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1. INTRODUCTION

Society is not uniform in behavior. In particular, even though the situation makes it clear

that mutual cooperation is efficient, still some people may behave differently. In many

Prisoner’s Dilemma and Trust Game experiments, there are different behaviors among

subjects; some are cooperative, while others are non-cooperative.1 In real-life transactions

also, there is persistent presence of cheaters, even though cheating is detected and punished.

It is too easy to attribute such diversity (co-existence of contrasting patterns of behavior)

to external causes such as mistakes, framing, or incomplete learning. We can alternatively

postulate that behavioral diversity has its own merit and thus will survive in the long run.

Theoretically, it is also important to investigate how fundamentally asymmetric strategy

combinations fare in a symmetric model. In ordinary repeated or random matching game

of Prisoner’s Dilemma, co-existence of cooperative and non-cooperative strategies are not

an equilibrium. In ordinary infinitely repeated Prisoner’s Dilemma2, the C-trigger strategy

and the strategy that defects after any history both constitute a symmetric equilibrium

on its own, but together they do not constitute an equilibrium.3 Namely, the C-trigger

strategy is not a best reply to the D-always strategy. In the random matching game

with the Prisoner’s Dilemma as the stage game4, it is possible to construct a cooperative

equilibrium with a more complex strategy than the C-trigger, but if some players in the

society always defect, then starting the game with cooperation is not a best reply. Some

1For surveys, see Camerer (2003) and Ledyard (1995). Recent experiments of infinitely repeated Pris-
oner’s Dilemma include Dal Bó and Fréchette (2011) and Fudenberg et al. (2012). The latter found
co-existence of cooperative and non-cooperative strategies when monitoring is imperfect. Gächter et al.
(2011) gives experimental results of Trust game (gift exchange) situations with diverse behaviors. Biologists
also find such behavioral diversity, e.g., Dobata et al. (2009). Genetically not so different L (cheater)-type
ants seem to move from one colony to another to exploit S (normal)-type ants. Izquierdo et al. (2010, 2013)
and references therein show simulation results which we can interpret as co-existence of cooperators and
defectors (although in a restricted set of strategies).

2For a “perfect folk theorem”, see Fudenberg and Maskin (1986). A good survey of various repeating
mechanisms is given in Mailath and Samelson (2006).

3To be precise, there is no pure-strategy equilibrium in which some players use the C-trigger and others
use the D-always strategy.

4See Kandori (1992), Ellison (1994), and Harrington (1995) for a finite population model, and Okuno-
Fujiwara and Postlewaite (1995) and Takahashi (2010) for a continuum population model. Recently, Deb
(2012) provides a folk theorem with general stage games and cheap talk. All these are non-evolutionary,
rational player models.
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incomplete information versions of voluntarily repeated Prisoner’s Dilemma assumed that

inherently non-cooperative players exist in the society (e.g., Ghosh and Ray, 1996, and

Kranton, 1996), but their long-run fitness has not been analyzed.5

Fujiwara-Greve and Okuno-Fujiwara (2009), henceforth Greve-Okuno, showed that the

Voluntarily Separable Repeated Prisoner’s Dilemma framework admits many polymorphic

(asymmetric) equilibria in a symmetric single population model.6 The key is the endogenous

length of repeated interactions. Cooperative players get exploited by defectors but such a

partnership is terminated quickly, while a match with another cooperative player will last

a long time. Therefore defection against a cooperator may not give a high payoff in the

long-run. Greve-Okuno (2009) focused on trust-building strategies, which cooperate after

some periods of defection, and showed the existence of polymorphic equilibria among them

by the above logic.

In this paper, we include fundamentally non-cooperative strategies in the analysis. The

polymorphic trust-building equilibria in Greve-Okuno (2009) emerge due to mis-coordination

of the initial trust-building periods, but the underlying norm is the same for all players,

to eventually find someone to cooperate with each other for a long time. Here, we investi-

gate a more fundamentally bimorphic equilibrium, in which some players never intend to

cooperate, while others try to establish a long-term cooperative relationship with a stranger.

Although the contrasting bimorphic distribution is vulnerable to a coordinated invasion

of mutants/entrants (Vesely and Yang, 2012), we show that it is robust against a class of

“diverse” polymorphic entrants. The class includes strategy distributions resulting when

every player randomly and independently experiments with various trust-building strate-

gies as well as strategy distributions with only defection and escape at some point. This

stability concept is related to generalized dynamics of selection and directed mutation (e.g.,

Samuelson and Zhang, 1992, Weibull, 1995, and Samuelson, 1997). Our bimorphic equi-

5There are other kinds of incomplete information models of endogenous partnership formation, e.g., Cho
and Matsui (2009, 2013) and McAdams (2011). In those models, randomly matched partners discover the
match quality after matching. Hence there is no fixed “types” in such models.

6There are also infinitely many symmetric trust-building equilibria, which is one of the main findings of
Greve-Okuno (2009).
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librium thus justifies the existence of inherently non-cooperative players in evolutionary

setting and gives a foundation to well-documented behavioral diversity.

We also show that the contrasting-strategy equilibrium is payoff-equivalent to countably

many polymorphic equilibria involving various lengths of trust-building strategies. This is

due to the same play path being induced on the most cooperative strategy, and the recursive

structure of the dynamic game, i.e., the continuation payoff after ending a partnership is

the same as the lifetime payoff, because all new partnerships start with a null history.

Hence, if two strategies give the same lifetime payoff at the null history, then breaching

into either of them at a later period in the matching pool also gives the same continuation

payoff. Interestingly, only the contrasting-bimorphic distribution is locally stable whenever

it exists. Other equivalent distributions are locally stable only in a smaller range of survival

rates (discount factors) of players. Thus, the simple but fundamentally contrasting strategy

combination is quite stable.

When the survival rate is not as high as the level that sustains the contrasting-strategy

bimorphic equilibrium, adding trust-building periods to both strategies makes similar equi-

libria. Therefore, in a wide range of survival rates, fundamentally different behavior patterns

are persistent.

Our game can be called a large social game. Jackson and Watts (2010) formulated a

social game in which players not only choose strategies but also with whom to play the

game. While their model is finite (one-shot or finitely repeated game by finite populations)

and assumes a lot of information among players, ours is infinite in both horizon and the

number of players and assumes minimal information. However, our purpose of the study

is in accordance with one of theirs: we analyze how endogeneity of partnerships affects the

play of the game.

Infinite horizon social games are also studied by Cho and Matsui (2012, 2013).7 In their

models, players are not homogeneous. Pairs are randomly formed from two finite popula-

tions, and the only strategic decisions are whether to keep the relationship or unilaterally

7Random matching games, on which the usual evolutionary game theory (e.g., Maynard Smith, 1982) is
based, are infinite horizon games as well, but the players do not strategically choose/terminate partnerships.
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terminate it, depending on the realized value of a match. Thus their focus is how players

settle with a “partnership value”. By contrast, we show that some players end up in long-

term cooperative partnerships, while others never settle down, even though all players have

the same characteristics (the set of strategies and the payoff function).

This paper is organized as follows. In Section 2 we describe the Voluntarily Separable

Repeated Prisoner’s Dilemma (VSRPD) model, introduced by Greve-Okuno (2009), and

define focal strategies. In Section 3 we apply standard evolutionary stability concepts

to the contrasting strategy combination of the most cooperative and the most myopic

strategy. In Section 4, we define an evolutionary stability concept with respect to a set

of entrant distributions and derive a sufficient set of diverse entrant distributions against

which the contrasting strategy equilibrium is robust. In Section 5 we show payoff-equivalent

distributions to the focal equilibrium and show local instability of the former. In Section

6, we look at lower survival rates than the one for the contrasting-bimorphic equilibrium

to exist and show that our analysis can be extended. Section 7 gives concluding remarks.

All proofs are in Appendix.

2. MODEL

2.1. Voluntarily Separable Repeated Prisoner’s Dilemma

In this section we describe the model of Voluntarily Separable Repeated Prisoner’s Dilemma

(VSRPD) introduced by Greve-Okuno (2009). Consider a large society of a continuum of

homogeneous players of measure 1, over the infinite, discrete time horizon. At the beginning

of each period, players are either matched with a partner from the previous period or

without a partner. Those without a partner enter a random matching process and form

pairs8 to play the following extensive form game.

Newly matched players have no knowledge of the past action history of each other,

and they play the ordinary two-action Prisoner’s Dilemma of Table 1. The actions in

8For simplicity and following Greve-Okuno (2009), we assume that a player finds a new partner for sure.
This assumption makes cooperation most difficult.
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C D
C c, c ℓ, g
D g, ℓ d, d

Table 1: Prisoner’s Dilemma: g > c > d > ℓ and 2c ≧ g + ℓ.

the Prisoner’s Dilemma are observable only by the current partners. After observing the

actions in the Prisoner’s Dilemma, the partners simultaneously choose whether to keep the

partnership (action k) or to end it (action e). The partnership dissolves if at least one

partner chooses action e. In addition, at the end of a period, each player may exit from the

society for some exogenous reason (which we call a “death”) with probability 1− δ, where

0 < δ < 1. If a player dies, a new player enters into the society, keeping the population size

constant. Players who lost the partner for some reason, as well as newly born players enter

the matching pool in the next period. (This justifies the no-information-flow assumption

because the players in the matching pool can have different backgrounds.) Therefore a

partnership continues if and only if both partners choose action k and do not die. In

this case the same partners play the Prisoner’s Dilemma in the next period, skipping the

matching process. At the beginning of the next period, unmatched players are matched into

pairs to play the Prisoner’s Dilemma afresh. The game continues this way ad infinitum.

The outline of VSRPD is depicted in Figure 1.

The one-shot payoffs in the Prisoner’s Dilemma are in Table 1, where g > c > d > ℓ

and 2c ≧ g + ℓ. The latter makes the symmetric pure-action profile (C,C) efficient. The

game continues with probability δ from an individual player’s point of view. Thus we focus

on the expected total/average payoff, with δ being the effective discount factor of a player.

Under the no-information-flow assumption, we focus on match-independent strategies9

that only depend on the period t = 1, 2, . . . within a partnership (not the calendar time

in the whole game) and the private history of actions within a partnership. Let Ht :=

[{C,D} × {C,D}]t−1 be the set of partnership histories10 at the beginning of t ≧ 2 and let

9Since the population is a continuum, “contagious” strategies used in Kandori (1992) and Ellison (1994)
cannot achieve cooperation.

10The relevant histories on which partners can condition their actions are the action combinations in the
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Figure 1: Outline of the VSRPD

H1 := {∅}.

DEFINITION 1 : A pure strategy s of VSRPD consists of (xt, yt)
∞
t=1 where:

xt : Ht → {C,D} specifies an action choice xt(ht) ∈ {C,D} given the partnership history

ht ∈ Ht, and

yt : Ht × {C,D}2 → {k, e} specifies whether to keep or to end the partnership, depending

on the partnership history ht ∈ Ht and the current period action profile.

The set of pure strategies of VSRPD is denoted as S and the set of all strategy distribu-

tions in the population is denoted as ∆(S). A pure strategy can be viewed as a degenerate

strategy distribution and thus belongs to ∆(S) as well. Hence we can write a strategy

combination of a strategy distribution and a pure strategy as αp+ (1− α)s.

We assume that each player uses a pure strategy, which is natural in an evolutionary

game and simplifies the analysis. We allow entrants/mutants to be a distribution of pure

strategies. (See Section 4 below.)

