., δc0d0 =
√
x is strictly between 0 and 1. On the other

hand, when g ↑ 2c− d, δc1 =
√

g−c
c−d converges to 1. This proves the second statement.

Proof of Proposition 3 : By Lemma 1 of GO2009, for s to be a pure strategy such that

c0-s is a Nash equilibrium, s must play D in the first period of any partnership. Then the

average payoff of c0-strategy against any bimorphic distribution of the form αc0 + (1 − α)s

is the same as v(c0;αc0 + (1− α)d0). Note also that

v(d0;αc0 + (1− α)s) = αg + (1− α)d.

For a payoff-equalizing bimorphic c0-s distribution to be more efficient than c0-d0 bimor-

phic equilibrium, αmust exceed αcd(δ). However, bimorphic c0-s distribution with α > αcd(δ)

is not a Nash equilibrium, because for α > αcd(δ),

v(d0;αc0 + (1− α)d0) > v(c0;αc0 + (1− α)d0),

(see Figure 2) which is equivalent to

v(d0;αc0 + (1− α)s) > v(c0;αc0 + (1− α)s),

i.e., c0-strategy is not a best reply against αc0 + (1− α)s.
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Figure 8: Average Equilibrium Payoffs

Proof of Proposition 4: Take δ ≧ max{δc0d0 , δc1} and let x := δ2. Then the average

equilibrium payoff of the c1-monomorphic equilibrium is a linear increasing function of x:

v(c1; c1) =
d+ x

1−xc
1

1−x

= (1− x)d+ xc.

Let the average equilibrium payoff of c0-d0 equilibrium be

v∗(x) := v(c0;αcd(δ)c0 + {1− αcd(δ)}d0) = v(d0;αcd(δ)c0 + {1− αcd(δ)}d0).

At x = 1, the average payoff function of c0-strategy is so concave in α that v∗(1) = c. Hence

the average payoffs of the two equilibria coincide;

v(c1; c1) = c = v∗(1).

Thus, if

∂v∗

∂x
|x=1<

∂v(c1; c1)

∂x
|x=1= c− d

holds, then the situation is as depicted in Figure 8 so that there exists x̂ ∈ (0, 1) (or δ̂ ∈ (0, 1))

such that for any x ∈ (x̂, 1), v∗(x) > v(c1; c1).

From v∗(x) = αcd(δ)g + {1− αcd(δ)}d,

∂v∗

∂x
=

∂αcd

∂x
· (g − d). (14)
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Thus we compute ∂αcd
∂x . To simplify the notation, let ᾱ = αcd(δ). Then the definition of α

can be arranged as follows.

v(c0; ᾱc0 + (1− ᾱ)d0) = v(d0; ᾱc0 + (1− ᾱ)d0)

⇐⇒
ᾱ · c

1−x + (1− ᾱ)ℓ

ᾱ · 1
1−x + 1− ᾱ

= ᾱg + (1− ᾱ)d

⇐⇒ ᾱc+ (1− ᾱ)(1− x)ℓ = {ᾱg + (1− ᾱ)d}{ᾱ+ (1− ᾱ)(1− x)}

⇐⇒ ᾱ{c− (1− x)ℓ}+ (1− x)ℓ = {ᾱ(g − d) + d}{ᾱx+ 1− x}.

By differentiating both sides with respect to x, we have

∂ᾱ

∂x
{c− (1− x)ℓ} − ℓ(1− ᾱ) = (g − d)

∂ᾱ

∂x
{ᾱx+ 1− x}+ {ᾱ(g − d) + d}{ᾱ− 1 + x · ∂ᾱ

∂x
}.

Letting x → 1 and noting that ᾱ(1) = c−d
g−d (this is the solution to αg + (1− α) = c),

∂ᾱ

∂x
|x=1=

(g − c)(c− ℓ)

(g − d)(c− d)
> 0.

Plugging this into (14), we have

∂v∗

∂x
|x=1=

(g − c)(c− ℓ)

(c− d)
.

