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Abstract

In the literature of voluntarily repeated Prisoner's Dilemma, the focus is on how
long-term cooperation is established, when newly matched partners cannot know the
past actions of each other. In this paper we investigate how non-cooperative and
cooperative players co-exist. In many incomplete information versions of a similar model,
inherently non-cooperative players are assumed to exist in the society, but their long-run
fitness has not been analyzed. In reality and in experiments, we also observe that some
people are cooperative, while others never cooperate. We show that a bimorphic
equilibrium of the most cooperative strategy and the most myopic strategy exists for
sufficiently high survival rate of players, and that it is evolutionarily stable under
uncoordinated mutations. For lower survival rates, adding initial periods of defection
makes similar bimorphic equilibria. Both types of equilibria confirm persistence of
defectors.
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Abstract: In the literature of voluntarily repeated Prisoner’s Dilemma, the focus is on how
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actions of each other. In this paper we investigate how non-cooperative and cooperative
players co-exist. In many incomplete information versions of a similar model, inherently
non-cooperative players are assumed to exist in the society, but their long-run fitness has
not been analyzed. In reality and in experiments, we also observe that some people are
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1. INTRODUCTION

Society is not uniform in behavior. In particular, even though the situation makes it clear
that mutual cooperation is efficient, still some people may behave differently. In many
Prisoner’s Dilemma and Trust Game experiments, there are different behaviors among
subjects; some are cooperative, while others are non-cooperative.! In real-life transactions
also, there is persistent presence of cheaters, even though cheating is detected and punished.
It is too easy to attribute such diversity (co-existence of contrasting patterns of behavior)
to external causes such as mistakes, framing, or incomplete learning. We can alternatively
postulate that behavioral diversity has its own merit and thus will survive in the long run.

Theoretically, it is also important to investigate how fundamentally asymmetric strategy
combinations fare in a symmetric model. In ordinary repeated or random matching game
of Prisoner’s Dilemma, co-existence of cooperative and non-cooperative strategies are not
an equilibrium. In ordinary infinitely repeated Prisoner’s Dilemma?, the C-trigger strategy
and the strategy that defects after any history both constitute a symmetric equilibrium
on its own, but together they do not constitute an equilibrium.> Namely, the C-trigger
strategy is not a best reply to the D-always strategy. In the random matching game
with the Prisoner’s Dilemma as the stage game?, it is possible to construct a cooperative
equilibrium with a more complex strategy than the C-trigger, but if some players in the

society always defect, then starting the game with cooperation is not a best reply. Some

IFor surveys, see Camerer (2003) and Ledyard (1995). Recent experiments of infinitely repeated Pris-
oner’s Dilemma include Dal Bé and Fréchette (2011) and Fudenberg et al. (2012). The latter found
co-existence of cooperative and non-cooperative strategies when monitoring is imperfect. Gé&chter et al.
(2011) gives experimental results of Trust game (gift exchange) situations with diverse behaviors. Biologists
also find such behavioral diversity, e.g., Dobata et al. (2009). Genetically not so different L (cheater)-type
ants seem to move from one colony to another to exploit S (normal)-type ants. Izquierdo et al. (2010, 2013)
and references therein show simulation results which we can interpret as co-existence of cooperators and
defectors (although in a restricted set of strategies).

2For a “perfect folk theorem”, see Fudenberg and Maskin (1986). A good survey of various repeating
mechanisms is given in Mailath and Samelson (2006).

3To be precise, there is no pure-strategy equilibrium in which some players use the C-trigger and others
use the D-always strategy.

4See Kandori (1992), Ellison (1994), and Harrington (1995) for a finite population model, and Okuno-
Fujiwara and Postlewaite (1995) and Takahashi (2010) for a continuum population model. Recently, Deb
(2012) provides a folk theorem with general stage games and cheap talk. All these are non-evolutionary,
rational player models.



incomplete information versions of voluntarily repeated Prisoner’s Dilemma assumed that
inherently non-cooperative players exist in the society (e.g., Ghosh and Ray, 1996, and
Kranton, 1996), but their long-run fitness has not been analyzed.’

Fujiwara-Greve and Okuno-Fujiwara (2009), henceforth Greve-Okuno, showed that the
Voluntarily Separable Repeated Prisoner’s Dilemma framework admits many polymorphic
(asymmetric) equilibria in a symmetric single population model.® The key is the endogenous
length of repeated interactions. Cooperative players get exploited by defectors but such a
partnership is terminated quickly, while a match with another cooperative player will last
a long time. Therefore defection against a cooperator may not give a high payoff in the
long-run. Greve-Okuno (2009) focused on trust-building strategies, which cooperate after
some periods of defection, and showed the existence of polymorphic equilibria among them
by the above logic.

In this paper, we include fundamentally non-cooperative strategies in the analysis. The
polymorphic trust-building equilibria in Greve-Okuno (2009) emerge due to mis-coordination
of the initial trust-building periods, but the underlying norm is the same for all players,
to eventually find someone to cooperate with each other for a long time. Here, we investi-
gate a more fundamentally bimorphic equilibrium, in which some players never intend to
cooperate, while others try to establish a long-term cooperative relationship with a stranger.

Although the contrasting bimorphic distribution is vulnerable to a coordinated invasion
of mutants/entrants (Vesely and Yang, 2012), we show that it is robust against a class of
“diverse” polymorphic entrants. The class includes strategy distributions resulting when
every player randomly and independently experiments with various trust-building strate-
gies as well as strategy distributions with only defection and escape at some point. This
stability concept is related to generalized dynamics of selection and directed mutation (e.g.,

Samuelson and Zhang, 1992, Weibull, 1995, and Samuelson, 1997). Our bimorphic equi-

5There are other kinds of incomplete information models of endogenous partnership formation, e.g., Cho
and Matsui (2009, 2013) and McAdams (2011). In those models, randomly matched partners discover the
match quality after matching. Hence there is no fixed “types” in such models.

SThere are also infinitely many symmetric trust-building equilibria, which is one of the main findings of
Greve-Okuno (2009).



librium thus justifies the existence of inherently non-cooperative players in evolutionary
setting and gives a foundation to well-documented behavioral diversity.

We also show that the contrasting-strategy equilibrium is payoff-equivalent to countably
many polymorphic equilibria involving various lengths of trust-building strategies. This is
due to the same play path being induced on the most cooperative strategy, and the recursive
structure of the dynamic game, i.e., the continuation payoff after ending a partnership is
the same as the lifetime payoff, because all new partnerships start with a null history.
Hence, if two strategies give the same lifetime payoff at the null history, then breaching
into either of them at a later period in the matching pool also gives the same continuation
payoff. Interestingly, only the contrasting-bimorphic distribution is locally stable whenever
it exists. Other equivalent distributions are locally stable only in a smaller range of survival
rates (discount factors) of players. Thus, the simple but fundamentally contrasting strategy
combination is quite stable.

When the survival rate is not as high as the level that sustains the contrasting-strategy
bimorphic equilibrium, adding trust-building periods to both strategies makes similar equi-
libria. Therefore, in a wide range of survival rates, fundamentally different behavior patterns
are persistent.

Our game can be called a large social game. Jackson and Watts (2010) formulated a
social game in which players not only choose strategies but also with whom to play the
game. While their model is finite (one-shot or finitely repeated game by finite populations)
and assumes a lot of information among players, ours is infinite in both horizon and the
number of players and assumes minimal information. However, our purpose of the study
is in accordance with one of theirs: we analyze how endogeneity of partnerships affects the
play of the game.

Infinite horizon social games are also studied by Cho and Matsui (2012, 2013).” In their
models, players are not homogeneous. Pairs are randomly formed from two finite popula-

tions, and the only strategic decisions are whether to keep the relationship or unilaterally

"Random matching games, on which the usual evolutionary game theory (e.g., Maynard Smith, 1982) is
based, are infinite horizon games as well, but the players do not strategically choose/terminate partnerships.



terminate it, depending on the realized value of a match. Thus their focus is how players
settle with a “partnership value”. By contrast, we show that some players end up in long-
term cooperative partnerships, while others never settle down, even though all players have
the same characteristics (the set of strategies and the payoff function).

This paper is organized as follows. In Section 2 we describe the Voluntarily Separable
Repeated Prisoner’s Dilemma (VSRPD) model, introduced by Greve-Okuno (2009), and
define focal strategies. In Section 3 we apply standard evolutionary stability concepts
to the contrasting strategy combination of the most cooperative and the most myopic
strategy. In Section 4, we define an evolutionary stability concept with respect to a set
of entrant distributions and derive a sufficient set of diverse entrant distributions against
which the contrasting strategy equilibrium is robust. In Section 5 we show payoff-equivalent
distributions to the focal equilibrium and show local instability of the former. In Section
6, we look at lower survival rates than the one for the contrasting-bimorphic equilibrium
to exist and show that our analysis can be extended. Section 7 gives concluding remarks.

All proofs are in Appendix.

2. MODEL

2.1.  Voluntarily Separable Repeated Prisoner’s Dilemma

In this section we describe the model of Voluntarily Separable Repeated Prisoner’s Dilemma
(VSRPD) introduced by Greve-Okuno (2009). Consider a large society of a continuum of
homogeneous players of measure 1, over the infinite, discrete time horizon. At the beginning
of each period, players are either matched with a partner from the previous period or
without a partner. Those without a partner enter a random matching process and form
pairs® to play the following extensive form game.

Newly matched players have no knowledge of the past action history of each other,

and they play the ordinary two-action Prisoner’s Dilemma of Table 1. The actions in

8For simplicity and following Greve-Okuno (2009), we assume that a player finds a new partner for sure.
This assumption makes cooperation most difficult.