We investigate evolutionary stability of stationary strategy distributions in the match-

ing pool. Although the strategy distribution in the matching pool may be different from

the distribution in the entire society, if the former is stationary, the distribution of various

states of matches is also stationary, thanks to the stationary death process.11 Since each

Prisoner’s Dilemma only, because the continuation decision history must be (k, k) throughout.
11See Greve-Okuno (2009) footnote 7 for details. For specific strategies, e.g., cT - and dT -strategies, we

can prove that any stationary distribution in the matching pool exists consistently with the model.
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player is born into the random matching pool, the life-time payoff is determined by the

strategy distribution in the matching pool.

2.2. Average and Lifetime Payoffs

When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected length of the

match is denoted as L(s, s′) and is computed as follows. Notice that even if s and s′ intend

to maintain the match, it will only continue with probability δ2. Suppose that the planned

length of the partnership of s and s′ is T (s, s′) periods, if no death occurs. Then

L(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

The expected total discounted value of the payoff stream of s within the match with s′

is denoted as V (s, s′). The average per period payoff that s expects to receive within the

match with s′ is defined as

v(s, s′) :=
V (s, s′)

L(s, s′)
.

Next, consider a player endowed with strategy s ∈ S in the matching pool, waiting to

be matched randomly with a partner. When the stationary strategy distribution in the

matching pool is p ∈ ∆(S), we write the expected total discounted value of payoff streams s

expects to receive during his lifetime as V (s; p) and the average per period payoff s expects

to receive during his lifetime as

v(s; p) :=
V (s; p)

L
= (1− δ)V (s; p),

where L = 1 + δ + δ2 + · · · = 1
1−δ

is the expected lifetime of s.

Thanks to the stationary distribution in the matching pool, we can write V (s; p) as a

recursive equation. If p has a finite/countable support, then we can write12

12Theorem 1 and Remark 1 of Duffie and Sun (2012) show that the matching probability of a particular
strategy is the fraction of the strategy in the pool. We thank Yeneng Sun for helping us to find these
details.
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V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′)

+ [δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
,

where supp(p) is the support of the distribution p, the sum δ(1−δ){1+δ2+· · ·+δ2{T (s,s′)−2}}

is the probability that s loses the partner s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the prob-

ability that the match continued until T (s, s′) and s survives at the end of T (s, s′) to go

back to the matching pool. Stationarity of p implies that the continuation payoff after a

match ends for any reason is always V (s; p).

Let L(s; p) :=
∑

s′∈supp(p) p(s
′)L(s, s′). By computation,

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]
=

∑
s′∈supp(p)

p(s′)V (s, s′) + {1− L(s; p)

L
}V (s; p).

Hence the average payoff is a nonlinear function of the strategy distribution p:

v(s; p) :=
V (s; p)

L
=

∑
s′∈supp(p)

p(s′)V (s, s′)

L(s; p)
.

2.3. Cooperating and Non-cooperating Strategies

We investigate stability of fundamental behavioral diversity, in the sense that some players

are cooperative, while others never cooperate. For cooperative strategies, Greve-Okuno

(2009) focused on the following trust-building strategies.

DEFINITION 2 : For any T = 0, 1, 2, . . ., let cT -strategy be a strategy as follows:

t ≦ T : Play D and keep the partnership if and only if (D,D) is observed in the current

period.

t ≧ T + 1: Play C and keep the partnership if and only if (C,C) is observed in the current

period.
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This class of trust-building strategies initially plays D (trust-building phase) before

starting a C-trigger type strategy (cooperation phase) where ending the partnership is the

punishment. Since a player can avoid in-match punishment by ending the partnership uni-

laterally, severance is the maximal equilibrium punishment. The reason that Greve-Okuno

(2009) focused on this class of strategies is that in VSRPD, there is no Nash equilibrium13

in which all players play C in the first period of a partnership. (Lemma 1 of Greve-Okuno

(2009).) This is due to the lack of information flow across partnerships. Therefore, to con-

sider cooperative monomorphic equilibria, it is natural to focus on the above trust-building

strategies, with initial D play.

In this paper, we turn to polymorphic equilibria, with as much cooperation as possible.

Thus, we investigate how equilibria including c0-strategy, which starts the cooperation phase

immediately with a stranger, can be sustained. In order to constitute an equilibrium, some

players must play D in a new partnership. Since Greve-Okuno (2009) had already consid-

ered equilibria with different length trust-building strategies, and trust-building strategies

all have the same idea to establish a long-term cooperative relationship eventually, we look

at a completely opposite type strategy, namely to defect and run away immediately, to be

matched with c0-strategy.

DEFINITION 3 : Let d0-strategy be as follows: At t = 1, play D and end the partnership

regardless of the action combination in that period.

The defect-and-run d0-players are often observed in experiments and real markets, and

often assumed to occupy a positive fraction in the society (permanently) in incomplete

information versions of VSRPD (e.g., Ghosh and Ray, 1996, Kranton, 1996, and Rob and

Yang, 2010).14 However, it has not been investigated whether such myopic type players can

fare as well as “rational” players, such as c0-strategy.

13For the precise definition, see Section 3.
14Often, the motivation of incomplete information models is different from ours. Our idea is that the

myopic types are plausible and may fare well, while Ghosh and Ray (1996) and Kranton (1996) introduced
myopic types in order to induce rational types to play a symmetric, cooperative equilibrium.
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3. STABILITY UNDER MONOMORPHIC ENTRANTS

We investigate evolutionary stability of the most contrasting strategy combination, con-

sisting of c0- and d0-strategy. These strategies are polar types in behavior: c0-players

cooperate with any stranger and d0-players never cooperate with anyone and change part-

ners every period. Economic examples of such diversity can be found in many markets. For

example, in the internet markets, most of the sellers and buyers would play c0-strategy to

do honest transactions even when they met for the first time, while some try to cheat and

run away, that is, to play d0-strategy. The abundance of incomplete information models

with d0-strategy as the irrational type suggests how plausible they are.

In this section we consider some standard stability concepts. First, we define Nash

equilibrium in VSRPD model.

DEFINITION 4 : A stationary strategy distribution in the matching pool p ∈ ∆(S) is a

Nash equilibrium if, for all s ∈ supp(p) and all s′ ∈ S,

v(s; p) ≧ v(s′; p).

From the evolutionary perspective, a Nash equilibrium is a robust distribution against

single (measure zero) entrants/mutants. Let us introduce stronger stability concepts which

require robustness against a positive measure of entrants/mutants. Different stability con-

cepts are obtained by the difference in the potential set of entrants.

DEFINITION 5 : A stationary strategy distribution in the matching pool p ∈ ∆(S) is a

locally stable Nash equilibrium if,

(i) p is a Nash equilibrium; and

(ii) for any s′ ∈ supp(p), there exists ϵ̄ ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ̄),

∀ s ∈ supp(p) \ {s′}, v(s; (1− ϵ)p+ ϵs′) ≧ v(s′; (1− ϵ)p+ ϵs′), and

∃ s̃ ∈ supp(p) \ {s′}; v(s̃; (1− ϵ)p+ ϵs′) > v(s′; (1− ϵ)p+ ϵs′).

10
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Figure 2: locally stable c0-d0 Equilibrium

The local stability requires that, if one of the incumbent strategies increases its share by

a small fraction ϵ, then all other incumbent strategies fare at least as well as the increased

strategy and some fare strictly better, so that the evolutionary pressure restores the share

balance. In other words, local stability requires that the distribution is stable against a

positive measure of entrants using one of the incumbent strategies. (See also Figure 2.)

The underlying dynamic we assume is as follows. Occasionally, a newborn player is

endowed with a different strategy than her predecessor’s, when entering the matching

pool. Let ϵ be the measure of such “entrants/mutants” and their strategy15 be s′. In

the “medium”-run the population adjusts to yield a stationary post-entry distribution

(1 − ϵ)p + ϵs′ in the matching pool (where p is the incumbent distribution). After that,

in the “long”-run, the selection pressure works according to the post-entry average fitness

v(s; (1− ϵ)p+ ϵs′) of each strategy s.

In our companion paper (Fujiwara-Greve et al., 2013), it is shown that for sufficiently

large δ, there is a locally stable Nash equilibrium consisting of c0- and d0-strategy.

REMARK 1 (Fujiwara-Greve et al., 2013) There exists δ ∈ (0, 1) such that for any δ ∈
15In the later analysis we allow entrants to have a distribution of strategies.
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(δ, 1), there is αcd(δ) ∈ (0, 1) such that the bimorphic distribution, αcd(δ)c0+{1−αcd(δ)}d0,

is the unique locally stable Nash equilibrium with the support {c0, d0}. Let the smallest such

δ be δc0d0.

The intuition is as follows. Let α be the (stationary) fraction of c0-strategy and the rest

be d0-strategy in the matching pool. The average payoff of the two strategies are as follows.

v(c0;αc0 + (1− α)d0) =
α c

1−δ2
+ (1− α)ℓ

α · 1
1−δ2

+ (1− α)
(1)

v(d0;αc0 + (1− α)d0) = αg + (1− α)d.(2)

To explain (1), if c0-strategy meets another c0-strategy, the match lasts 1/(1−δ2) periods in

expectation and the in-match long-run payoff is c/(1− δ2). This happens with probability

α. With probability 1 − α, c0-strategy meets d0-strategy, which gives ℓ but the match is

ended after one period. The average payoff of c0-strategy is the expected long-run payoff of

the two kinds of matches divided by the expected length of the two kinds of matches. For

d0-strategy, it earns g against c0-strategy and d against d0-strategy and any match lasts

only one period, yielding (2) as the average payoff.

For any δ ∈ (0, 1), the average payoff function (2) of d0-strategy is linear in the share α

of c0-strategy and does not depend on δ, while the average payoff function (1) of c0-strategy

is concave in α and increases (becomes more concave) as the exogenous rate of partnership

dissolution declines, or δ increases. At some δ, it must have two intersections with the

average payoff of d0-strategy. See Figure 2. Payoff-equivalence of c0- and d0-strategy is in

fact sufficient for the strategy combination to become a Nash equilibrium, which is shown

in Lemma 2 of Fujiwara-Greve et al. (2013).16 Only the larger intersection satisfies the local

stability as Figure 2 shows. In sum, the assumption of the existence of myopic players in

the incomplete information models can be endogenized. The key is the assortative match

among cooperative players, which leads to the concavity of their average payoffs.

However, the locally stable bimorphic Nash equilibrium αcd(δ)c0 + {1− αcd(δ)}d0 does

not satisfy neutral stability, which requires stability against any entrant strategy.

16A general version is proved in Lemma 2 in Appendix of this paper.
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DEFINITION 6 : (Greve-Okuno, 2009) A stationary strategy distribution in the matching

pool p ∈ ∆(S) is a Neutrally Stable Distribution (NSD) if, for any s′ ∈ S, there exists

ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ),

∀ s ∈ supp(p), v(s; (1− ϵ)p+ ϵs′) ≧ v(s′; (1− ϵ)p+ ϵs′).

REMARK 2 For any δ ∈ (δc0d0 , 1), the locally stable bimorphic Nash equilibrium αcd(δ)c0+

{1− αcd(δ)}d0 is not neutrally stable.