Therefore,

∂v∗

∂x
|x=1<

∂v(c1; c1)

∂x
|x=1= c− d ⇐⇒ g − c <

(c− d)2

c− ℓ
.

Proof of Corollary 5: We first consider cT -strategies. By computation

v(cT ;αc0 + (1− α)cT ) =
αg + (1− α){d+ δ2d+ · · · δ2(T−1)d+ δ2T c

1−δ2
}

α+ (1− α) 1
1−δ2

=
v(d0;αc0 + (1− α)d0) + (1− α)δ2{1−δ2(T−1)

1−δ2
d+ δ2(T−1)·c

1−δ2
}

1 + (1− α) δ2

1−δ2

= v(d0;αc0 + (1− α)d0)

+
(1− α)δ2

1− δ2 + δ2(1− α)

{
(1− δ2(T−1))d+ δ2(T−1)c− v(d0;αc0 + (1− α)d0)

}
.

(15)
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Hence, if the large bracket of (15) is negative, the average payoff of cT -strategy is less than

that of d0-strategy. Because (1 − δ2(T−1))d + δ2(T−1)c is decreasing in T , for any δ ≧ δc0d0 ,

there exists T ≧ 2 such that

(1− δ2(T−1))d+ δ2(T−1)c < v(d0;αcd(δ)c0 + {1− αcd(δ)}d0).

That is, any trust-building strategy cT+k with k ≧ 0 has average payoff less than that of

d0-strategy and c0-strategy, when α = αcd(δ) is the fraction of c0-strategy and the rest is

cT+k-strategy or any s-strategy that plays D in the first period of a partnership:

v(cT+k;αcd(δ)c0 + {1− αcd(δ)}cT+k) < v(d0;αcd(δ)c0 + {1− αcd(δ)}d0)

= v(c0;αcd(δ)c0 + {1− αcd(δ)}s).

Note also that, like c1-strategy, the average payoff function of cT+k-strategy is convex in α.

Therefore v(c0;αc0 + (1−α)cT+k) intersects with v(cT+k;αc0 + (1−α)cT+k) from the above

at some α > αcd(δ), as Figure 5 illustrates. This α is the only candidate of a bimorphic

distribution consisting of c0- and cT+k-strategy to be locally stable.

By the monotone increasing property, α > αcd(δ) implies that v(c0;αc0 + (1−α)cT+k) >

v(c0;αcd(δ)c0 + {1 − αcd(δ)}d0). However, Proposition 3 implies that if a bimorphic distri-

bution αc0 + (1−α)s is payoff-equalizing and attains the average payoff greater than that of

αcd(δ)c0 + {1−αcd(δ)}d0, then the distribution violates the Best Reply condition. Hence we

conclude that there is no locally stable Nash equilibrium of the form αc0 + (1− α)cT+k.

Next, consider dT -strategies. Again, by computation we have

v(dT ;αc0 + (1− α)dT ) =
αg + (1− α){d+ δ2d+ · · · δ2Td}
α+ (1− α)(1 + δ2 + · · ·+ δ2T )

= v(d0;αc0 + (1− α)d0)

+
(1− α)δ2(1− δ2T )

1− δ2 + δ2(1− α)(1− δ2T )

{
d− v(d0;αc0 + (1− α)d0)

}
. (16)

Hence for any δ ∈ (0, 1), any α ∈ (0, 1), and any T = 1, 2, . . ., v(d0;αc0 + (1 − α)d0) >

v(dT ;αc0 + (1 − α)dT ). (They coincide when α = 0 or 1.) Clearly, if v(c0;αc0 + (1 − α)s)

intersects with v(d0;αc0+(1−α)d0) from the above, it also does with v(dT ;αc0+(1−α)dT )
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Figure 9: Average payoff functions of c0-, d0-, and d1-strategy

at a higher α(> αcd(δ)). Again such an intersection is the only candidate for locally stable

equilibrium consisting of c0- and dT -strategy. However, α > αcd(δ) and Proposition 3 imply

that the payoff-equalizing distribution αc0+(1−α)dT violates the Best Reply condition. See

Figure 9 for an illustration.
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