Table 1: Prisoner’s Dilemma: ¢ > ¢ > d > ¢ and 2¢ = g + /.

the Prisoner’s Dilemma are observable only by the current partners. After observing the
actions in the Prisoner’s Dilemma, the partners simultaneously choose whether to keep the
partnership (action k) or to end it (action e). The partnership dissolves if at least one
partner chooses action e. In addition, at the end of a period, each player may exit from the
society for some exogenous reason (which we call a “death”) with probability 1 — §, where
0 <0 < 1. If a player dies, a new player enters into the society, keeping the population size
constant. Players who lost the partner for some reason, as well as newly born players enter
the matching pool in the next period. (This justifies the no-information-flow assumption
because the players in the matching pool can have different backgrounds.) Therefore a
partnership continues if and only if both partners choose action k& and do not die. In
this case the same partners play the Prisoner’s Dilemma in the next period, skipping the
matching process. At the beginning of the next period, unmatched players are matched into
pairs to play the Prisoner’s Dilemma afresh. The game continues this way ad infinitum.
The outline of VSRPD is depicted in Figure 1.

The one-shot payoffs in the Prisoner’s Dilemma are in Table 1, where ¢ > ¢ > d > ¢
and 2c 2 g + £. The latter makes the symmetric pure-action profile (C, C') efficient. The
game continues with probability ¢ from an individual player’s point of view. Thus we focus
on the expected total/average payoff, with § being the effective discount factor of a player.

Under the no-information-flow assumption, we focus on match-independent strategies®
that only depend on the period ¢ = 1,2,... within a partnership (not the calendar time
in the whole game) and the private history of actions within a partnership. Let H; :=

[{C,D} x {C, D}]*"! be the set of partnership histories'® at the beginning of t = 2 and let

9Since the population is a continuum, “contagious” strategies used in Kandori (1992) and Ellison (1994)
cannot achieve cooperation.
10The relevant histories on which partners can condition their actions are the action combinations in the
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Figure 1: Outline of the VSRPD

H1 = {@}

DEFINITION 1 : A pure strategy s of VSRPD consists of (4, y:);2, where:

x; : Hy — {C, D} specifies an action choice x;(h;) € {C, D} given the partnership history
h; € H;, and

v« Hy x {C, D}? — {k, e} specifies whether to keep or to end the partnership, depending

on the partnership history h; € H; and the current period action profile.

The set of pure strategies of VSRPD is denoted as S and the set of all strategy distribu-
tions in the population is denoted as A(S). A pure strategy can be viewed as a degenerate
strategy distribution and thus belongs to A(S) as well. Hence we can write a strategy
combination of a strategy distribution and a pure strategy as ap + (1 — «a)s.

We assume that each player uses a pure strategy, which is natural in an evolutionary
game and simplifies the analysis. We allow entrants/mutants to be a distribution of pure
strategies. (See Section 4 below.)

We investigate evolutionary stability of stationary strategy distributions in the match-
ing pool. Although the strategy distribution in the matching pool may be different from
the distribution in the entire society, if the former is stationary, the distribution of various

states of matches is also stationary, thanks to the stationary death process.!! Since each

Prisoner’s Dilemma only, because the continuation decision history must be (k, k) throughout.
HGee Greve-Okuno (2009) footnote 7 for details. For specific strategies, e.g., cp- and dp-strategies, we
can prove that any stationary distribution in the matching pool exists consistently with the model.



player is born into the random matching pool, the life-time payoff is determined by the

strategy distribution in the matching pool.

2.2.  Awerage and Lifetime Payoffs

When a strategy s € S is matched with another strategy s’ € S, the expected length of the
match is denoted as L(s, s’) and is computed as follows. Notice that even if s and s intend
to maintain the match, it will only continue with probability §2. Suppose that the planned
length of the partnership of s and s is T'(s, s’) periods, if no death occurs. Then

1 — §2T(s,8")

L(s,s") =1+ 0240+ ... 4 6HT)1 = s

The expected total discounted value of the payoff stream of s within the match with s
is denoted as V(s,s’). The average per period payoff that s expects to receive within the

match with s’ is defined as
V(s,s)
L(s,s')

Next, consider a player endowed with strategy s € S in the matching pool, waiting to

v(s,s') =

be matched randomly with a partner. When the stationary strategy distribution in the
matching pool is p € A(S), we write the ezpected total discounted value of payoff streams s
expects to receive during his lifetime as V' (s; p) and the average per period payoff s expects

to receive during his lifetime as

Vis;p
v(s;p) == (L ) - (1 —=0)V(s;p),
where L =1+ 6 + 6% 4 - -+ = 15 is the expected lifetime of s.

Thanks to the stationary distribution in the matching pool, we can write V(s;p) as a

recursive equation. If p has a finite/countable support, then we can write!?

12Theorem 1 and Remark 1 of Duffie and Sun (2012) show that the matching probability of a particular
strategy is the fraction of the strategy in the pool. We thank Yeneng Sun for helping us to find these
details.



Visp) = > p(s)|V(ss)

s’ €supp(p)

+ [5(1 i 6){1 + 52 NN 62{T(s,s/)—2}} + 62{T(s,s/)—1}5]v<8;p)

where supp(p) is the support of the distribution p, the sum §(1—68){1+82+- - 4§27 (=512}
is the probability that s loses the partner s’ before T'(s, s'), and §2{7(5)=1}§ is the prob-
ability that the match continued until T'(s,s’) and s survives at the end of T'(s,s’) to go
back to the matching pool. Stationarity of p implies that the continuation payoff after a
match ends for any reason is always V' (s; p).

Let L(s:p) = 3 g csuppip P(8')L(s, 8"). By computation,

Vism= 3 o) [Vis o)+ 1= (1= 6)L(s )}V (s:p)

s’ esupp(p)

= > pWViss)+{1-

s’ €supp(p)

L(?p)}V(S;p)-

Hence the average payoff is a nonlinear function of the strategy distribution p:

V(s; Vs, s
(sip) _ 3 p(L)(S(m )

v(s;p) == 7

s’ €supp(p)

2.3.  Cooperating and Non-cooperating Strategies

We investigate stability of fundamental behavioral diversity, in the sense that some players
are cooperative, while others never cooperate. For cooperative strategies, Greve-Okuno

(2009) focused on the following trust-building strategies.

DEFINITION 2 : For any T'= 0,1, 2,..., let cp-strategy be a strategy as follows:

t < T: Play D and keep the partnership if and only if (D, D) is observed in the current
period.

t 2 T+ 1: Play C and keep the partnership if and only if (C, C) is observed in the current
period.



This class of trust-building strategies initially plays D (trust-building phase) before
starting a C-trigger type strategy (cooperation phase) where ending the partnership is the
punishment. Since a player can avoid in-match punishment by ending the partnership uni-
laterally, severance is the maximal equilibrium punishment. The reason that Greve-Okuno
(2009) focused on this class of strategies is that in VSRPD, there is no Nash equilibrium®?
in which all players play C' in the first period of a partnership. (Lemma 1 of Greve-Okuno
(2009).) This is due to the lack of information flow across partnerships. Therefore, to con-
sider cooperative monomorphic equilibria, it is natural to focus on the above trust-building
strategies, with initial D play.

In this paper, we turn to polymorphic equilibria, with as much cooperation as possible.
Thus, we investigate how equilibria including cy-strategy, which starts the cooperation phase
immediately with a stranger, can be sustained. In order to constitute an equilibrium, some
players must play D in a new partnership. Since Greve-Okuno (2009) had already consid-
ered equilibria with different length trust-building strategies, and trust-building strategies
all have the same idea to establish a long-term cooperative relationship eventually, we look
at a completely opposite type strategy, namely to defect and run away immediately, to be

matched with cy-strategy.

DEFINITION 3 : Let dy-strategy be as follows: At ¢t = 1, play D and end the partnership

regardless of the action combination in that period.

The defect-and-run dy-players are often observed in experiments and real markets, and
often assumed to occupy a positive fraction in the society (permanently) in incomplete
information versions of VSRPD (e.g., Ghosh and Ray, 1996, Kranton, 1996, and Rob and
Yang, 2010).1* However, it has not been investigated whether such myopic type players can

fare as well as “rational” players, such as cy-strategy.

13For the precise definition, see Section 3.

MOften, the motivation of incomplete information models is different from ours. Our idea is that the
myopic types are plausible and may fare well, while Ghosh and Ray (1996) and Kranton (1996) introduced
myopic types in order to induce rational types to play a symmetric, cooperative equilibrium.



3. STABILITY UNDER MONOMORPHIC ENTRANTS

We investigate evolutionary stability of the most contrasting strategy combination, con-
sisting of co- and dy-strategy. These strategies are polar types in behavior: cq-players
cooperate with any stranger and dy-players never cooperate with anyone and change part-
ners every period. Economic examples of such diversity can be found in many markets. For
example, in the internet markets, most of the sellers and buyers would play co-strategy to
do honest transactions even when they met for the first time, while some try to cheat and
run away, that is, to play dy-strategy. The abundance of incomplete information models
with dy-strategy as the irrational type suggests how plausible they are.

In this section we consider some standard stability concepts. First, we define Nash

equilibrium in VSRPD model.

DEFINITION 4 : A stationary strategy distribution in the matching pool p € A(S) is a

Nash equilibrium if, for all s € supp(p) and all s’ € S,
v(s;p) 2 v(s's p).

From the evolutionary perspective, a Nash equilibrium is a robust distribution against
single (measure zero) entrants/mutants. Let us introduce stronger stability concepts which
require robustness against a positive measure of entrants/mutants. Different stability con-

cepts are obtained by the difference in the potential set of entrants.

DEFINITION 5 : A stationary strategy distribution in the matching pool p € A(S) is a
locally stable Nash equilibrium if,
(i) p is a Nash equilibrium; and

(ii) for any s’ € supp(p), there exists € € (0, 1) such that, for any € € (0, €),

Vs € supp(p) \ {s'}, v(s;(1—e)ptes) Zv(ss(1—€e)p+es’), and

35 € supp(p) \ {s'}; v(5(1—ep+es’)>uv(s;(1—e)p+es).