The proof of Remark 2 (in Appendix) is essentially the same as the instability of d0-

monomorphic Nash equilibrium (Lemma 2 in Greve-Okuno (2009)). A “secret-handshake”

c1-strategy imitates d0-strategy and hence earns the same payoff when meeting the in-

cumbents, but does not end the partnership after (D,D) in the first period and earns

cooperation payoff afterwards when meeting another c1-strategy.
17

Notice that, this is a “coordinated” invasion that all entrants/mutants play the same

strategy, c1. Alternatively, entry/mutation may be uncoordinated, consisting of multiple

strategies. In the next section we consider stability under uncoordinated invasions.

4. STABILITY UNDER DIVERSE ENTRANTS

We extend the analysis to allow entrants with different strategies appearing simultaneously.

There are many scenarios that make this happen. If the players are humans, they may

experiment with (or make mistakes to play) different strategies at the same time. If the

players are not so conscious decision-makers, still it is possible that multiple genes mutate

simultaneously to a variety of behavior patterns. Monomorphic entrants require precise

coordination among them to play the same strategy, while polymorphic entrants do not

need coordination. We thus think that polymorphic entrants/mutations are more likely to

evolve spontaneously.

For example, when some entrants play c1-strategy, other entrants may imitate it to play

one period of trust-building (i.e., defect but keep the partnership if (D,D) is observed)
17Vesely and Yang (2012) has a general result that any strategy distribution with on-path separation can

be invaded by a secret-handshake type strategy.
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and, if the partnership continued to the second period, they defect and run away. In this

case, the post-entry payoff of c1-strategy is reduced and moreover its “exploiter” may not

fare that well against the incumbents, either.

In general, we formulate a class of exploiters against cT -strategies as follows.

DEFINITION 7 : For any T = 1, 2, . . ., let dT -strategy be a strategy as follows:

t ≦ T : Play D and keep the partnership regardless of the partnership history:

t ≧ T + 1: Play D and end the partnership regardless of the observation in this period.

The exploiter against c1-strategy we mentioned above is d1-strategy. Let us show that,

although the monomorphic entrant c1-strategy can invade the c0-d0-equilibrium, a class of

c1-d1 entrants cannot. To see this, consider a post-entry distribution

pPE = (1− ϵ){αcd(δ)c0 + (1− αcd(δ))d0}+ ϵ{qc1c1 + (1− qc1)d1}.

Notice that the post-entry payoff of c0- and d0-strategy depends only on the post-entry

share of c0-strategy. To simplify the notation, let xc0 := (1 − ϵ)αcd(δ) and the post-entry

payoffs of c0- and d0-strategies as follows.

v(c0; p
PE) =

xc0
c

1−δ2
+ (1− xc0)ℓ

xc0 · 1
1−δ2

+ 1− xc0

=: vcd(c0;xc0)(3)

v(d0; p
PE) = xc0g + (1− xc0)d =: vcd(d0; xc0).(4)

The average payoff of c1-strategy can be arranged as a weighted sum of vcd(d0; xc0) and

vcd(c0; xc0) as follows.

v(c1; p
PE) =

xc0 · g + (1− xc0)d+ δ2ϵ{qc1 · c
1−δ2

+ (1− qc1)ℓ}
1 + δ2ϵ{ qc1

1−δ2
+ 1− qc1}

(5)

= vcd(d0;xc0) +
δ2ϵL(c0; qc1)

1 + δ2ϵL(c0; qc1)

[
vcd(c0; qc1)− vcd(d0; xc0)

]
,

where L(c0; qc1) := qc1 · 1
1−δ2

+ (1− qc1).

Similarly

v(d1; p
PE) =

xc0 · g + (1− xc0)d+ δ2ϵ{qc1 · g + (1− qc1)d}
1 + δ2ϵ

(6)

= vcd(d0; xc0) +
δ2ϵ

1 + δ2ϵ

[
vcd(d0; qc1)− vcd(d0;xc0)

]
.
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From (5) and (6), the signs of the second terms of v(c1; p
PE) and v(d1; p

PE) determine

whether they are more or less than v(d0; p
PE). Sufficiently small qc1 implies that the second

terms are negative, so that the incumbent d0-strategy has higher average payoff than that

of both entrant strategies. Moreover, xc0 = (1− ϵ)αcd(δ) < αcd(δ) implies that c0-strategy

earns even higher average payoff than d0-strategy does (see Figure 2). Therefore, all incum-

bents can have higher post-entry average payoff than all entrants, when the relative share

of c1 against d1 is sufficiently small.

The above example indicates that if entrants/mutants are diverse in such a way that

cT -strategies are sufficiently less than its exploiters, then the c0-d0-equilibrium cannot be

invaded. Thus we consider a stability concept with respect to a set of possible (polymorphic)

entrant/mutant distributions.

DEFINITION 8 : GivenM⊂ ∆(S), a stationary strategy distribution p in the matching

pool is Evolutionarily Stable against (Polymorphic) Entrants withinM if,

(i) p is a locally stable Nash equilibrium,

(ii) for any q ∈M and any s′ ∈ supp(q) \ supp(p), there exists ϵ̄ ∈ (0, 1) such that, for any

ϵ ∈ (0, ϵ̄) and any s ∈ supp(p),

v(s; (1− ϵ)p+ ϵ · q) > v(s′; (1− ϵ)p+ ϵ · q).

In words, any new (polymorphic) entrants/mutants from M cannot thrive, and after

selection, local stability restores the balance among incumbents. The standard concept of

Evolutionarily Stable Strategy corresponds to the most stringent case such thatM = ∆(S).

Our stability concept can probably be connected to limits of some monotone dynamic

processes with (a direction of) mutation, similar to the one considered in Samuelson and

Zhang (1992), as ESS can be connected to stable points of monotone dynamic processes

(e.g., replicator dynamic). As Samuelson (1997) surveys, however, even the latter connec-

tion is weak, i.e., for general games, the stable points of monotone dynamic processes do

not coincide with ESS. In addition, the medium-run and long-run process, which seems to

be most appropriate for the dynamic process of matching pool strategy distribution forma-

tion and selection of strategies, cannot be characterized by a single differential equation.
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Izquierdo, Izquierdo, and Vega-Redondo (2013) restricted attention to stationary Markov

strategies and obtained a connection between Nash distributions and limit stationary points

of a monotone dynamic with completely mixed mutations. By contrast, in order to include

as many strategies as possible in the analysis, we adopt the “static” stability.

We now specify a sufficient set of polymorphic entrants/mutants that makes the locally

stable equilibrium p∗ = αcd(δ)c0 + {1 − αcd(δ)}d0 evolutionarily stable. But before doing

that, we claim that the following set of cT - and dT -strategies is sufficient for the stability

analysis of the c0-d0 equilibrium:

S∞
cd = {c0, d0, c1, d1, . . .}.

The cT -strategies are important for their “secret handshake” property to earn high payoffs

among themselves, after imitating dt-strategies with t ≦ T − 1, while dT -strategies are

important for their “short run” property to exploit ct-strategies with t ≦ T .18 Therefore, if

a strategy in S∞
cd is worth experimenting with, then others (with longer T ’s) are also worth

trying. Other strategies that differ off the play path are not relevant for such arguments.

Therefore, we focus on S∞
cd .

Let ∆(S∞
cd ) be the set of all probability distributions over S∞

cd with a generic element x =

(xc0 , xd0 , xc1 , xd1 , . . .), where xs ∈ [0, 1] is the share of strategy s ∈ S∞
cd so that

∑
s∈S∞

cd
xs = 1.

For any T = 0, 1, . . ., dt-strategy with t ≧ T and ct-strategy with t ≧ T +1 behave the same

way against cT -strategy, and hence we sometimes combine their shares in a distribution x

as xdT+ :=
∑∞

t=T xdt +
∑∞

t=T+1 xct .

PROPOSITION 1 For any δ ∈ (δc0d0 , 1), define a set of diverse entrant distributions by

E(δ) := {q = (qc0 , qd0 , qc1 , . . .) ∈ ∆(S∞
cd ) | qc0 ≦ αcd(δ),

qcT
qcT + qdT+

< αcd(δ), ∀T ≧ 1}.

IfM⊆ E(δ), then p∗ = (αcd(δ), 1−αcd(δ), 0, . . .) ∈ ∆(S∞
cd ) is Evolutionarily Stable against

Polymorphic Entrants withinM.
18Of course, alternating action strategies that play (C,D) and (D,C) on the play path among themselves,

considered in Section 4.2 of Greve-Okuno (2009) are another important class. However, this class also
requires a specific coordination and therefore we do not focus on it as entrants.
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To interpret E(δ), if some cT -strategy is present in the entrant distribution, the entrants

also include sufficiently many exploiters of cT -strategy, so that the ratio19
qcT

qcT +qdT+
is below

αcd(δ). Specifically, if c1-strategy is present in the entrant distribution, then sufficiently

large share of the entrant distribution has dT (T ≧ 1) or cT -strategies (T ≧ 2) to reduce

the payoff of c1-strategy. Alternatively, cT -strategies (T ≧ 1) can be absent in the entrant

distribution, while some of dT -strategies must be present.

Such diversity among entrants can arise in natural extensions of existing mutation pro-

cesses which put a positive probability on all strategies every period, including the one

considered in Kandori, Mailath, and Rob (1993). In a finite population, finite strategy

model as that of Kandori, Mailath, and Rob (1993), it would eventually allow a coordina-

tion on a strategy, but, in our infinite population and infinite strategy model, no eventual

coordination is warranted and, instead, the diversity of entrants is likely to induce a distri-

bution in E(δ). An alternative justification of diverse entrants is that newly entered players

do not have a common norm and end up with various strategies.

Let us give a simple example of a class of mutation processes which can put a positive

probability on each strategy in S∞
cd . Take any real number γ ∈ (0, 1] and a “base” strategy

cT , for some T ∈ {0, 1, . . .}. Consider a “branching” mutation process, which randomizes

between strategies in a particular order but with a fixed relative probability. The probability

to mutate/experiment to play cT -strategy is γ, and the rest of the probability 1 − γ is

concentrated on the set {dT , cT+1, dT+1, . . .}. Among these, the mutation process chooses

dT with relative probability γ (the absolute probability is then (1 − γ)γ), and the rest is

concentrated on the set {cT+1, dT+1, cT+2, . . .}, in which cT+1 is chosen with the relative

probability γ, and so on. The resulting entrant/mutant distribution takes the following

geometric form:

qcT = γ, qdT = (1− γ)γ, qcT+1
= (1− γ)2γ, . . . ,

qcT+t
= (1− γ)2(T+t−1)γ, qdT+t

= (1− γ)2(T+t−1)+1γ, . . . .

19Note that qdT+ =
∑∞

t=T qdt +
∑∞

t=T+1 qct is similarly defined as xdT+ in the text.
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Then for any t = 0, 1, 2, . . .,

qcT+t

qcT+t
+ qdT+t+

=
(1− γ)2(T+t−1)γ

(1− γ)2(T+t−1)γ + (1−γ)2(T+t−1)+1

1−(1−γ)
· γ

= γ.

When γ = 1, the branching process generates a coordinated entrant, and as γ → 0, it

generates “uniform distribution” entrants. Any branching mutation process with γ < αcd(δ)

generates an entrant distribution in E(δ).

Other possible mutation processes that yield an entrant distribution in E(δ) include

ones that only generate dT -strategies (singleton or any mixture) and ones that generate

finitely many cT -, cT+1-, . . ., cT+k-strategies and the exploiter dT+k-strategy (for some

T ∈ {0, 1, 2, . . .}), with sufficiently large probability of dT+k-strategy. This class includes

the example at the beginning of this section.