10
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The local stability requires that, if one of the incumbent strategies increases its share by
a small fraction €, then all other incumbent strategies fare at least as well as the increased
strategy and some fare strictly better, so that the evolutionary pressure restores the share
balance. In other words, local stability requires that the distribution is stable against a
positive measure of entrants using one of the incumbent strategies. (See also Figure 2.)

The underlying dynamic we assume is as follows. Occasionally, a newborn player is
endowed with a different strategy than her predecessor’s, when entering the matching
pool. Let € be the measure of such “entrants/mutants” and their strategy!® be s'. In
the “medium”-run the population adjusts to yield a stationary post-entry distribution
(1 — €)p + €5’ in the matching pool (where p is the incumbent distribution). After that,
in the “long”-run, the selection pressure works according to the post-entry average fitness
v(s; (1 —€)p+ es’) of each strategy s.

In our companion paper (Fujiwara-Greve et al., 2013), it is shown that for sufficiently

large ¢, there is a locally stable Nash equilibrium consisting of cy- and dy-strategy.

REMARK 1 (Fujiwara-Greve et al., 2013) There exists § € (0,1) such that for any § €

15Tn the later analysis we allow entrants to have a distribution of strategies.

11



(0, 1), there is @q(6) € (0,1) such that the bimorphic distribution, Gq(5)co+{1—a.q(6)}do,
is the unique locally stable Nash equilibrium with the support {cy,do}. Let the smallest such
0 be ),

codo

The intuition is as follows. Let « be the (stationary) fraction of ¢y-strategy and the rest
be dy-strategy in the matching pool. The average payoff of the two strategies are as follows.
artz + (1 —a)l
o+ (1—a)

(2) v(do; aco + (1 — a)dp) = ag + (1 — a)d.

(1) v(co;acy + (1 — a)dy) =

To explain (1), if co-strategy meets another ¢y-strategy, the match lasts 1/(1—§?) periods in
expectation and the in-match long-run payoff is ¢/(1 — 6%). This happens with probability
a. With probability 1 — a, co-strategy meets dy-strategy, which gives ¢ but the match is
ended after one period. The average payoff of cy-strategy is the expected long-run payoff of
the two kinds of matches divided by the expected length of the two kinds of matches. For
do-strategy, it earns g against cy-strategy and d against dy-strategy and any match lasts
only one period, yielding (2) as the average payoft.

For any § € (0, 1), the average payoff function (2) of dy-strategy is linear in the share «
of co-strategy and does not depend on §, while the average payoff function (1) of ¢o-strategy
is concave in « and increases (becomes more concave) as the exogenous rate of partnership
dissolution declines, or § increases. At some J, it must have two intersections with the
average payoff of dy-strategy. See Figure 2. Payoff-equivalence of cyp- and dy-strategy is in
fact sufficient for the strategy combination to become a Nash equilibrium, which is shown
in Lemma 2 of Fujiwara-Greve et al. (2013).'6 Only the larger intersection satisfies the local
stability as Figure 2 shows. In sum, the assumption of the existence of myopic players in
the incomplete information models can be endogenized. The key is the assortative match
among cooperative players, which leads to the concavity of their average payoffs.

However, the locally stable bimorphic Nash equilibrium @.q4(8)co + {1 — @eq(d) }do does

not satisfy neutral stability, which requires stability against any entrant strategy.

16 A general version is proved in Lemma 2 in Appendix of this paper.

12



DEFINITION 6 : (Greve-Okuno, 2009) A stationary strategy distribution in the matching
pool p € A(S) is a Neutrally Stable Distribution (NSD) if, for any s’ € S, there exists
€ € (0,1) such that for any € € (0,€),

V s € supp(p), v(s;(1—€)p+es’)=v(s;(1—e)p+es).

REMARK 2 For any 6 € (0,,q4,,1), the locally stable bimorphic Nash equilibrium @i.q(d)co+
{1 — @.q(0) }dy is not neutrally stable.

The proof of Remark 2 (in Appendix) is essentially the same as the instability of do-
monomorphic Nash equilibrium (Lemma 2 in Greve-Okuno (2009)). A “secret-handshake”
c1-strategy imitates dp-strategy and hence earns the same payoff when meeting the in-
cumbents, but does not end the partnership after (D, D) in the first period and earns
cooperation payoff afterwards when meeting another c;-strategy.'”

Notice that, this is a “coordinated” invasion that all entrants/mutants play the same
strategy, c¢1. Alternatively, entry/mutation may be uncoordinated, consisting of multiple

strategies. In the next section we consider stability under uncoordinated invasions.

4. STABILITY UNDER DIVERSE ENTRANTS

We extend the analysis to allow entrants with different strategies appearing simultaneously.
There are many scenarios that make this happen. If the players are humans, they may
experiment with (or make mistakes to play) different strategies at the same time. If the
players are not so conscious decision-makers, still it is possible that multiple genes mutate
simultaneously to a variety of behavior patterns. Monomorphic entrants require precise
coordination among them to play the same strategy, while polymorphic entrants do not
need coordination. We thus think that polymorphic entrants/mutations are more likely to
evolve spontaneously.

For example, when some entrants play ci-strategy, other entrants may imitate it to play

one period of trust-building (i.e., defect but keep the partnership if (D, D) is observed)

17Vesely and Yang (2012) has a general result that any strategy distribution with on-path separation can
be invaded by a secret-handshake type strategy.

13



and, if the partnership continued to the second period, they defect and run away. In this
case, the post-entry payoff of c;-strategy is reduced and moreover its “exploiter” may not
fare that well against the incumbents, either.

In general, we formulate a class of exploiters against cp-strategies as follows.

DEFINITION 7 : For any T'=1,2,..., let dp-strategy be a strategy as follows:
t < T: Play D and keep the partnership regardless of the partnership history:
t 2T + 1: Play D and end the partnership regardless of the observation in this period.

The exploiter against ci-strategy we mentioned above is di-strategy. Let us show that,
although the monomorphic entrant c;-strategy can invade the cy-dp-equilibrium, a class of

c1-dy entrants cannot. To see this, consider a post-entry distribution
P = (1 = ){@ea(8)co + (1 — @ea())do} + e{ge,c1 + (1 — ge,)dr }.

Notice that the post-entry payoff of co- and dy-strategy depends only on the post-entry
share of co-strategy. To simplify the notation, let z., := (1 — €)@.q(d) and the post-entry

payoffs of ¢o- and dy-strategies as follows.

Togm + (1 — 2 )l
(3) v(co; ) = =5 : 2
$C0 . 1-62 + 1 - xCO

(4) v(do;pPE) =T+ (1 — 2, )d =: Vea(do; ey

=: Vea(Co; Tep)

The average payoff of cj-strategy can be arranged as a weighted sum of v.q(dp; z,) and
Ved(Co; Ty ) as follows.

Tep - g+ (1 —20)d + 0%6{qe, - 755 + (1 — qe, )0

(5) ’U(Cl;pPE) _ g ( ) - {q 1—6 ( q ) }
1+0%e{ % +1—q,}

62eL(co; qe,)

1+ 6%eL(co; qe,

= Ved(do; ey ) + ) Ved (€03 4ey ) — Vea(do; cho)]7

where L(co; ey ) := Gy - ﬁ + (1 —qe)-

Similarly
Cppy Tt g+ (1= )d+6%{qe, - g+ (1 — g, )d}
® o(dy ") = st
2
€
= Ucd(do; xco) + m Ucd(dO; (:ZC1) - Ucd(dO; xco) .
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From (5) and (6), the signs of the second terms of v(c; p?) and v(dy; pt'F) determine
whether they are more or less than v(dg; pP'?). Sufficiently small ¢., implies that the second
terms are negative, so that the incumbent dy-strategy has higher average payoff than that
of both entrant strategies. Moreover, ., = (1 — €)@.q(d) < @.q(d) implies that co-strategy
earns even higher average payoff than dy-strategy does (see Figure 2). Therefore, all incum-
bents can have higher post-entry average payoff than all entrants, when the relative share
of ¢, against d; is sufficiently small.

The above example indicates that if entrants/mutants are diverse in such a way that
cr-strategies are sufficiently less than its exploiters, then the co-dg-equilibrium cannot be
invaded. Thus we consider a stability concept with respect to a set of possible (polymorphic)

entrant/mutant distributions.

DEFINITION 8 : Given M C A(S), a stationary strategy distribution p in the matching
pool is Evolutionarily Stable against (Polymorphic) Entrants within M if,

(i) p is a locally stable Nash equilibrium,

(ii) for any ¢ € M and any s’ € supp(q) \ supp(p), there exists € € (0,1) such that, for any
e € (0,€) and any s € supp(p),

v(si(I—e)pt+e-q) >v(s;(1—€)p+e-q)

In words, any new (polymorphic) entrants/mutants from M cannot thrive, and after
selection, local stability restores the balance among incumbents. The standard concept of
Evolutionarily Stable Strategy corresponds to the most stringent case such that M = A(S).

Our stability concept can probably be connected to limits of some monotone dynamic
processes with (a direction of) mutation, similar to the one considered in Samuelson and
Zhang (1992), as ESS can be connected to stable points of monotone dynamic processes
(e.g., replicator dynamic). As Samuelson (1997) surveys, however, even the latter connec-
tion is weak, i.e., for general games, the stable points of monotone dynamic processes do
not coincide with ESS. In addition, the medium-run and long-run process, which seems to
be most appropriate for the dynamic process of matching pool strategy distribution forma-

tion and selection of strategies, cannot be characterized by a single differential equation.
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Izquierdo, Izquierdo, and Vega-Redondo (2013) restricted attention to stationary Markov
strategies and obtained a connection between Nash distributions and limit stationary points
of a monotone dynamic with completely mixed mutations. By contrast, in order to include
as many strategies as possible in the analysis, we adopt the “static” stability.