Weibull (1995), Example 2.4, shows that in ordinary evolutionary games (random

matching with one-shot game), an ESS, which is robust against a single strategy muta-

tion, is not necessarily resistant against simultaneous multiple mutations. We can interpret

Proposition 1 as giving an “opposite” example such that, although a distribution is vul-

nerable to entry of a single strategy, it is robust against a class of mixed strategy entrants

including the successful pure strategy. This is thanks to the recursive structure of VSRPD:

If c1-strategy can exploit d0-strategy, then d1- or c2-strategy can exploit c1-strategy, and so

on, even in a symmetric society.

Finally, we show that the above logic does not hold for dT -monomorphic Nash equilib-

rium for any T . That is, dT -monomorphic Nash equilibrium in not robust against not

only coordinated cT+1-strategy entrant (an analogue of Lemma 2 of Greve-Okuno, 2009),

but also mixed entrants of cT+1-strategy and dT+1-strategy.

REMARK 3 : For any T < ∞, let pPE = (1 − ϵ)dT + ϵ{xcT+1 + (1 − x)dT+1} where

x ∈ (0, 1). Then v(dT ; p
PE) < v(dT+1; p

PE).

For T =∞, let pPE = (1− ϵ)d∞ + ϵ{xc0 + (1− x)d0}. Then v(d∞; pPE) < v(d0; p
PE).

Hence the “terminating” equilibria of dT -monomorphic distributions are unstable20 with
20Schumacher (2013) gives a dynamic instability of a D-always-strategy (keep if and only if the partner

cooperates) when the only alternative strategy is c0.
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respect to the same set of entrants which makes the c0-d0 equilibrium stable.

5. INSTABILITY OF PAYOFF-EQUIVALENT DISTRIBUTIONS

The special feature of the bimorphic equilibrium of c0-d0 distribution is not only that it

has very contrasting strategies. The bimorphic distribution has countably many payoff-

equivalent polymorphic distributions, which is shown below. The payoff-equivalence is due

to the recursive structure of VSRPD. However, all payoff-equivalent distributions turned

out to be locally unstable near δc0d0 , because c0-strategy can increase its share and its

average payoff. This is an additional support to the significance of the c0-d0 equilibrium.

First, we show that the bimorphic equilibrium of c0-d0 distribution is payoff-equivalent

to the following form of “geometric” distributions

pdTc0 (α0, α1, . . . , αT ) = α0 ·c0+(1−α0)α1 ·c1+ · · ·+{×T−1
t=0 (1−αt)}αT ·cT +{×T

t=0(1−αt)}dT ,

for any T = 1, 2, . . ., provided that α0 = α1 = · · · = αcd(δ). The αt’s are the relative ratio

of ct-strategy against strategies that play D in the first t periods of a match.

LEMMA 1 For any δ ∈ (δc0d0 , 1), and any T = 1, 2, . . ., let p = pdTc0 (αcd(δ), αcd(δ), . . . , αcd(δ)),

i.e., all relative ratios of ct-strategies (t = 1, 2, . . . , T ) are αcd(δ). Then, for any t =

1, 2, . . . , T ,

v(c0; p) = v(d0; p) = v(ct; p) = v(dT ; p).

The point is that the average payoff of a ct-strategy (t = 1, 2, . . . , T ) and dT -strategy

can be decomposed as a weighted sum, as in the proof of Proposition 1. For example, the

average payoff of c1-strategy under the distribution pdTc0 (α0, α1, . . . , αT ) is

v(c1; p
dT
c0 (α0, α1, . . . , αT )) = vcd(d0;α0) +

(1− α0)δ
2L(c0;α1)

1 + (1− α0)δ2L(c0;α1)

{
vcd(c0;α1)− vcd(d0;α0)

}
.

Hence, if αt = αcd(δ) for all t = 0, 1, . . . , T , then vcd(d0;αt) = vcd(c0;αt) = vcd(d0;α0) so that

the average payoff of c1- and c0-strategy coincide. An illustration of payoff decomposition

and equivalence is given in Figure 3 for the case of T = 2, where vM stands for the average

payoff starting in the matching pool.
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c0
meet c0
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c, c, . . .
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vM in eq.

c1
meet c0
(αcd(δ))

g, vM

otherwise meet c1
(αcd(δ))(1− αcd(δ))

d, c, c, . . .

other
(1− αcd(δ))

d, ℓ, vM

c2
meet c0
(αcd(δ))

g, vM

otherwise
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d, g, vMmeet c1
(αcd(δ))

otherwise c2 d, d, c, . . .
(1− αcd(δ)) (αcd(δ))

d2 d, d, ℓ, vM
(1− αcd(δ))

Figure 3: Equivalence of c0 − d0 and pd2c0 distribution

For δ near δc0d0 , any payoff-equivalent distribution of the above form (for T ≧ 1) is

not locally stable, because a small increase of c0-strategy increases its post-entry average

payoff.

PROPOSITION 2 For each T = 1, 2, . . ., there exists δ > δc0d0 and ϵ > 0 such that for

any δ ∈ (δc0d0 , δ) and any ϵ ∈ (0, ϵ), v(c0; p
PE) > v(s; pPE) for any s ∈ {c1, c2, . . . , cT , dT},

where pPE := (1− ϵ) · pdTc0 (αcd(δ), αcd(δ), . . . , αcd(δ)) + ϵ · c0.

Since c0-d0 equilibrium is locally stable for any δ > δc0d0 , this is an additional support

for the significance of the contrasting strategy distribution. The idea of the proof is to show

that at δ = δc0d0 ,
∂v(c0; p

PE)

∂ϵ
|ϵ=0>

∂v(s; pPE)

∂ϵ
|ϵ=0

for any s ∈ {c1, c2, . . . , cT , dT}.

As Figure 4 illustrates for the case of T = 1 (i.e., the incumbent distribution is αcd(δ)c0+

{1−αcd(δ)}αcd(δ)c1+{1−αcd(δ)}2d1), the post-entry average payoff of c0-strategy is concave

in ϵ, while others are not. Hence the above inequality warrants that for a range of ϵ near

21The parameter value combination is (g, c, d, ℓ, δ) = (60, 31, 10, 0.1, 0.95).
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Figure 4: Instability of pd1c0 against c0-entrant
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0, c0-strategy has strictly higher average payoff than others. However, as δ increases, the

derivative ∂v(c0;pPE)
∂ϵ

|ϵ=0 declines, so that only near δc0d0, the above inequality holds.

Notice that the limit case (T = ∞) of the equivalent distribution is the infinite-

polymorphic distribution of trust-building strategies

p∞0 (αcd(δ)) :=
∞∑
τ=0

αcd(δ){1− αcd(δ)}τcτ

considered in Greve-Okuno (2009). In Greve-Okuno (2009), stability of the infinite-polymorphic

distribution was shown by changing the common relative fraction of all incumbent strategies

simultaneously. This stability was not exactly the local stability, and the above analysis

clarifies that the distribution is not locally stable for a range of δ.

6. GENERAL BIMORPHIC EQUILIBRIA AND EQUIVALENT
DISTRIBUTIONS

For δ < δc0d0 , we can extend the above analysis by adding initial T periods of (D,D)

sequence to c0- and d0-strategy as in the monomorphic equilibrium analysis of Greve-Okuno

(2009). The existence of cT -dT -equilibria also shows persistence of diverse behavior patterns
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for a wide range of survival rates.

Greve-Okuno (2009) showed that a monomorphic distribution of cT -strategy is a Nash

equilibrium if and only if playing D in the cooperation phase is not better than following

the cooperation phase, i.e.,

g + δV (cT , cT ) ≦
c

1− δ2
+
{
1− L(cT , cT )

L

}
V (cT , cT )

⇐⇒ v(cT , cT ) = (1− δ2T )d+ δ2T c ≦ 1

δ2
{c− (1− δ2)g} =: vBR.(7)

(7) is called the Best Reply Condition. Clearly when T = 0, it is not satisfied. Since

v(cT , cT ) is decreasing in T but vBR is constant, there is a lower bound to T above which

the Best Reply Condition is satisfied. Specifically, for any22 δ ∈ (
√

g−c
g−d

, 1), there exists

τ(δ) ∈ ℜ++ such that

(8) {1− δ2τ(δ)}d+ δ2τ(δ)c = vBR.

Then for any T ≧ τ(δ), cT -strategy played by all players is a Nash equilibrium. Now, for

T slightly less than τ(δ), we have a cT -dT equilibrium as follows.

PROPOSITION 3 There exists δ∗ ∈ (0, 1) such that, for any δ ∈ (δ∗, 1), there exists

τ cd(δ) ∈ ℜ such that for any positive integer T ∈ [τ cd(δ), τ(δ)), there is a unique αT (δ) ∈

(0, 1) such that αT (δ)cT + {1− αT (δ)}dT constitutes a locally stable Nash equilibrium.

Let us give an intuition of the proof (see also Figure 5). Since dT -strategy can be inter-

preted as a one-step deviation from cT -strategy, at T = τ(δ), v(cτ(δ); cτ(δ)) = v(dτ(δ); cτ(δ)) =

vBR, that is, when the share of cτ(δ)-strategy α is 1, the average payoffs of cτ(δ)- and dτ(δ)-

strategy coincide. If the average payoff function of cτ(δ)-strategy intersect with that of

dτ(δ)-strategy from the above at α = 1, as in Figure 5, they have another intersection at

α < 1. Then, by continuity, the average payoff functions of cT -strategy and dT -strategy have

two intersections for T slightly less than τ(δ) as well. The larger intersection corresponds

to a locally stable Nash equilibrium by the same logic as that of Remark 1.

22For the derivation of
√

g−c
g−d , see Greve-Okuno (2009).

23The parameter value combination is (g, c, d, ℓ, δ) = (600, 302, 100, 0.1, 0.9019).
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Figure 5: Existence of cT -dT equilibrium when τ(δ) = 223

Figure 6 shows a parametric summary of equilibrium existence.24 We also have a similar

payoff-equivalence result to Lemma 1 for cT -dT -equilibrium.

COROLLARY 1 For any δ ∈ (δ∗, 1), the locally stable Nash equilibrium αT (δ)cT + {1 −

αT (δ)}dT , if exists, is payoff-equivalent to the infinitely-many trust-building strategy distri-

bution of the form
∞∑
n=0

αT (δ){1− αT (δ)}ncT+n(T+1).

In summary, for a wide range of δ, we can extend the analyses in Sections 4-5 to bi-

morphic equilibria consisting of a cooperative cT -strategy and non-cooperative dT -strategy.

Hence co-existence of contrasting behavior patterns is persistent. As in the case of c0-d0

equilibrium (and as Vesely and Yang, 2012, points out), cT+1-strategy can invade the cT -dT

equilibrium, but the pure-strategy invasion is a coordinated entrant. There should be also

“self-destructing” set of polymorphic entrants against which cT -dT equilibrium is robust.

24For some parameter combinations, e.g., (g, c, d, ℓ, δ) = (8.7, 4.5, 1, 0.1, 0.895), both c0-d0 equilibrium
and c1-d1 equilibrium exist for the same δ.
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Figure 6: Parametric summary of cT − dT equilibrium existence

7. CONCLUDING REMARKS

We have shown various stability properties25 of a pair of contrasting behavior patterns:

c0-strategy which cooperates even with a stranger to try to establish a long-term coop-

erative relationship, and d0-strategy which always defects and runs away. Although the

model is symmetric, such fundamentally different norms of behavior can co-exist because

their average payoffs can be equalized at a high level. Cooperators have non-linear average

payoff in their share because of assortative matching among themselves. As the rate of

exogenous dissolution of a match declines, cooperators’ payoff increases so that there are

payoff-equalizing share balances between cooperators and defectors. One of them corre-

sponds to a locally stable Nash equilibrium. Moreover, the bimorphic equilibrium of c0-

and d0-strategy is robust against a class of polymorphic entrants. Among them, there is a

wide variety of “uncoordinated” entrant distributions, because entrants exploit each other.