We now specify a sufficient set of polymorphic entrants/mutants that makes the locally
stable equilibrium p* = @.q(d)co + {1 — @eq(0)}dp evolutionarily stable. But before doing
that, we claim that the following set of ¢y~ and dp-strategies is sufficient for the stability

analysis of the co-dy equilibrium:
Sco:l) = {Co, dg, C1, dl, .. }

The cp-strategies are important for their “secret handshake” property to earn high payoffs
among themselves, after imitating d;-strategies with ¢ < T — 1, while dp-strategies are
important for their “short run” property to exploit ¢,-strategies with ¢ < T'.18 Therefore, if
a strategy in S5 is worth experimenting with, then others (with longer 77s) are also worth
trying. Other strategies that differ off the play path are not relevant for such arguments.
Therefore, we focus on SZj.

Let A(S29) be the set of all probability distributions over S5 with a generic element x =
(Zeys Tdgs Teys Tay s - - -), Where zg € [0, 1] is the share of strategy s € S5 so that Zsesg; s = 1.

For any T'= 0, 1,.. ., di-strategy with ¢ = T and ¢;-strategy with ¢ = T'+1 behave the same

way against cp-strategy, and hence we sometimes combine their shares in a distribution x
(o] [o¢]
as Tapt = ) _y_qp Ta, + Zt:TJrl Ley-

PROPOSITION 1 For any 6 € (0,,4,,1), define a set of diverse entrant distributions by

E(6) :={q¢ = (4eo: o+ Ger> - --) € A(S) | ey S @ea(0),

der _
e o q(6), VT = 1)
ch + da+

If M C E(9), then p* = (Ga(6), 1 —acq(6),0,...) € A(S) is Evolutionarily Stable against
Polymorphic Entrants within M.

80Of course, alternating action strategies that play (C, D) and (D, C') on the play path among themselves,
considered in Section 4.2 of Greve-Okuno (2009) are another important class. However, this class also
requires a specific coordination and therefore we do not focus on it as entrants.
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To interpret £(6), if some cp-strategy is present in the entrant distribution, the entrants

Ger

—T i3 below
Gep+qdp+

also include sufficiently many exploiters of cp-strategy, so that the ratio”
@cq(0). Specifically, if ci-strategy is present in the entrant distribution, then sufficiently
large share of the entrant distribution has dr (T' 2 1) or cp-strategies (T' = 2) to reduce
the payoff of ¢;-strategy. Alternatively, cr-strategies (T 2 1) can be absent in the entrant
distribution, while some of dr-strategies must be present.

Such diversity among entrants can arise in natural extensions of existing mutation pro-
cesses which put a positive probability on all strategies every period, including the one
considered in Kandori, Mailath, and Rob (1993). In a finite population, finite strategy
model as that of Kandori, Mailath, and Rob (1993), it would eventually allow a coordina-
tion on a strategy, but, in our infinite population and infinite strategy model, no eventual
coordination is warranted and, instead, the diversity of entrants is likely to induce a distri-
bution in F(§). An alternative justification of diverse entrants is that newly entered players
do not have a common norm and end up with various strategies.

Let us give a simple example of a class of mutation processes which can put a positive
probability on each strategy in S29. Take any real number v € (0, 1] and a “base” strategy
cr, for some T € {0,1,...}. Consider a “branching” mutation process, which randomizes
between strategies in a particular order but with a fixed relative probability. The probability
to mutate/experiment to play cp-strategy is v, and the rest of the probability 1 — ~ is
concentrated on the set {dr,cry1,dry1,...}. Among these, the mutation process chooses
dr with relative probability 7 (the absolute probability is then (1 — «)7), and the rest is
concentrated on the set {cri1,dri1, crie, ...}, in which ¢z is chosen with the relative
probability v, and so on. The resulting entrant/mutant distribution takes the following

geometric form:

Gor =7 Qar = 1= Geppy = (L —=7)%7,...,

7)2(T+t71)+1

Qepy, = (1 - 7)2(T+t71)77 ddr,; = (1 - Yyonnn

YNote that qa,+ = > ;7 qd, + D_yoq41 de, 18 similarly defined as 24,1 in the text.
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Then for any t =0,1,2, ...,

Aep .y _ (1 - ’7)2(T+t71)7 —
Goryo T Qirery (1 — 7)2T+H=Dy 4 % y

When v = 1, the branching process generates a coordinated entrant, and as v — 0, it
generates “uniform distribution” entrants. Any branching mutation process with v < @.4(9)
generates an entrant distribution in E(6).

Other possible mutation processes that yield an entrant distribution in F(J) include
ones that only generate dp-strategies (singleton or any mixture) and ones that generate
finitely many cp-, ¢py1-, ..., cpyp-strategies and the exploiter dp,g-strategy (for some
T € {0,1,2,...}), with sufficiently large probability of dr,-strategy. This class includes
the example at the beginning of this section.

Weibull (1995), Example 2.4, shows that in ordinary evolutionary games (random
matching with one-shot game), an ESS, which is robust against a single strategy muta-
tion, is not necessarily resistant against simultaneous multiple mutations. We can interpret
Proposition 1 as giving an “opposite” example such that, although a distribution is vul-
nerable to entry of a single strategy, it is robust against a class of mixed strategy entrants
including the successful pure strategy. This is thanks to the recursive structure of VSRPD:
If ¢q-strategy can exploit dy-strategy, then d;- or co-strategy can exploit c¢;-strategy, and so
on, even in a symmetric society.

Finally, we show that the above logic does not hold for dr-monomorphic Nash equilib-
rium for any 7. That is, dp-monomorphic Nash equilibrium in not robust against not
only coordinated cryq-strategy entrant (an analogue of Lemma 2 of Greve-Okuno, 2009),

but also mixed entrants of ¢y -strategy and dp-strategy.

REMARK 3 : For any T < oo, let pP? = (1 — €)dr + e{xcpy1 + (1 — z)dpy 1} where
z € (0,1). Then v(dr; p) < v(driq; pt'F).
For T' = oo, let pP = (1 — €)dw + €{wco + (1 — x)do}. Then v(doo; p7F) < v(do; p™'F).

Hence the “terminating” equilibria of d7-monomorphic distributions are unstable?® with

20Schumacher (2013) gives a dynamic instability of a D-always-strategy (keep if and only if the partner
cooperates) when the only alternative strategy is co.
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respect to the same set of entrants which makes the cy-dy equilibrium stable.

5. INSTABILITY OF PAYOFF-EQUIVALENT DISTRIBUTIONS

The special feature of the bimorphic equilibrium of ¢o-dy distribution is not only that it
has very contrasting strategies. The bimorphic distribution has countably many payoft-
equivalent polymorphic distributions, which is shown below. The payoff-equivalence is due
to the recursive structure of VSRPD. However, all payoff-equivalent distributions turned

out to be locally unstable near ¢ because cy-strategy can increase its share and its

COdO’
average payoff. This is an additional support to the significance of the cy-dy equilibrium.
First, we show that the bimorphic equilibrium of ¢y-dy distribution is payoff-equivalent

to the following form of “geometric” distributions

pgg(ao, ai,..ar)=ag-co+(1—ap)ag-cp+- -+ {x (1 —ay) Yar-er+ {x]_o(1—ay) Y,
for any T'= 1,2, ..., provided that ag = a; = - -+ = @.4(d). The oy’s are the relative ratio

of ¢;-strategy against strategies that play D in the first ¢ periods of a match.

LEMMA 1 Foranyé € (8.y4,.1), and anyT =1,2,..., letp = P (@ea(0), @ea(0), - . ., Weg(9)),
i.e., all relative ratios of ci-strategies (t = 1,2,...,T) are @q(6). Then, for any t =
1,2,....T,

v(co; p) = v(do; p) = v(cy; p) = v(dr; ).

The point is that the average payoff of a ¢-strategy (t = 1,2,...,T) and dp-strategy
can be decomposed as a weighted sum, as in the proof of Proposition 1. For example, the
average payoff of ¢q-strategy under the distribution pﬁfg (g, 001, .., p) S

(1 — ag)d%L(co; avy)
1+ (1 — )d%L(co; 1)

U(C1;pgg(ao7 ag,...,or)) = Uea(do; ) +

{Ucd(co; 061) — Veq(do; 060)}-

Hence, if ay = @pq(0) forallt =0, 1,.... 7T, then vey(do; @) = vea(co; ) = veq(do; ) so that
the average payoff of ¢;- and cy-strategy coincide. An illustration of payoff decomposition
and equivalence is given in Figure 3 for the case of T' = 2, where v™ stands for the average

payoff starting in the matching pool.
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¢ meet ¢y cc, ... dy meet ¢ g, oM
@a®) (@ea(0))
meet others% 0, oM meet others d, oM
(1 =@ea(d)) gy (1 —@ca(d)) 7
vM in eq. vM in eq.
¢ nieetéco 7, oM
e meet Co g ’UM (acd( ))
(@ea(0)) o otherwise meet ¢, d g, oM
otherwise meet ¢; d C c. (-8 @ale)
(1 —@q(0)) (aeq(0)) otherwise  co d, d, ¢ ...
other d,%f, oM (1 —@eq(0)) | (@eq(d)) |
(1 - acd((s)) | ‘ dy d, d;& oM
(1 - acd(6) 3 3

Figure 3: Equivalence of ¢y — dy and p%? distribution

For ¢ near 0,4, any payoff-equivalent distribution of the above form (for 7' = 1) is
not locally stable, because a small increase of cy-strategy increases its post-entry average

payoff.

PROPOSITION 2 For each T = 1,2,..., there exists § > Ocody and € > 0 such that for
any 8 € (8,040,8) and any € € (0,), v(co; p"E) > v(s; p™) for any s € {c1,ca, ., or, dr},
where pPP = (1 — €) - pT (@eq(0), @eq(9), . . ., Wea(0)) + € - co.

Since cg-dy equilibrium is locally stable for any 6 > ¢ this is an additional support

Codo ?

for the significance of the contrasting strategy distribution. The idea of the proof is to show

that at d = ¢

—COdO’
dv(co; PPE)

Oe

|e=0> %ﬁjpbﬂ) |e=0
for any s € {c1,¢a,...,cr,dr}.

As Figure 4 illustrates for the case of T' =1 (i.e., the incumbent distribution is a@.4(d)co+
{1—aq(0) }q(0)cr+{1—a4(0) }2d,), the post-entry average payoff of cy-strategy is concave

in €, while others are not. Hence the above inequality warrants that for a range of € near

2IThe parameter value combination is (g, ¢, d, ¢, ) = (60,31,10,0.1,0.95).

20



30|
28l
26l

24

e 1 € = fraction
0.1 0.2 0.3 0.4 05 of co_entrant

Figure 4: Instability of p% against co-entrant®

0, co-strategy has strictly higher average payoff than others. However, as ¢ increases, the

dv(co;pt ) |
€

derivative 3

«—o declines, so that only near d,,,, the above inequality holds.
Notice that the limit case (" = oo) of the equivalent distribution is the infinite-

polymorphic distribution of trust-building strategies
o (@ea(9)) == Zaed(é){l — Qa(6)} s
7=0

considered in Greve-Okuno (2009). In Greve-Okuno (2009), stability of the infinite-polymorphic
distribution was shown by changing the common relative fraction of all incumbent strategies
simultaneously. This stability was not exactly the local stability, and the above analysis

clarifies that the distribution is not locally stable for a range of 9.

6. GENERAL BIMORPHIC EQUILIBRIA AND EQUIVALENT
DISTRIBUTIONS

For 6 < ¢

=Co do )

we can extend the above analysis by adding initial 7" periods of (D, D)
sequence to co- and dy-strategy as in the monomorphic equilibrium analysis of Greve-Okuno

(2009). The existence of cr-dr-equilibria also shows persistence of diverse behavior patterns
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for a wide range of survival rates.
Greve-Okuno (2009) showed that a monomorphic distribution of c¢p-strategy is a Nash
equilibrium if and only if playing D in the cooperation phase is not better than following

the cooperation phase, i.e.,

c L(cr, cr)
qg + (SV(CT,CT) é 1 (52 + {]_ — T}V(CTaCT)

(7) <= v(er,ep) = (1 —6*)d + 6 c < %{c — (1 —=6%g} = vPE

(7) is called the Best Reply Condition. Clearly when 7" = 0, it is not satisfied. Since

v(cr, cr) is decreasing in T but vP® is constant, there is a lower bound to T' above which

the Best Reply Condition is satisfied. Specifically, for any* § € ( g:fl, 1), there exists

7(9) € Ry, such that
(8) {1 - 6%0}q + 52O ¢ = BE,

Then for any T' 2 7(6), er-strategy played by all players is a Nash equilibrium. Now, for

T slightly less than 7(J), we have a cp-dr equilibrium as follows.

PROPOSITION 3 There ezists 6, € (0,1) such that, for any § € (6., 1), there exists
T.4(0) € R such that for any positive integer T' € [1,,(0),7(9)), there is a unique qp(0) €
(0,1) such that ar(d)cr + {1 — ar(d)}dr constitutes a locally stable Nash equilibrium.

Let us give an intuition of the proof (see also Figure 5). Since dp-strategy can be inter-
preted as a one-step deviation from cp-strategy, at T = 7(0), v(cr(5); Cr(5)) = v(dr(s); Crs)) =
vPR | that is, when the share of ¢;(s)-strategy « is 1, the average payoffs of ¢;(5)- and dy(s)-
strategy coincide. If the average payoff function of c;(5-strategy intersect with that of
dr(5)-strategy from the above at a = 1, as in Figure 5, they have another intersection at
a < 1. Then, by continuity, the average payoff functions of cp-strategy and dp-strategy have
two intersections for T slightly less than 7() as well. The larger intersection corresponds

to a locally stable Nash equilibrium by the same logic as that of Remark 1.

2ZFor the derivation of 9=3, see Greve-Okuno (2009).

ZThe parameter value combination is (g, ¢, d,¢,d) = (600, 302, 100,0.1,0.9019).
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Figure 5: Existence of cp-dr equilibrium when 7(§) = 22

Figure 6 shows a parametric summary of equilibrium existence.?* We also have a similar

payoff-equivalence result to Lemma 1 for cp-dr-equilibrium.

COROLLARY 1 For any § € (4, 1), the locally stable Nash equilibrium ap(d)cr + {1 —
ar(0) Yy, if exists, is payoff-equivalent to the infinitely-many trust-building strategy distri-
bution of the form

> ar(0){1 = @r(5)} erinire)-

In summary, for a wide range of J, we can extend the analyses in Sections 4-5 to bi-
morphic equilibria consisting of a cooperative cp-strategy and non-cooperative dp-strategy.
Hence co-existence of contrasting behavior patterns is persistent. As in the case of c¢y-dy
equilibrium (and as Vesely and Yang, 2012, points out), ¢y -strategy can invade the cpr-dr
equilibrium, but the pure-strategy invasion is a coordinated entrant. There should be also

“self-destructing” set of polymorphic entrants against which cp-dr equilibrium is robust.

2For some parameter combinations, e.g., (g,c,d,¥,8) = (8.7,4.5,1,0.1,0.895), both co-dy equilibrium
and c¢1-dy equilibrium exist for the same 0.
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Figure 6: Parametric summary of ¢y — dr equilibrium existence
7. CONCLUDING REMARKS

We have shown various stability properties?® of a pair of contrasting behavior patterns:
co-strategy which cooperates even with a stranger to try to establish a long-term coop-
erative relationship, and dy-strategy which always defects and runs away. Although the
model is symmetric, such fundamentally different norms of behavior can co-exist because
their average payoffs can be equalized at a high level. Cooperators have non-linear average
payoff in their share because of assortative matching among themselves. As the rate of
exogenous dissolution of a match declines, cooperators’ payoff increases so that there are
payoff-equalizing share balances between cooperators and defectors. One of them corre-
sponds to a locally stable Nash equilibrium. Moreover, the bimorphic equilibrium of c¢gy-
and dg-strategy is robust against a class of polymorphic entrants. Among them, there is a
wide variety of “uncoordinated” entrant distributions, because entrants exploit each other.
Since there are infinitely many strategies to potentially emerge, such mis-coordination is
plausible.

Seemingly different equilibria are not fundamentally different. The contrasting bi-
morphic equilibrium is payoff equivalent to countably many distributions including trust-

building strategies. The point is the “recursive” structure of the VSRPD model. Players

Z5Unlike many of the related literature, we did not restrict the stability analysis within Markov strategies.
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entering the matching pool nullify the past and thus the continuation payoff after ending a
partnership is the same as the life time payoff. Therefore ending the partnership or keeping
(renegotiating) it to shift to cooperation can be payoff equivalent. This is a key feature of
the VSRPD model.

Among the payoff-equivalent distributions, the contrasting bimorphic equilibrium is
the only locally stable equilibrium whenever it exists. Near the boundary of 0,4, which
admits payoff equivalence of cyp- and dy-strategy, co-strategy is more advantageous than
other strategies unless the only other strategy present is dy-strategy.

Let us also mention other advantages of the cyp-dy equilibrium. Non-degenerate (7" > 0)
trust-building strategies require long memory and many states to implement them, while
co- and dy-strategies are very simple. Hence, if we consider complexity cost of playing a
strategy, then ci-strategy is no longer an alternative best reply to the cg-dy equilibrium
and the latter becomes evolutionary stable even against coordinated entrants. Moreover,
non-degenerate trust-building strategies require coordination on the exact timing to shift
to cooperation. The length of the trust-building periods should be common knowledge or
a group norm among the entrants, but the source of such knowledge or norm is unclear
(this also applies to the trust-building equilibria analyzed in Greve-Okuno, 2009). For this
reason, coordinated entrants are also not so plausible.

Coordinated invasion has problems not only of difficulty in coordination of the timing,
but also of “psychological cost” in implementation. We can interpret that a co-strategy is
based on a norm of long-term cooperation, while dy-strategy is based on a norm of non-
cooperation. In terms of such norms, c;-strategy forces players to play according to the
dp-norm in period 1 and then to switch to the cy-norm from period 2 on. Playing according
to two opposite norms can generate psychological cost, compared to playing a single norm
strategy. Just like complexity cost makes a ci-strategy not an alternative best reply to
the co-dy equilibrium, psychological cost of ¢;-strategy makes the co-dy equilibrium stable
against costly ci-entrants.

In our companion paper, Fujiwara-Greve et al. (2013), we also show that, among various

equilibrium combinations of c¢y-, dy-, and c;-strategy, the cy-dy equilibrium can be most
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efficient over a broad range of parameter values, even without the consideration of the
complexity or psychological cost to implement a ci-strategy. The idea is that if the size
of the “stake” g — ¢ is not so large, even if players can coordinate on the monomorphic
c1-equilibrium, one-period trust building by the whole society is costly. Therefore, in this
case, the cg-dy equilibrium is not only stable but also (informationally constrained) efficient.

Finally, we note two future research directions. An important extension is a two popu-
lation model of firms and workers, to make a closed model of efficiency wage theory (e.g.,
Okuno, 1981, Shapiro and Stiglitz, 1984). If there is an equilibrium with a contrasting
strategy distribution on the worker side, e.g., cooperative workers and non-cooperative
workers, it gives a further rationale to equilibrium unemployment in a homogeneous worker
population.

We placed our model of VSRPD as a large social game, in which players not only
choose actions but also with whom to play the game in a large society. It can be a first
step towards the research of endogenous network formation with consideration of within-
network strategic behavior. There is a large literature of network formation researches (see
for example, Jackson, 2008) but they usually omit the strategic behavior within a network.
We showed that pairwise cooperative networks (between cy-players) and non-networking
players can co-exist in the society. This also implies that it is not guaranteed that all

agents in the society end up in a (long-term) network.