Since there are infinitely many strategies to potentially emerge, such mis-coordination is

plausible.

Seemingly different equilibria are not fundamentally different. The contrasting bi-

morphic equilibrium is payoff equivalent to countably many distributions including trust-

building strategies. The point is the “recursive” structure of the VSRPD model. Players

25Unlike many of the related literature, we did not restrict the stability analysis within Markov strategies.
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entering the matching pool nullify the past and thus the continuation payoff after ending a

partnership is the same as the life time payoff. Therefore ending the partnership or keeping

(renegotiating) it to shift to cooperation can be payoff equivalent. This is a key feature of

the VSRPD model.

Among the payoff-equivalent distributions, the contrasting bimorphic equilibrium is

the only locally stable equilibrium whenever it exists. Near the boundary of δc0d0, which

admits payoff equivalence of c0- and d0-strategy, c0-strategy is more advantageous than

other strategies unless the only other strategy present is d0-strategy.

Let us also mention other advantages of the c0-d0 equilibrium. Non-degenerate (T > 0)

trust-building strategies require long memory and many states to implement them, while

c0- and d0-strategies are very simple. Hence, if we consider complexity cost of playing a

strategy, then c1-strategy is no longer an alternative best reply to the c0-d0 equilibrium

and the latter becomes evolutionary stable even against coordinated entrants. Moreover,

non-degenerate trust-building strategies require coordination on the exact timing to shift

to cooperation. The length of the trust-building periods should be common knowledge or

a group norm among the entrants, but the source of such knowledge or norm is unclear

(this also applies to the trust-building equilibria analyzed in Greve-Okuno, 2009). For this

reason, coordinated entrants are also not so plausible.

Coordinated invasion has problems not only of difficulty in coordination of the timing,

but also of “psychological cost” in implementation. We can interpret that a c0-strategy is

based on a norm of long-term cooperation, while d0-strategy is based on a norm of non-

cooperation. In terms of such norms, c1-strategy forces players to play according to the

d0-norm in period 1 and then to switch to the c0-norm from period 2 on. Playing according

to two opposite norms can generate psychological cost, compared to playing a single norm

strategy. Just like complexity cost makes a c1-strategy not an alternative best reply to

the c0-d0 equilibrium, psychological cost of c1-strategy makes the c0-d0 equilibrium stable

against costly c1-entrants.

In our companion paper, Fujiwara-Greve et al. (2013), we also show that, among various

equilibrium combinations of c0-, d0-, and c1-strategy, the c0-d0 equilibrium can be most
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efficient over a broad range of parameter values, even without the consideration of the

complexity or psychological cost to implement a c1-strategy. The idea is that if the size

of the “stake” g − c is not so large, even if players can coordinate on the monomorphic

c1-equilibrium, one-period trust building by the whole society is costly. Therefore, in this

case, the c0-d0 equilibrium is not only stable but also (informationally constrained) efficient.

Finally, we note two future research directions. An important extension is a two popu-

lation model of firms and workers, to make a closed model of efficiency wage theory (e.g.,

Okuno, 1981, Shapiro and Stiglitz, 1984). If there is an equilibrium with a contrasting

strategy distribution on the worker side, e.g., cooperative workers and non-cooperative

workers, it gives a further rationale to equilibrium unemployment in a homogeneous worker

population.

We placed our model of VSRPD as a large social game, in which players not only

choose actions but also with whom to play the game in a large society. It can be a first

step towards the research of endogenous network formation with consideration of within-

network strategic behavior. There is a large literature of network formation researches (see

for example, Jackson, 2008) but they usually omit the strategic behavior within a network.

We showed that pairwise cooperative networks (between c0-players) and non-networking

players can co-exist in the society. This also implies that it is not guaranteed that all

agents in the society end up in a (long-term) network.

APPENDIX: PROOFS

PROOF OF REMARK 2: Consider entry of c1-strategy. For any ϵ > 0, let pPE(ϵ) =

(1− ϵ)[αcd(δ)c0 + {1− αcd(δ)}d0] + ϵ · c1 be the post-entry distribution.

v(d0; p
PE(ϵ)) = (1− ϵ)[αcd(δ)g + {1− αcd(δ)}d] + ϵd

v(c1; p
PE(ϵ)) =

(1− ϵ)[αcd(δ)g + {1− αcd(δ)}d] + ϵ(d+ δ2 c
1−δ2

)

(1− ϵ) · 1 + ϵ 1
1−δ2

= v(d0; p
PE(ϵ)) +

ϵ δ2

1−δ2

1− ϵ+ ϵ
1−δ2

{c− v(d0; p
PE(ϵ))}.
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At α = αcd(δ)(< 1),

v(d0;αcd(δ)c0 + {1− αcd(δ)}d0) = v(c0;αcd(δ)c0 + {1− αcd(δ)}d0) < v(c0, c0) = c.

Hence

v(d0; p
PE(ϵ)) = (1− ϵ)v(d0;αcd(δ)c0 + {1− αcd(δ)}d0) + ϵd < c.

That is, c1-strategy can invade the bimorphic distribution. Q.E.D.

PROOF OF PROPOSITION 1: Since p∗ is a locally stable Nash equilibrium, it suffices to

prove the condition (ii) for any q = (qc0 , qd0 , qc1 , qd1 , . . .) ∈ E(δ).

For any ϵ ∈ (0, 1), let the post-entry distribution be

x(ϵ) := (1− ϵ)p∗ + ϵ · q = (xc0(ϵ), xd0(ϵ), xc1(ϵ), xd1(ϵ), . . .).

Note that, q ∈ E(δ) implies that xc0(ϵ) ≦ αcd(δ), for any ϵ ∈ (0, 1), and xs(ϵ) = ϵqs for all

s ∈ {c1, d1, . . .}.

For s = c0, d0, define vcd(s;α) := v(s;αc0 + (1 − α)d0) as the average payoff under a

bimorphic distribution consisting of α of c0-strategy and 1− α of d0-strategy. Then

v(c0;x(ϵ)) =
xc0(ϵ)

c
1−δ2

+ {1− xc0(ϵ)}ℓ
xc0(ϵ)

1
1−δ2

+ {1− xc0(ϵ)}
= vcd(c0; xc0(ϵ));

v(d0;x(ϵ)) = xc0(ϵ) · g + {1− xc0(ϵ)}d = vcd(d0;xc0(ϵ)).

For c1- and d1- strategy, the post-entry average payoff depends only on xc0(ϵ), xc1(ϵ),

and xdT+(ϵ) :=
∑∞

t=T xdt(ϵ) +
∑∞

t=T+1 xct(ϵ). To see this, take c1-strategy. Its in-match

payoff is g against c0-strategy, d against d0-strategy, d + δ2 c
1−δ2

against c1-strategy, and

d+ δ2ℓ against any other strategy. Therefore the post-entry average payoff is

v(c1;x(ϵ)) =
xc0(ϵ) · g + {1− xc0(ϵ)}d+ δ2{xc1(ϵ) · c

1−δ2
+ xd1+(ϵ) · ℓ}

1 + δ2{xc1(ϵ) · 1
1−δ2

+ xd1+(ϵ)}
.

Similarly,

v(d1;x(ϵ)) =
xc0(ϵ) · g + {1− xc0(ϵ)}d+ δ2{xc1(ϵ) · g + xd1+(ϵ) · d}

1 + δ2{xc1(ϵ) + xd1+(ϵ)}
.
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We can simplify these as follows. (To conserve space, we omit (ϵ) except for xc0(ϵ) in

the following.) Let x1 := xc1 + xd1+ and α1 := xc1/x1 (this is independent of ϵ). Then

xc1 = α1x1 and xd1+ = (1 − α1)x1. Also, let L(c0;α) := α · 1
1−δ2

+ (1 − α), which is the

expected length of partnerships for c0, under a distribution with its share α. Using these,

we have that

v(c1;x(ϵ)) =
vcd(d0;xc0(ϵ)) + δ2x1{α1 · c

1−δ2
+ (1− α1)ℓ}

1 + δ2x1L(c0;α1)
(9)

= vcd(d0;xc0(ϵ)) +
δ2x1L(c0;α1)

1 + δ2x1L(c0;α1)
{vcd(c0;α1)− vcd(d0;xc0(ϵ))};

v(d1;x(ϵ)) =
vcd(d0;xc0(ϵ)) + δ2x1{α1g + (1− α1)d}

1 + δ2x1

(10)

= vcd(d0;xc0(ϵ)) +
δ2x1

1 + δ2x1

{vcd(d0;α1)− vcd(d0;xc0(ϵ))}.

For cT - and dT -strategy with T ≧ 2, it is now clear that the post-entry average payoff

depends only on xc0(ϵ), xd0(ϵ), . . . , xcT (ϵ), and xdT+(ϵ). For t = 1, 2, . . . , T , let xt = xct+xdt+

and αt = xct/xt. Then

v(cT ;x(ϵ)) =
xc0(ϵ) · g + {1− xc0(ϵ)}d+ δ2{xc1 · g + xd1+ · d}+ · · ·+ δ2T{xcT · c

1−δ2
+ xdT+ℓ}

1 + δ2{xc1 + xd1+}+ · · ·+ δ2T{xcT · 1
1−δ2

+ xdT+}

=
vcd(d0;xc0(ϵ)) + δ2x1{α1g + (1− α1)d}+ · · ·+ δ2TxT{αT

c
1−δ2

+ (1− αT )ℓ}
1 + δ2x1 + · · ·+ δ2TxTL(c0;αT )

,

so that

v(cT ;x(ϵ)) = vcd(d0;xc0(ϵ))(11)

+
δ2x1

1 +
∑T−1

t=1 δ2txt + δ2TxTL(c0;αT )

{
vcd(d0;α1)− vcd(d0;xc0(ϵ))

}
+

δ4x2

1 +
∑T−1

t=1 δ2txt + δ2TxTL(c0;αT )

{
vcd(d0;α2)− vcd(d0;xc0(ϵ))

}
+ · · ·+ δ2TxTL(c0;αT )

1 +
∑T−1

t=1 δ2txt + δ2TxTL(c0;αT )

{
vcd(c0;αT )− vcd(d0; xc0(ϵ))

}
.

Similarly,

v(dT ;x(ϵ)) =
xc0(ϵ) · g + {1− xc0(ϵ)}d+ δ2{xc1 · g + xd1+ · d}+ · · ·+ δ2T{xcT · g + xdT+ · d}

1 + δ2{xc1 + xd1+}+ · · ·+ δ2T{xcT + xdT+}

=
vcd(d0; xc0(ϵ)) + δ2x1{α1g + (1− α1)d}+ · · ·+ δ2TxT{αTg + (1− αT )d}

1 + δ2x1 + · · ·+ δ2TxT
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implies that

v(dT ;x(ϵ)) = vcd(d0;xc0(ϵ)) +
δ2x1

1 +
∑T

t=1 δ
2txt

{
vcd(d0;α1)− vcd(d0; xc0(ϵ))

}
(12)

+
δ4x2

1 +
∑T

t=1 δ
2txt

{
vcd(d0;α2)− vcd(d0;xc0(ϵ))

}
+ · · ·+ δ2TxT

1 +
∑T

t=1 δ
2txt

{
vcd(d0;αT )− vcd(d0;xc0(ϵ))

}
.