APPENDIX: PROOFS

PROOF OF REMARK 2: Consider entry of c;-strategy. For any ¢ > 0, let pP'P(e) =
(1 —€)[@ea(d)co + {1 — @eq(6) }do] + € - ¢1 be the post-entry distribution.

v(do; p"E () = (1 — €)[@ea(6)g + {1 — @ca(8)}d] + ed
(c1:p"E(e)) = (1 = &)[@ca(d)g + {1 — @ea(d) }d] + €(d + 0* 52)
v(C1; P €)) = (1—6)'14—6&

52

1-62 . .. PE
T o te - vldip )

= u(do; p"P(€)) + —
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At o =a,(0)(< 1),
v(do; @eg(8)co + {1 — @ea(9) }do) = v(co; @eq()co + {1 — @q(d) }do) < v(co, o) = c.

Hence

v(do; p"F(€)) = (1 — e)v(do; Tea(d)co + {1 — Tea(8) }do) + ed < c.

That is, ¢;-strategy can invade the bimorphic distribution. Q.E.D.

PROOF OF PROPOSITION 1: Since p* is a locally stable Nash equilibrium, it suffices to
prove the condition (ii) for any ¢ = (qey, Qdg, Ger» 9dy s - - -) € E(9).
For any € € (0,1), let the post-entry distribution be

x(€) == (L= )p" + € q = (e (€), 2a (€) Ty (€), Tay (€), - - ).

Note that, ¢ € E(0) implies that z.,(€) < acq(d), for any € € (0,1), and z4(e) = eg; for all
se€{c,dy,. ..}

For s = ¢y, dp, define v(s;a) := v(s;acy + (1 — a)dp) as the average payoff under a
bimorphic distribution consisting of a of ¢y-strategy and 1 — « of dy-strategy. Then
oo (€) 757 + {1 — oo (€) }L
Teo(€) 1757 + {1 — 2o ()}
v(do;x(€)) = ¢y (€) - g+ {1 — ey (€) }d = vea(do; ey (€)).

v(co;x(€)) = = Ved(Co; Teo (€));

For ¢;- and d;- strategy, the post-entry average payoff depends only on z,(€), z., (€),
and za,4(€) == D pwa,(€) + D p 1 e, (€). To see this, take c-strategy. Its in-match

C

payoff is ¢ against cy-strategy, d against do-strategy, d + 62 57 against cj-strategy, and

d + 6 against any other strategy. Therefore the post-entry average payoff is

Teo(€) - 9+ {1 — 2y ()} + 6*{we, () - =5 + wars(6) - O}
L+ 0%{xe, (€) - =gz + 7a,+(6)}

v(ex(€)) =

Similarly,

Teg(€) - g+ {1 — ey (€)}d + *{wey (€) - g + a1 (€) - d}

v(dy;x(€)) = 14 6%{x.,(€) + zq,+(€)}
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We can simplify these as follows. (To conserve space, we omit (€) except for z.(€) in
the following.) Let Ty := z., + 2414+ and oy := z.,/T; (this is independent of €). Then
T = ayTy and xg4 = (1 — ay)Ty. Also, let L(cp;a) = o - ﬁ + (1 — @), which is the
expected length of partnerships for ¢y, under a distribution with its share . Using these,

we have that
Vea(do; Ty (€)) + 0°T1{on - 55 + (1 — aq)l}
1+ 0271 L(co; 1)

(5251[/(00; Oél)
= Vea(do; e, (€)) + T+ 027, L(co: o) {vea(cos ar) — vea(do; ey (€)) 3

.  Ved(do; ey (€)) + 0°T1{ang + (1 — aq)d}
(10)  o(dix(e) = = T,

5%z,

1+ 6%z,

(9) v(ex(€)) =

= Ueq(do; Tey(€)) + {vea(do; a1) — vea(do; 2, (€))}-

For cr- and dp-strategy with T = 2, it is now clear that the post-entry average payoff
depends only on x,(€), 4, (€), ..., T (€), and x4, 4 (€). Fort =1,2,..., T, let Ty = vt +Tars
and oy = x/Ty. Then

Teo(€) - g+ {1 —aeo(e)}d + 0H{we, - g+ way1 - d} + - + 0 {ae, - 75 + Tapsl}

’U(CT; X(E) N 1+ (52{.T61 + xd1+} +oeee 52T{ch . ﬁ + xdT-i-}
~ ed(do; e (€)) + PTi{ong+ (1 —ay)d} + -+ 0" Tr{ar 5 + (1 — ar)l}
- 1 + 5251 —f- s —|— 52TETL(CO; O{T) ’
so that

(11)  v(er;x(€)) = vea(do; e, (€))
62T
+ T—1 cop— —
L+, 02T, + 0T L(co; ar)
51Ty
+ Ve (do; ) — Veg(dy; e, (€
1+ 57 52tTt+§2TfTL(CO;aT){ aldo; @2) = vealdo; Teo ))}
(52TTTL(CO; aT)

1 -+ 232_11 52t§t + 52TETL(CO; OéT)

{vcd(do; o) — vea(do; xco(E))}

{Ucd(co; ar) — vea(do; T, (€)) }

Similarly,
v(dr;x(€)) = Teo(€) - 9+ {1 = @y (}d + 6*{we, - g+ @ayy - d} + -+ + 6 {e, - g + T4y - d}
v 1+ 62{3701 + l’d1+} + -+ 52T{xCT + ZEdTJr}
Ucd(do; Ly (6)) + 5251{alg + (1 - ozl)d} + -+ 52TET{04Tg + (1 - OéT>d}
1+ 027, + -+ 077y
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implies that
%z

+ T —

1 + Zt:l 52tl't

{Ucd(do; 042) - Ucd(dOS 5’3co(€))}
Tr

T —

]_ + Zt:l 62t$t

There exists ¢ € (0, 1) such that for any € € (0, €], ,(€) is in the region of [a4(0), @ea(9)];

(12)  vldr;x(€)) = vea(do; Zeo (€))

04T,

+
1+ 37, 0%,
52T

{Ucd(dg; 1) — Veq(do; g, (5))}

4t {vcd(do; ar) — Veq(do; 33(:0(6))}-

e(0) = (1 = €)qea(0) + €qey = Teo(€) = @eal9).
In this region, dy-strategy has lower average payoff than that of cy-strategy.
(13) v(do;x(€)) = vea(do; Teo (€)) = Vealco; ey (€)) = v(co; x(€)), Ve € (0, &.

(See Figure 2.) (13) means that it suffices to prove that for each ' = 1,2, ... and sufficiently

small €, entrant strategies dr and cr earn less than dy-strategy does;
v(dr;x(€)) < v(dp;x(€)) and v(er;x(€)) < v(do; x(€)).

Step 1: For each T =1,2,. .., there exists € € (0, 1) such that

(14) v(drix(e)) < v(dosx(e)), Ve € (0,€7).

Proof of Step 1: To show (14), it suffices to prove that the second to the last terms of (12)
are all negative, that is veq(do; ar) < vea(do; ey (€)) for all t =1,2,...,T.
For each t 2 1, ¢ € E(6) implies that

der

— 5.0
qCT + da+ ‘

7
Hence, for each t = 1, there exists € € (0,1) such that for any € € (0, &),
ar < (1 —€)@ea(0) + €qey = ey (€)-
Since veq(dp; ) is increasing in a,
(15) Ved(do; o) < Vea(do; ey (€)) VE=1,2,..., Ve € (0,€).
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Let € = miny<r & € (0,1). Then (12) and (15) imply that for any T'=1,2,. ..,
v(dp;x(€)) < vegldo; ey (€)), Ve € (0,EL).

This completes the proof of Step 1. //

Step 2: For any T' = 1,2,..., there exists € € (0,1) such that
v(er;x(€)) < vea(do; xey(€)), Ve € (0,€7).

Proof of Step 2: Again, it suffices to prove that second to the 7'+ 1-th terms of (11) are all
negative. But we have already shown in (15) that the second to T-th terms are all negative
for any € € (0, miny<r_; &). It remains to prove that the last term is negative for some

range of €, that is, there exists é7 € (0, 1) such that

Ved(Co; ar) < Veg(do; e, (€)), Ve € (0, ér).

The assumption ¢ € F(§) only implies that ar < @.4(d), hence we have two cases.
Case 1: ar < a4(0).

In this case (see Figure 2), we have v.4(co; ar) < vea(do; a4(0)). Recall that for any

€ € (0,€), 4(9) = e, (€) so that vea(do; ay(0)) < vea(do; e, (€)). Therefore,
Ved(co; ar) < vea(do; e (€)), Ve € (0,€).
Case 2 a,(6) < ar < @uld).
Note that ve(dp; ) is continuous and increasing in a. If a,(d) < ar < @q(d), then
Ved(do; ar) < vea(cos ar) and vea(do; @ea(d)) = vea(co; Aea(9))-
By the Intermediate Value Theorem, there exists &(ar) € (a,(0), @eqa(0)) such that
ved(Co; ar) = vea(do; &(ar)).

See also Figure 7. If o ,(d) = ar, then clearly there exists &(ar) = a4(0) < @q(d) such

that

Veq(Co; ar) = vVea(do; &(ar)).
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Figure 7: Existence of &(ar)

In either case, &(ar) < @eq(0) holds. Hence there exists ér € (0,1) such that for any

€ € (0,€r), @ (€) exceeds &(ar);
Galar) < (1 —€)ea(d) + €qey = Ty (€),

hence

Ved(co; ar) = Vea(do; &(ar)) < vea(do; e, (€)), Ve € (0, ér).
In summary, for any ar < @.q(6), there exists ér = min{éy, ér} € (0,1) such that
(16) Ved(co; ar) < veg(do; ey (€)), Ve € (0, é7).
Let € = min{min,<y_; &, ér}, Then (11), (15), and (16) imply that forany T'=1,2,.. .,
(17) v(er;x(€)) < vea(do; ze,(€)), Ve € (0,€7).