There exists ϵ̄0 ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̄0], xc0(ϵ) is in the region of [αcd(δ), αcd(δ)];

αcd(δ) ≦ (1− ϵ)αcd(δ) + ϵqc0 = xc0(ϵ) ≦ αcd(δ).

In this region, d0-strategy has lower average payoff than that of c0-strategy.

(13) v(d0;x(ϵ)) = vcd(d0;xc0(ϵ)) ≦ vcd(c0; xc0(ϵ)) = v(c0;x(ϵ)), ∀ϵ ∈ (0, ϵ̄0].

(See Figure 2.) (13) means that it suffices to prove that for each T = 1, 2, . . . and sufficiently

small ϵ, entrant strategies dT and cT earn less than d0-strategy does;

v(dT ;x(ϵ)) < v(d0;x(ϵ)) and v(cT ;x(ϵ)) < v(d0;x(ϵ)).

Step 1: For each T = 1, 2, . . ., there exists ϵ̄dT ∈ (0, 1) such that

v(dT ;x(ϵ)) < v(d0;x(ϵ)), ∀ϵ ∈ (0, ϵ̄dT ).(14)

Proof of Step 1: To show (14), it suffices to prove that the second to the last terms of (12)

are all negative, that is vcd(d0; at) < vcd(d0;xc0(ϵ)) for all t = 1, 2, . . . , T .

For each t ≧ 1, q ∈ E(δ) implies that

αt =
qcT

qcT + qdT+

< αcd(δ).

Hence, for each t ≧ 1, there exists ϵ̄t ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̄t),

αt < (1− ϵ)αcd(δ) + ϵqc0 = xc0(ϵ).

Since vcd(d0;α) is increasing in α,

(15) vcd(d0;αt) < vcd(d0; xc0(ϵ)) ∀t = 1, 2, . . . , ∀ϵ ∈ (0, ϵ̄t).
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Let ϵ̄dT = mint≦T ϵ̄t ∈ (0, 1). Then (12) and (15) imply that for any T = 1, 2, . . .,

v(dT ;x(ϵ)) < vcd(d0; xc0(ϵ)), ∀ϵ ∈ (0, ϵ̄dT ).

This completes the proof of Step 1. //

Step 2: For any T = 1, 2, . . ., there exists ϵ̄cT ∈ (0, 1) such that

v(cT ;x(ϵ)) < vcd(d0;xc0(ϵ)), ∀ϵ ∈ (0, ϵ̄cT ).

Proof of Step 2: Again, it suffices to prove that second to the T +1-th terms of (11) are all

negative. But we have already shown in (15) that the second to T -th terms are all negative

for any ϵ ∈ (0,mint≦T−1 ϵ̄t). It remains to prove that the last term is negative for some

range of ϵ, that is, there exists ϵ̂T ∈ (0, 1) such that

vcd(c0;αT ) < vcd(d0; xc0(ϵ)), ∀ϵ ∈ (0, ϵ̂T ).

The assumption q ∈ E(δ) only implies that αT < αcd(δ), hence we have two cases.

Case 1: αT < αcd(δ).

In this case (see Figure 2), we have vcd(c0;αT ) < vcd(d0;αcd(δ)). Recall that for any

ϵ ∈ (0, ϵ0), αcd(δ) ≦ xc0(ϵ) so that vcd(d0;αcd(δ)) ≦ vcd(d0; xc0(ϵ)). Therefore,

vcd(c0;αT ) < vcd(d0;xc0(ϵ)), ∀ϵ ∈ (0, ϵ̄0).

Case 2: αcd(δ) ≦ αT < αcd(δ).

Note that vcd(d0;α) is continuous and increasing in α. If αcd(δ) < αT < αcd(δ), then

vcd(d0;αT ) < vcd(c0;αT ) and vcd(d0;αcd(δ)) = vcd(c0;αcd(δ)).

By the Intermediate Value Theorem, there exists α̂(αT ) ∈ (αcd(δ), αcd(δ)) such that

vcd(c0;αT ) = vcd(d0; α̂(αT )).

See also Figure 7. If αcd(δ) = αT , then clearly there exists α̂(αT ) = αcd(δ) < αcd(δ) such

that

vcd(c0;αT ) = vcd(d0; α̂(αT )).
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Figure 7: Existence of α̂(αT )

In either case, α̂(αT ) < αcd(δ) holds. Hence there exists ϵ̃T ∈ (0, 1) such that for any

ϵ ∈ (0, ϵ̃T ), xc0(ϵ) exceeds α̂(αT );

α̂(αT ) < (1− ϵ)αcd(δ) + ϵqc0 = xc0(ϵ),

hence

vcd(c0;αT ) = vcd(d0; α̂(αT )) < vcd(d0;xc0(ϵ)), ∀ϵ ∈ (0, ϵ̃T ).

In summary, for any αT < αcd(δ), there exists ϵ̂T = min{ϵ̄0, ϵ̃T} ∈ (0, 1) such that

(16) vcd(c0;αT ) < vcd(d0; xc0(ϵ)), ∀ϵ ∈ (0, ϵ̂T ).

Let ϵ̄cT = min{mint≦T−1 ϵ̄t, ϵ̂T}, Then (11), (15), and (16) imply that for any T = 1, 2, . . .,

(17) v(cT ;x(ϵ)) < vcd(d0;xc0(ϵ)), ∀ϵ ∈ (0, ϵ̄cT ).

This completes the proof of Step 2 and the Proposition as well. Q.E.D.
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PROOF OF REMARK 3: First, take an arbitrary T < ∞ and let pPE = (1 − ϵ)dT +

ϵ(xcT+1 + (1− x)dT+1). Clearly, v(dT ; p
PE) = d, while

v(dT+1; p
PE) =

(1 + δ2 + · · ·+ δ2T )d+ ϵδ2(T+1){xg + (1− x)d}
(1 + δ2 + · · ·+ δ2T ) + ϵδ2(T+1)

= d+
ϵδ2(T+1){xg + (1− x)d− d}
(1 + δ2 + · · ·+ δ2T ) + ϵδ2(T+1)

> d, because x > 0.

Next, let pPE = (1− ϵ)d∞ + ϵ{xc0 + (1− x)d0}. Then

v(d∞; pPE) =
(1− ϵ) d

1−δ2
+ ϵ{xg + (1− x)d}

(1− ϵ) 1
1−δ2

+ ϵ

= d+
ϵ

(1− ϵ) 1
1−δ2

+ ϵ
{xg + (1− x)d− d}

= d+
ϵ

(1− ϵ) 1
1−δ2

+ ϵ
x(g − d).

On the other hand,

v(d0; p
PE) = (1− ϵ)d+ ϵ{xg + (1− x)d} = d+ ϵx(g − d).

Note that the denominator of the coefficient of the second term of v(d∞; pPE) is

(1− ϵ)
1

1− δ2
+ ϵ = (1− ϵ) + (1− ϵ)

δ2

1− δ2
+ ϵ > 1.

Hence v(d0; p
PE) > v(d∞; pPE). Q.E.D.

PROOF OF LEMMA 1: Recall that for any α ∈ (0, 1), L(c0;α) = α · 1
1−δ2

+ 1− α and

vcd(c0;α) := v(c0;αc0 + (1− α)d0) =
α · c

1−δ2
+ (1− α)ℓ

L(c0;α)

vcd(d0;α) := v(d0;αc0 + (1− α)d0) = αg + (1− α)d.

For any (α0, α1, . . . , αT ), the average payoff functions are formulated as follows.

v(c0; p
dT
c0 (α0, α1, . . . , αT )) =

α0 · c
1−δ2

+ (1− α0)ℓ

α0 · 1
1−δ2

+ 1− α0

= vcd(c0;α0)

v(c1; p
dT
c0 (α0, α1, . . . , αT )) =

α0 · g + (1− α0)d+ (1− α0)δ
2{α1 · c

1−δ2
+ (1− α1)ℓ}

1 + (1− α0)δ2L(c0;α1)

= vcd(d0;α0) +
(1− α0)δ

2L(c0;α1)

1 + (1− α0)δ2L(c0;α1)

{
vcd(c0;α1)− vcd(d0;α0)

}
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v(c2; p
dT
c0 (α0, α1, . . . , αT )) =

1

1 + (1− α0)δ2 + (1− α0)(1− α1)δ4L(c0;α2)

[
α0 · g + (1− α0)d

+ (1− α0)δ
2{α1g + (1− α1)d}

+ (1− α0)(1− α1)δ
4{α2 ·

c

1− δ2
+ (1− α2)ℓ}

]
= vcd(d0;α0)

+
(1− α0)δ

2

L(c2; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(d0;α1)− vcd(d0;α0)

}
+

(1− α0)(1− α1)δ
4L(c0;α2)

L(c2; p
dT
c0 (α0, α1, α2))

{
vcd(c0;α2)− vcd(d0;α0)

}
,

where L(c2; p
dT
c0 (α0, α1, α2)) = 1 + (1 − α0)δ

2 + (1 − α0)(1 − α1)δ
4L(c0;α2). To generalize,

for each t = 1, 2, . . . , T , the expected length of partnerships that ct-strategy experiences is

L(ct; p
dT
c0 (α0, α1, . . . , αt)) := 1+(1−α0)δ

2+· · ·+{×t−2
τ=0(1−ατ )}δ2(t−1)+{×t−1

τ=0(1−ατ )}δ2tL(c0;αt)

and

L(dT ; p
dT
c0 (α0, α1, . . . , αT )) := 1 + (1− α0)δ

2 + · · ·+ {×T−1
τ=0 (1− ατ )}δ2T

is that of dT -strategy. Using these, we have

v(cT ; p
dT
c0 (α0, α1, . . . , αT )) = vcd(d0;α0)

(18)

+
(1− α0)δ

2

L(cT ; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(d0;α1)− vcd(d0;α0)

}
+ · · ·+ ×T−2

τ=0 (1− ατ ) · δ2(T−1)

L(cT ; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(d0;αT−1)− vcd(d0;α0)

}
+
×T−1

τ=0 (1− ατ ) · δ2TL(c0;αT )

L(cT ; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(c0;αT )− vcd(d0;α0)

}
;

v(dT ; p
dT
c0 (α0, α1, . . . , αT )) =

1

1 + (1− α0)δ2 + · · ·+ {×T−1
τ=0 (1− ατ )}δ2T

[
α0 · g + (1− α0)d

(19)

+ (1− α0)δ
2{α1g + (1− α1)d}

+ · · ·+ {×T−1
τ=0 (1− ατ )}δ2T{αTg + (1− αT )d}

]
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= vcd(d0;α0)

+
(1− α0)δ

2

L(dT ; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(d0;α1)− vcd(d0;α0)

}
+ · · ·+ ×T−1

τ=0 (1− ατ ) · δ2T

L(dT ; p
dT
c0 (α0, α1, . . . , αT ))

{
vcd(d0;αT )− vcd(d0;α0)

}
.

Therefore, if αt = αcd(δ) for all t = 0, 1, . . . , T , then vcd(d0;αt) = vcd(c0;αt) = vcd(d0;α0)

so that the average payoffs coincide. Q.E.D.