This completes the proof of Step 2 and the Proposition as well. Q.E.D.
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PROOF OF REMARK 3: First, take an arbitrary 7" < oo and let p® = (1 — €)dy +
e(xepyr + (1 — 2)dry). Clearly, v(dyr; pPF) = d, while
By _ (1+68%+- 48T d + TV {zg + (1 — 2)d}
(140244 02T) + e62T+)
02TV g+ (1 — x)d — d}
(14024 .-+ 2T) 4 2T+D

v(dpyq; pP

=d+ > d, because x > 0.

Next, let pP'F = (1 — €)dy + e{wco + (1 — 2)dy}. Then

(1-— e)ﬁ + e{xg + (1 — z)d}

doo' PE —
U( 7p ) (1—€>ﬁ+6
€
+(1_€>17152+€{xg+( ’I) }
€
=d —d).
* (1—e)15 + Ex(g )

On the other hand,
v(do; p"F) = (1 — €)d + e{zg + (1 — 2)d} = d + ex(g — d).

Note that the denominator of the coefficient of the second term of v(du; p¥'F) is

2

1—62

(1—6)1_152+€:(1—€)+(1—6) +e> 1.

Hence v(dy; pP'F) > v(dso; pF'F). Q.E.D.

PROOF OF LEMMA 1: Recall that for any a € (0,1), L(co; o) = o+ 55 + 1 — o and

a5+ (1 —a)l
L(cp; @)
Vea(do; @) = v(dp; ey + (1 — a)dp) = ag + (1 — a)d.

Ved(co; @) == v(co; aco + (1 — a)dy) =

For any (ag, aq, ..., ar), the average payoff functions are formulated as follows.
Oéo'%"‘(l—ao)g
. dr 1-6 )
v(co; Peg (0, Q1,4 ..., ap)) = = Veq(Co;
(opo(o 1 7)) OéO'ﬁ%-l—Oéo ed(co; )
dr B ao-g+(1—a0)d+(1—ao)52{a1 : ﬁ%—(l—al)ﬁ}
U(Cl,pco (OZ(), A, ... aaT)) -

14+ (1 — ap)d%L(co; )
(1 — )6 L(co; vy) . ‘
]. + (1 — Oé(])(SQL(CO; Oél) {UCd(C(), OCl) N UCd(dO’ Oéo)}

= Vea(do; ) +
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1
T 14 (1— )%+ (1— ag)(1 — an)d* L(co; az)
+ (1 —ag)d*{arg + (1 — ar)d}

v(ea; pig (o, 0, .., 7)) [ao g+ (1 —ag)d

+ (1 —ag)(1 —)das - 7 _C(sz +(1- Oéz)f}}
= vea(do; )

(1—@0)52 (s 0g) — (s
+ L(CQ;pfg(ao,al,...,aT)){ cd(do; 1) cd(do; o)}

(1 — Ozo)(l — a1)54L(CO; 012)

L(Cz;p?g (OZ(), a, OQ))

{Ucd(co; ) — Vea(do; ao)},

where L(cy; p (g, a1, 09)) = 1+ (1 — a)6% + (1 — ag)(1 — a1)5*L(co; ). To generalize,

for each t =1,2,...,T, the expected length of partnerships that ¢;-strategy experiences is
Lcs p (ag, o, .. o)) i= 14+ (1—a) 0%+ - 4 {x 22 (1= ) Y02 {2 (1— ) V0% Lo co; o)

and
L(dT;pfg(ao, a,...,ar)) =14+ (1— a0)52 + -4 {XZ:_(}(l — OéT)}52T

is that of dp-strategy. Using these, we have

(18)
v(er; P (o, a,y - ar)) = veal(do; ap)
(1 — a0)52 {
+ Ved(do; 1) — vea(do; 040)}
L(cr; pig (a0, 0, ..., ar))
T-2(1 _ 2(T—1)
Xr=0 (1 aT) -0 {
+ -+ Vea(do; ap—1) — vea(do; Oéo)}
L(CT;pfg(ao, aq,...,ar)
T-1(1 — ) - 627 L{cy:
Xl p ar) -0 Licoi ar) {Ucd(co;OéT) —Ucd(do;ao)};
L(CT§pcoT(0407 ag, ... 7aT))
(19)
1
dp: p2 (g, s -, ag)) = [-+1— d
v(dr; pyg (o, 0 ar)) 1+ (1= )0+ + {xT2 (1 — a,) }627 ag- g+ (1 —a)

+ (1 — ag)0*{arg + (1 — oy )d}

+ o X0 = )} {arg + (1 — OéT)d}}
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= Vea(do; )

(1 — @0)52
+ Vea(do; o) — vea(do; o)
L(dT;pgg<&07ala-~'7aT)){ }
T—1 2T
XTZO(l _aT) 0
+- Vea(do; aop) — vea(do; ) ¢
L(dT;pgg(OéOvala"'?aT)){ }

Therefore, if ay = @.q(9) forallt =0,1,..., T, then vey(do; ) = vea(co; ) = vVea(do; o)

so that the average payoffs coincide. Q.E.D.

PROOF OF PROPOSITION 2: We show that

dv(co; PPE)

Oe

dv(s;p"F)

—0>
=0 Oe

|5:0 Vs € {Cl, Co,...,CT, dT}

when 6 = ¢

=codo*

We first arrange the post-entry distribution into the relative ratio form. (For notational

simplicity, we write @.q = @.q4(0).) Notice that the post-entry distribution is
(20) PP ={(1 =)+ e} -co+ (1 =€) (1 = Aeg)Teq - 1
+(1_€)(1_acd)2 Qg - Co+ -+
+ (1 - 6)(1 - acd)T acd - CT
+ (1= e)(1 — aeg) My
We want to arrange this as the relative ratio form such that
(21) pPE=al® o+ (1 —atF)al? . ¢
+(1—-af®)1 —al®)ad® ey + -+
+ {75 (1= alP)}ar” - or + {x7_o(1 — a7 ") }dr,

where o is the relative post-entry ratio of ci-strategy against the total share of ¢; 11, . . ., cr,

and dr-strategy. Hence o = {(1 — €)a.q + €}. For other a/’F, (20) can be arranged iter-
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atively to cancel out numerators and denominators as

1—¢)(1— acd)acd
P = aff ot (1 apry (LTI Ty
0

-02

+(1-alP) [1 _ {( 61)(1 — acd)acd}]{ i 0501 _> 5)((11__%?)1 _a%dm)md
+(1—ag")[1 - {( 61)( P(sz)aCd}] [1 B {(1 0: _) 6)<(11__a€;‘é)1 _a;cd)acd ] -

Qg

(1—€)(1 — Teq)?® Xeq o
{(1 —ap®) — (1= @y, (1~ accz)T} '

Therefore, for each t =1,2,...,T, let

PE ._ (1= &)1 — Tea)'Cea
t (1—ag®) = (L = €)@ Y72, (1 — @ea)”
Then (20) and (21) coincide. Note also that when € = 0,

(22) ol | g=Teq VE=0,1,2,. ...

Using these relative ratios, we can compute the average post-entry payoffs of the strate-

gies and differentiate them. As a preparation, note that

oal’t
23 0 _—1_-a@, :
( ) De Aed
and, for any t = 1,2,...,T, by computation we have
dal® 1 o o . - o
(24) e |e=0 = 1—a.)? [—(1 — Qeq) Oécd{(l — Qed) — Qed Z(l — Qea) }

T=1
t—1

+(1— acd)tacd{(l — Wed) — Qed Z(l — acd)TH =0.
=1
From (18) and (19) in the Proof of Lemma 1, for any t = 1,2,...,T,

(e p"™) = vealdos o ®)

+ ZAT{Ucd(dos Oéf ) - Ucd(dm 040 )} + Bt{vcd<COa OéfE) Ucd(do, PE)},

U(dt;pP ) = Ved d07a0 + ZA {Ucd dOa q— ) - Ucd(d()) PE)})
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where

_ {XEo(@ —a®)}e%

A YT =1,2,... -1,
L(cy; pPF) !
B _ {xi—o(1 — af ®)}6* L(co; of )
' L<Ct;pPE) ’
xS —afF)yerm
A = k= o VYr=1,2,...,T,
L(dy; pPF) '

Licp™) =1+ (1 —af )8 + (1 —af "Y1 — a®)6* + - + {x (1 — . ) }6* Loy oy ),

L(dy;p™) = 14 (1 = ag™)o” + (1 = ag *) (1 — a )8 + -+ + {325 (1 — o ") 1o

This also shows that for ¢;- and di-strategy, only af®, ... al’F matter. Let us differentiate

the average payoff of ¢;-strategy (t = 1) with respect to € via afF, ... al’F and using (23).
O . PE O . dn:

U(Ctvp ) _ (]-_acd) Ud( [),OZ)
Oe Oa
t—1
Oeq(do; ) Dal® DVea(do; @)
AT ) T _ 1 —C )
+; = o (1= o) )

t—1 T—1 aAT aapE
’ ;H”cd(do;af];> s aéDE)} > daff 612 }

OVeq(co; @) ' dal®

B — (1 =) ————=
+ B O Oe (1-8ea) Oa
—1
8Bt (%kaE
+ {Ucd(Co; afE) - Ucd(dO; a(I)DE)} X kzzg (904ka e ]
From (22) and (24), at € = 0, many terms disappear.
dv(c; p"") _ 0vea(do; @)
25) | = (1 — ) — 0
( 5) 86 |670 ( « d) aa
t—1
— vea(do; ) — Qvea(do; )
_1_0 AT€= —_1_0 Be:—
( ad){; | 0} or ( Oéd){ a 0} Dox
OVeq(do; 1
— (1= g el i) — —,
Oa L(ct; peg (Qeas - - -, Oea))
where the last equality comes from (22) and the computation as follows.
L(ci;p"")
Llep™®) ~ Liepr®) 0T AT
t—1 1
1= A, —Bi=————.
<~ Tz:; T t L(Ct;pPE)
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Similarly,

ov(dr; pt'F)
Oe

OVeq(do; @) 1
dox L(dTQPgOT(acda e 7acd))'

and « = @4, the average payoff of cy- and dy-strategy are

(26) |6=0 = (1 - acd)

By the definition, at § = 9

codo

Oveqd (CO ;O‘) — Ovegd (d()?a)

tangent; 5

. Hence the derivative of the average payoff of co-strategy is

OVeq(do;
acd) déao ) .

avcd(cos PPE) avcd(cos Oé) aOécl)DE _ aUcd(Co§ 04)
Zreae\mh bl o . o= (1 — 2T T T (1 —
Oe le=o [ Oa Oe Je=0= Oed) oo (

Since L(ct;pgg(acd, ..., 0cq)) > 1 and L(dT;pfg (Q@edy - -+, Qea)) > 1, when 0 =6, 4.,

(25)
and (26) imply that
8Ucd(CO;pPE) > avcd(s;pPE)

e |e=0 e l=o Vs € {ci,...,cr,dr}.