PROOF OF PROPOSITION 2: We show that

∂v(c0; p
PE)

∂ϵ
|ϵ=0>

∂v(s; pPE)

∂ϵ
|ϵ=0 ∀s ∈ {c1, c2, . . . , cT , dT}

when δ = δc0d0 .

We first arrange the post-entry distribution into the relative ratio form. (For notational

simplicity, we write αcd = αcd(δ).) Notice that the post-entry distribution is

pPE = {(1− ϵ)αcd + ϵ} · c0 + (1− ϵ)(1− αcd)αcd · c1(20)

+ (1− ϵ)(1− αcd)
2 αcd · c2 + · · ·

+ (1− ϵ)(1− αcd)
T αcd · cT

+ (1− ϵ)(1− αcd)
T+1dT .

We want to arrange this as the relative ratio form such that

pPE = αPE
0 · c0 + (1− αPE

0 )αPE
1 · c1(21)

+ (1− αPE
0 )(1− αPE

1 )αPE
2 · c2 + · · ·+

+ {×T−1
τ=0 (1− αPE

τ )}αPE
T · cT + {×T

τ=0(1− αPE
τ )}dT ,

where αPE
t is the relative post-entry ratio of ct-strategy against the total share of ct+1, . . . , cT ,

and dT -strategy. Hence αPE
0 = {(1− ϵ)αcd + ϵ}. For other αPE

t , (20) can be arranged iter-
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atively to cancel out numerators and denominators as

pPE = αPE
0 · c0 + (1− αPE

0 )
{(1− ϵ)(1− αcd)αcd

1− αPE
0

}
· c1

+ (1− αPE
0 )

[
1−

{(1− ϵ)(1− αcd)αcd

1− αPE
0

}
]
{ (1− ϵ)(1− αcd)

2 αcd

(1− αPE
0 )− (1− ϵ)(1− αcd)αcd

}
· c2

+ (1− αPE
0 )

[
1−

{(1− ϵ)(1− αcd)αcd

1− αPE
0

}][
1−

{ (1− ϵ)(1− αcd)
2 αcd

(1− αPE
0 )− (1− ϵ)(1− αcd)αcd

}]
×{ (1− ϵ)(1− αcd)

3 αcd

(1− αPE
0 )− (1− ϵ)αcd

∑2
τ=1(1− αcd)τ

}
· c3 + · · · .

Therefore, for each t = 1, 2, . . . , T , let

αPE
t :=

(1− ϵ)(1− αcd)
tαcd

(1− αPE
0 )− (1− ϵ)αcd

∑t−1
τ=1(1− αcd)τ

.

Then (20) and (21) coincide. Note also that when ϵ = 0,

(22) αPE
t |ϵ=0= αcd ∀t = 0, 1, 2, . . . .

Using these relative ratios, we can compute the average post-entry payoffs of the strate-

gies and differentiate them. As a preparation, note that

(23)
∂αPE

0

∂ϵ
= 1− αcd;

and, for any t = 1, 2, . . . , T , by computation we have

∂αPE
t

∂ϵ
|ϵ=0 =

1

(1− αcd)2

[
−(1− αcd)

t αcd

{
(1− αcd)− αcd

t−1∑
τ=1

(1− αcd)
τ
}

(24)

+ (1− αcd)
tαcd

{
(1− αcd)− αcd

t−1∑
τ=1

(1− αcd)
τ
}]

= 0.

From (18) and (19) in the Proof of Lemma 1, for any t = 1, 2, . . . , T ,

v(ct; p
PE) = vcd(d0;α

PE
0 )

+
t−1∑
τ=1

Aτ{vcd(d0;αPE
τ )− vcd(d0;α

PE
0 )}+Bt{vcd(c0;αPE

t )− vcd(d0;α
PE
0 )};

v(dt; p
PE) = vcd(d0;α

PE
0 ) +

t∑
τ=1

Ãτ{vcd(d0;αPE
τ )− vcd(d0;α

PE
0 )},
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where

Aτ =
{×τ−1

k=0(1− αPE
k )}δ2τ

L(ct; pPE)
, ∀τ = 1, 2, . . . , t− 1,

Bt =
{×t−1

k=0(1− αPE
k )}δ2tL(c0;αPE

t )

L(ct; pPE)
,

Ãτ =
{×τ−1

k=0(1− αPE
k )}δ2τ

L(dt; pPE)
, ∀τ = 1, 2, . . . , T,

L(ct; p
PE) = 1 + (1− αPE

0 )δ2 + (1− αPE
0 )(1− αPE

1 )δ4 + · · ·+ {×t−1
k=0(1− αPE

k )}δ2tL(c0;αPE
t ),

L(dt; p
PE) = 1 + (1− αPE

0 )δ2 + (1− αPE
0 )(1− αPE

1 )δ4 + · · ·+ {×t−1
k=0(1− αPE

k )}δ2t.

This also shows that for ct- and dt-strategy, only αPE
0 , . . . , αPE

t matter. Let us differentiate

the average payoff of ct-strategy (t ≧ 1) with respect to ϵ via αPE
0 , . . . , αPE

t and using (23).

∂v(ct; p
PE)

∂ϵ
= (1− αcd)

∂vcd(d0;α)

∂α

+
t−1∑
τ=1

Aτ

{∂vcd(d0;α)
∂α

· ∂α
PE
τ

∂ϵ
− (1− αcd)

∂vcd(d0;α)

∂α

}
+

t−1∑
τ=1

[{
vcd(d0;α

PE
τ )− vcd(d0;α

PE
0 )

}
×

τ−1∑
k=0

∂Aτ

∂αPE
k

· ∂α
PE
k

∂ϵ

]
+Bt

{∂vcd(c0;α)
∂α

· ∂α
PE
t

∂ϵ
− (1− αcd)

∂vcd(d0;α)

∂α

}
+
{
vcd(c0;α

PE
t )− vcd(d0;α

PE
0 )

}
×

t−1∑
k=0

· ∂Bt

∂αPE
k

· ∂α
PE
k

∂ϵ
].

From (22) and (24), at ϵ = 0, many terms disappear.

∂v(ct; p
PE)

∂ϵ
|ϵ=0 = (1− αcd)

∂vcd(d0;α)

∂α
(25)

− (1− αcd)
{ t−1∑
τ=1

Aτ |ϵ=0

}∂vcd(d0;α)
∂α

− (1− αcd)
{
Bt |ϵ=0

}∂vcd(d0;α)
∂α

= (1− αcd)
∂vcd(d0;α)

∂α
· 1

L(ct; p
dT
c0 (αcd, . . . , αcd))

,

where the last equality comes from (22) and the computation as follows.

L(ct; p
PE)

L(ct; pPE)
=

1

L(ct; pPE)
+ A1 + · · ·+ At−1 +Bt

⇐⇒ 1−
t−1∑
τ=1

Aτ −Bt =
1

L(ct; pPE)
.
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Similarly,

∂v(dT ; p
PE)

∂ϵ
|ϵ=0 = (1− αcd)

∂vcd(d0;α)

∂α
· 1

L(dT ; p
dT
c0 (αcd, . . . , αcd))

.(26)

By the definition, at δ = δc0d0 and α = αcd, the average payoff of c0- and d0-strategy are

tangent; ∂vcd(c0;α)
∂α

= ∂vcd(d0;α)
∂α

. Hence the derivative of the average payoff of c0-strategy is

∂vcd(c0; p
PE)

∂ϵ
|ϵ=0=

[∂vcd(c0;α)
∂α

· ∂α
PE
0

∂ϵ

]
|ϵ=0= (1− αcd)

∂vcd(c0;α)

∂α
= (1− αcd)

∂vcd(d0;α)

∂α
.

Since L(ct; p
dT
c0 (αcd, . . . , αcd)) > 1 and L(dT ; p

dT
c0 (αcd, . . . , αcd)) > 1, when δ = δc0d0 , (25)

and (26) imply that

∂vcd(c0; p
PE)

∂ϵ
|ϵ=0>

∂vcd(s; p
PE)

∂ϵ
|ϵ=0 ∀s ∈ {c1, . . . , cT , dT}.

Q.E.D.

PROOF OF PROPOSITION 3: We first show a Lemma which generalizes Lemma 2 of

Fujiwara-Greve, Okuno-Fujiwara, and Suzuki (2013).

LEMMA 2 For any T = 0, 1, 2, . . . and any α ∈ (0, 1),

v(dT ;αcT + (1− α)dT ) = v(cT ;αcT + (1− α)dT ) =: v ⇒ v < vBR.

That is, if dT - and cT -strategies are payoff-equivalent, the bimorphic distribution is a Nash

equilibrium.

PROOF OF LEMMA 2: From the derivation of the Best Reply Condition (7),

v < vBR ⇐⇒ g + δ
v

1− δ
<

c

1− δ2
+

δ(1− δ)

1− δ2
· v

1− δ

⇐⇒ g − c

1− δ2
+

δ2

1− δ2
v < 0.

Hence we show the last inequality.

For notational brevity, let p = αcT + (1− α)dT . By the assumption,

v(dT ; p) = v(cT ; p) ⇐⇒ L(cT ; p)V (dT ; p)− L(dT ; p)V (cT ; p) = 0,
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where

L(dT ; p) = 1 + δ2 + · · ·+ δ2T

L(cT ; p) = 1 + δ2 + · · ·+ δ2(T−1) + δ2T{α · 1

1− δ2
+ (1− α)} = 1 + δ2 + · · ·+ δ2T + δ2(T+1) α

1− δ2

= L(dT ; p) + δ2(T+1) α

1− δ2

V (dT ; p) = (1 + δ2 + · · ·+ δ2(T−1))d+ δ2T{αg + (1− α)d}

V (cT ; p) = (1 + δ2 + · · ·+ δ2(T−1))d+ δ2T{α c

1− δ2
+ (1− α)ℓ}.

Hence

0 = L(cT ; p)V (dT ; p)− L(dT ; p)V (cT ; p)

=
{
L(dT ; p) + δ2(T+1) α

1− δ2

}[
(1 + δ2 + · · ·+ δ2(T−1))d+ δ2T{αg + (1− α)d}

]
− L(dT ; p)

[
(1 + δ2 + · · ·+ δ2(T−1))d+ δ2T{α c

1− δ2
+ (1− α)ℓ}

]
=L(dT ; p)δ

2T{αg + (1− α)d}+ δ2(T+1)α

1− δ2
V (dT ; p)

− L(dT ; p)δ
2T{α c

1− δ2
+ (1− α)ℓ}

=L(dT ; p)δ
2T
[
α{g − c

1− δ2
}+ (1− α)(d− ℓ)

]
+ δ2Tα

δ2

1− δ2
V (dT ; p).

This is equivalent to[
α{g − c

1− δ2
}+ (1− α)(d− ℓ)

]
+ α

δ2

1− δ2
· V (dT ; p)

L(dT ; p)
= 0

⇐⇒ α
{
g − c

1− δ2
+

δ2

1− δ2
v(dT ; p)

}
+ (1− α)(d− ℓ) = 0.

Since (1− α)(d− ℓ) > 0, we have that g − c
1−δ2

+ δ2

1−δ2
v < 0. □

Therefore, it suffices to prove that for some T and α ∈ (0, 1), the average payoff of cT -

strategy intersects with that of dT -strategy from the above (see Figure 5), which warrants

local stability at the payoff-equivalent distribution and Lemma 2 implies that it is a Nash

equilibrium.