Q.E.D.

PROOF OF PROPOSITION 3: We first show a Lemma which generalizes Lemma 2 of
Fujiwara-Greve, Okuno-Fujiwara, and Suzuki (2013).
LEMMA 2 For anyT =0,1,2,... and any a € (0,1),

R

v(dr; acr + (1 — a)dr) = v(er;acr + (1 — a)dr) =1 v = v < vPE,

That is, if dp- and cp-strategies are payoff-equivalent, the bimorphic distribution is a Nash

equilibrium.

PROOF OF LEMMA 2: From the derivation of the Best Reply Condition (7),

B v c 6(1-¢) w

v < <:>g+51_5<1_52+ T~ 52 1-s
<— g — ¢ + o <0
I 1’

Hence we show the last inequality.

For notational brevity, let p = aer + (1 — a)dy. By the assumption,

v(dr;p) = v(er;p) <= Llcr;p)V(dr;p) — L(dr; p)V (er;p) = 0,
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where

L(dp;p) =1+ 6"+ +0*"
(0%
1-62

Liepip) =14+ 6%+ --- +52(T—1) + 07 {a t(l—a) =148+ +07+ ST+ Y

1— 62
= L(dr;p) + 6" — 52
V(drip) = (148 + -+ 82T V)d+ 6T {ag + <1 —a)d}

Vier;p) = (1+68*+---+ 521 )d + 52T{a 52 + (1 — a)l}.

Hence

0= L(cr;p)V(dr;p) — L(dr; p)V (cr; p)
={Lldrip) + TV (14 84+ 52<T—1>)d + 0% {ag + (1 - a)d}]

— L(drip) | (1+ 02+ -+ 82T V)d + 0 a5 + (1 - )1}
2T+1),,

T
— L(dr; )52T{a 52 + (1 — )t}

=L(dz: )6 {ag + (1 —a)d} + V(dr;p)

2

=L (dr; p)0*" | (1=a)(d—0)| + 8 aT=—=V (drip).
This is equivalent to
5> V(dT§p) _
[ (1—a)(d—€)}+a1_52-L(dT;p)—O
c 52
—afg— =5+ Tomrldnp) f+ (L -a)d—0) =
Since (1 — a)(d —£) > 0, we have thatg—ﬁ—i—%v < 0. O

Therefore, it suffices to prove that for some 7" and «a € (0, 1), the average payoff of cp-
strategy intersects with that of dp-strategy from the above (see Figure 5), which warrants
local stability at the payoff-equivalent distribution and Lemma 2 implies that it is a Nash

equilibrium.

Step 1: For any ¢ € (0, 1), there exists 7%(4) such that if 7(6) < 7%(J), then the average
payoff of c;5)-strategy intersects with that of d,(s)-strategy from the above;

a'l}(CI 5)7p>| av(d (OF p)|
oo a=1 o a=1’
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Proof of Step 1: Let T'= 7(J) and p = acr + (1 — a)dr for notational brevity.
By computation, for any « € (0,1),

ov(dr; p) (11— 62)5%T

(27) Do - 1 — §2(T+1) (g - d)
For cp-strategy,
ov(cr;p) 1 oy, C 52T+
o L(CT;p)2 |:6 (1 — 52 6) (CT,p) 1 — 62 V(CTap)]
(52T

= T e~ (1= 90 = Flerin)]

At a =1, L(er;p) = 1/(1 — 6%) and v(er;p) = vier, er) = (1 — 6*T)d + 6*T¢, hence

aU(CT; p) |
Oa 't

(28) =6 [{c— (1= 80} — *{(1 — 8°T)d + 62"c}].

From (27) and (28), we have

ov(dr; p) | dv(cr; p) |
da o=t Oa ot
(1_—(52)( —d)>{e— (1=} —6*{(1 = 6*)d + 6*"¢}
1 — g2+ I
1— 62

At T = 7(8), v(cr(s); ¢r(5)) = vP% holds, by the definition in (8). Therefore

1
(1-0")d+ 0" e= sle— (- *)g}
= c—(1-08)>%g—{5*(1 = 6*")d + *T ¢} = 0

= (1 -0 (c—d)— (1 -0*)(g—d)=0.

This implies that the last bracket of (29) is 0. In sum,

ov(dr; p) - ov(er; p)

(30) 80[ |a:1 80(

oy = T (c—d) > (1-8*)(d—0).

Let 7%(0) be the solution to §2"*Y(c —d) = (1 — §?)(d — ¢). Since 52+ (c — d) is
decreasing in 7, if ' = 7(J) < 7%(d), (30) is satisfied. (See Figure 6.) //

Step 2: There exists 0, € (0,1) such that 7(0) < 7*(0) for any § € (0., 1).
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Figure 8: Properties of 7(§) and 7%()
Proof of Step 2: We prove that 7(d) is decreasing in 6 and 7%(J) is increasing in .
Recall that 7(J)(> 0) is the solution to
T T 1 T
(1—-6*)d+6*"c = ﬁ{c— (1-6%)g} <= f(6,7):=0*{—(9—d)+6*(c—d)} = —(g—c).

For any 7, f(0,7) =0 > —(g —¢), f(1,7) = —(g — ¢), but f is not a monotone function of
0. By differentiation,

0
L~ 95{(r 4+ 1) (e~ d) ~ (9~ D)}
This means that f decreases (resp. increases) in ¢ if and only if § < [#@d)} > (resp. § >

[%]%), so that f has a unique bottom. Hence f(d,7) hits —(g — ¢) at a unique
d € (0,1) (see the left figure of Figure 8) if and only if the slope of f is positive at § = 1,
ie., %(1, 7)=2{(t+1)(c—d)— (9 —d)} >0, 0or 7> 9= Because f(4,7) is decreasing in
7, for any 7 > 9=7, the § that makes f(0,7) = —(g — c) shifts to the left, as 7 increases. In

other words, 7(d) is decreasing in ¢. Similarly, recall that 7%(J) is the solution to
(e —d)=(1-6*)(d—10) < g(6,7):=06*(d—0) +6* " Vc—d)=d— ¢

By computation, ¢g(0,7) =0 < d—/, g(1,7) = ¢c—{ > d—{ for any 7, and g is monotonically
increasing in 0 and monotonically decreasing in 7. Hence the ¢ that makes g(0,7) =d — ¢

increases as 7 increases. See the right figure of Figure 8.
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Figure 9: Equivalence of ¢y — dr and cpqpr41) distribution

Finally, as § — 1, g(1,00) = d — ¢ implies that 7%(1) = oo, while f(1,0) = —(g — d)
implies that 7(1) = 0. Hence, there exists d, € (0, 1) such that (see Figure 6)

5§26, < 7°(9)

AIV

7(0).

//
Step 3: For any 6 > 0., there exists 7., < 7(6)(< 7%(J)) such that for any integer
T € [1.4,7(9)), there is a unique @y € (0,1) such that arcr + (1 — ar)dr is the unique
locally stable Nash equilibrium with the support {cr, dr}.
Proof of Step 3: By the continuity of the average payoff functions and Steps 1 and 2, for T’
slightly less than 7(0), the two intersections of v(cp; acr+(1—a)dr) = v(dr; acr+(1—a)dy)
still exist and within (0, 1) (see Figure 5), and the larger one satisfies local stability. @Q.F.D.

PROOF OF CROLLARY 1: We show that a geometric distribution of the form
> ar(6){1 —ar(0)} erinr i
n=0

is payoff-equivalent to ar(d)er + {1 — @r(6) }dr.
Suppose that cp- and ¢y -strategy are in a payoff-equivalent distribution to @r(d)er +

{1—ar(d)}dr, where k is the smallest positive integer. As Figure 9 illustrates, cr,-strategy
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has the play path such that (D, D) for the first T" periods regardless of the partner’s strategy,
then at T + 1-th period, either (D,C) (if the partner was cp-strategy, where the first
coordinate is the focal strategy’s action) or (D, D) (if the partner was either cr x-strategy
or a longer trust-building strategy). To have the same payoff as that of cp-strategy, the
continuation payoff from 7"+ 2-th period on in a partnership must be the same as that of
cr-strategy starting in a matching pool, denoted as v*. (This corresponds to red boxes in
Figure 9.) Therefore, the continuation path for ¢y -strategy must be (D, D) for T periods
(in total, T+ 14T periods from the beginning) and after that (C, C') with probability a and
(C, D) with probability (1 —«). Hence k& must be T'+ 1, and thus the “next” trust-building
strategy to be included should be ¢z o1 1)-strategy and so on. The payoff equivalence at

a = ar(d) is analogous to Lemma 1. Q.E.D.
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