Step 1: For any δ ∈ (0, 1), there exists τ ∗(δ) such that if τ(δ) < τ ∗(δ), then the average

payoff of cτ(δ)-strategy intersects with that of dτ(δ)-strategy from the above;

∂v(cτ(δ); p)

∂α
|α=1 <

∂v(dτ(δ); p)

∂α
|α=1.
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Proof of Step 1: Let T = τ(δ) and p = αcT + (1− α)dT for notational brevity.

By computation, for any α ∈ (0, 1),

(27)
∂v(dT ; p)

∂α
=

(1− δ2)δ2T

1− δ2(T+1)
(g − d).

For cT -strategy,

∂v(cT ; p)

∂α
=

1

L(cT ; p)2

[
δ2T (

c

1− δ2
− ℓ)L(cT ; p)−

δ2(T+1)

1− δ2
V (cT ; p)

]
=

δ2T

L(cT ; p)(1− δ2)

[
{c− (1− δ2)ℓ} − δ2v(cT ; p)

]
At α = 1, L(cT ; p) = 1/(1− δ2) and v(cT ; p) = v(cT , cT ) = (1− δ2T )d+ δ2T c, hence

(28)
∂v(cT ; p)

∂α
|α=1 = δ2T

[
{c− (1− δ2)ℓ} − δ2{(1− δ2T )d+ δ2T c}

]
.

From (27) and (28), we have

∂v(dT ; p)

∂α
|α=1 >

∂v(cT ; p)

∂α
|α=1

⇐⇒ (1− δ2)

1− δ2(T+1)
(g − d) > {c− (1− δ2)ℓ} − δ2{(1− δ2T )d+ δ2T c}

⇐⇒ δ2(T+1)(c− d) > (1− δ2)(d− ℓ) + {c− d− 1− δ2

1− δ2(T+1)
(g − d)}(29)

At T = τ(δ), v(cτ(δ); cτ(δ)) = vBR holds, by the definition in (8). Therefore

(1− δ2T )d+ δ2T c =
1

δ2
{c− (1− δ2)g}

⇐⇒ c− (1− δ)2g − {δ2(1− δ2T )d+ δ2(T+1)c} = 0

⇐⇒ (1− δ2(T+1))(c− d)− (1− δ2)(g − d) = 0.

This implies that the last bracket of (29) is 0. In sum,

(30)
∂v(dT ; p)

∂α
|α=1 >

∂v(cT ; p)

∂α
|α=1 ⇐⇒ δ2(T+1)(c− d) > (1− δ2)(d− ℓ).

Let τ ∗(δ) be the solution to δ2(τ+1)(c − d) = (1 − δ2)(d − ℓ). Since δ2(τ+1)(c − d) is

decreasing in τ , if T = τ(δ) < τ ∗(δ), (30) is satisfied. (See Figure 6.) //

Step 2: There exists δ∗ ∈ (0, 1) such that τ(δ) < τ ∗(δ) for any δ ∈ (δ∗, 1).
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δ

Figure 8: Properties of τ(δ) and τ ∗(δ)

Proof of Step 2: We prove that τ(δ) is decreasing in δ and τ ∗(δ) is increasing in δ.

Recall that τ(δ)(> 0) is the solution to

(1− δ2τ )d+ δ2τc =
1

δ2
{c− (1− δ2)g} ⇐⇒ f(δ, τ) := δ2{−(g− d)+ δ2τ (c− d)} = −(g− c).

For any τ , f(0, τ) = 0 > −(g − c), f(1, τ) = −(g − c), but f is not a monotone function of

δ. By differentiation,
∂f

∂δ
= 2δ{(τ + 1)δ2τ (c− d)− (g − d)}.

This means that f decreases (resp. increases) in δ if and only if δ <
[

g−d
(τ+1)(c−d)

] 1
2τ (resp. δ >[

g−d
(τ+1)(c−d)

] 1
2τ ), so that f has a unique bottom. Hence f(δ, τ) hits −(g − c) at a unique

δ ∈ (0, 1) (see the left figure of Figure 8) if and only if the slope of f is positive at δ = 1,

i.e., ∂f
∂δ
(1, τ) = 2{(τ + 1)(c− d)− (g− d)} > 0, or τ > g−c

c−d
. Because f(δ, τ) is decreasing in

τ , for any τ > g−c
c−d

, the δ that makes f(δ, τ) = −(g− c) shifts to the left, as τ increases. In

other words, τ(δ) is decreasing in δ. Similarly, recall that τ ∗(δ) is the solution to

δ2(τ+1)(c− d) = (1− δ2)(d− ℓ) ⇐⇒ g(δ, τ) := δ2(d− ℓ) + δ2(τ+1)(c− d) = d− ℓ.

By computation, g(0, τ) = 0 < d−ℓ, g(1, τ) = c−ℓ > d−ℓ for any τ , and g is monotonically

increasing in δ and monotonically decreasing in τ . Hence the δ that makes g(δ, τ) = d− ℓ

increases as τ increases. See the right figure of Figure 8.
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cT
meet cT
(α)

d× T, c, c, . . .

meet D
(1− α)

d× T, ℓ, vM

=

vM in eq.

dT
meet cT
(α)

d× T, g, vM

meet dT
(1− α)

d× T, d, vM

cT+(T+1)
meet cT
(α)

d× T, g, vM

meet cT+(T+1)

(1− α)α
d× T, d, d× T, c, c, . . .

meet c+
(1− α)2

d× T, d, d× T, ℓ, vM

Figure 9: Equivalence of cT − dT and cT+n(T+1) distribution

Finally, as δ → 1, g(1,∞) = d − ℓ implies that τ ∗(1) = ∞, while f(1, 0) = −(g − d)

implies that τ(1) = 0. Hence, there exists δ∗ ∈ (0, 1) such that (see Figure 6)

δ ⋛ δ∗ ⇐⇒ τ ∗(δ) ⋛ τ(δ).

//

Step 3: For any δ > δ∗, there exists τ cd < τ(δ)(< τ ∗(δ)) such that for any integer

T ∈ [τ cd, τ(δ)), there is a unique αT ∈ (0, 1) such that αT cT + (1 − αT )dT is the unique

locally stable Nash equilibrium with the support {cT , dT}.

Proof of Step 3: By the continuity of the average payoff functions and Steps 1 and 2, for T

slightly less than τ(δ), the two intersections of v(cT ;αcT+(1−α)dT ) = v(dT ;αcT+(1−α)dT )

still exist and within (0, 1) (see Figure 5), and the larger one satisfies local stability. Q.E.D.

PROOF OF CROLLARY 1: We show that a geometric distribution of the form

∞∑
n=0

αT (δ){1− αT (δ)}ncT+n(T+1)

is payoff-equivalent to αT (δ)cT + {1− αT (δ)}dT .

Suppose that cT - and cT+k-strategy are in a payoff-equivalent distribution to αT (δ)cT +

{1−αT (δ)}dT , where k is the smallest positive integer. As Figure 9 illustrates, cT+k-strategy
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has the play path such that (D,D) for the first T periods regardless of the partner’s strategy,

then at T + 1-th period, either (D,C) (if the partner was cT -strategy, where the first

coordinate is the focal strategy’s action) or (D,D) (if the partner was either cT+k-strategy

or a longer trust-building strategy). To have the same payoff as that of cT -strategy, the

continuation payoff from T + 2-th period on in a partnership must be the same as that of

cT -strategy starting in a matching pool, denoted as vM . (This corresponds to red boxes in

Figure 9.) Therefore, the continuation path for cT+k-strategy must be (D,D) for T periods

(in total, T+1+T periods from the beginning) and after that (C,C) with probability α and

(C,D) with probability (1−α). Hence k must be T +1, and thus the “next” trust-building

strategy to be included should be cT+2(T+1)-strategy and so on. The payoff equivalence at

α = αT (δ) is analogous to Lemma 1. Q.E.D.
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Gächter, S., E. Kessler, and M. Königstein (2011): “The Roles of Incentives and

Voluntary Cooperation for Contractual Compliance,” Discussion Paper No. 2011-06, the

University of Nottingham.

Ghosh, P. and D. Ray (1996): “Cooperation in Community Interaction without Infor-

mation Flows,” Review of Economic Studies, 63, 491–519.

Harrington, J. E. J. (1995): “Cooperation in a One-Shot Prisoners’ Dilemma,” Games

and Economic Behavior, 8, 364–377.

Izquierdo, L., S. Izquierdo, and F. Vega-Redondo (2013): “Leave and Let Leave:

A Sufficient Condition to Explain the Evolutionary Emergence of Cooperation,” Univer-

sidad de Burgos.

43



Izquierdo, S. S., L. R. Izquierdo, and F. Vega-Redondo (2010): “The Option to

Leave: Conditional Dissociation in the Evolution of Cooperation,” Journal of Theoretical

Biology, 267, 76–84.

Jackson, M. O. (2008): Social and Economic Networks, New Jersey, USA: Princeton

University Press.

Jackson, M. O. and A. Watts (2010): “Social Games: Matching and the Play of

Finitely Repeated Games,” Games and Economic Behavior, 70, 170–191.

Kandori, M. (1992): “Social Norms and Community Enforcement,” Review of Economic

Studies, 59, 63–80.

Kandori, M., G. J. Mailath, and R. Rob (1993): “Learning, Mutation and Long

Run Equilibria in Games,” Econometrica, 61, 29–56.

Kranton, R. E. (1996): “The Formation of Cooperative Relationships,” Journal of Law,

Economics & Organization, 12, 214–233.

Ledyard, J. O. (1995): “Public Goods: A Survey of Experimental Research,” in The

Handbook of Experimental Economics, ed. by J. H. Kagel and A. E. Roth, Princeton, NJ.

USA: Princeton University Press, 111–194.

Mailath, G. and L. Samelson (2006): Repeated Games and Reputations, Oxford, UK:

Oxford University Press.

Maynard Smith, J. (1982): Evolution and the Theory of Games, Cambridge, UK: Cam-

bridge University Press.

McAdams, D. (2011): “Performance and Turnover in a Stochastic Partnership,” American

Economic Journal: Microeconomics, 3, 107–142.

Okuno, M. (1981): “Labor Incentives and the ‘Japanese’ Labor Market,” Contemporary

Economics (Kikan Gendai Keizai), Winter, 150–162 (in Japanese).

44



Okuno-Fujiwara, M. and A. Postlewaite (1995): “Social Norms and Random

Matching Games,” Games and Economic Behavior, 9, 79–109.

Rob, R. and H. Yang (2010): “Long-term Relationships as Safeguards,” Economic The-

ory, 43, 143–166.

Samuelson, L. (1997): Evolutionary Games and Equilibrium Selection, Cambridge, MA:

The MIT Press.

Samuelson, L. and J. Zhang (1992): “Evolutionary Stability in Asymmetric Games,”

Journal of Economic Theory, 57, 363–391.

Schumacher, H. (2013): “Imitating Cooperation and the Formation of Long-term Rela-

tionships,” Journal of Economic Theory, 148, 407–417.

Shapiro, C. and J. Stiglitz (1984): “Equilibrium Unemployment as a Worker Discipline

Device,” American Economic Review, 74, 433–444.

Takahashi, S. (2010): “Community Enforcement when Players Observe Partner’s Past

Play,” Journal of Economic Theory, 145, 42–62.

Vesely, F. and C.-L. Yang (2012): “Breakup, Secret Handshake and Neutral Stability

in Repeated Prisoner’s Dilemma with Option to Leave: A Note,” Available at SSRN No.

2179126.

Weibull, J. (1995): Evolutionary Game Theory, Cambridge, MA: The MIT Press.

45


