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Abstract

I study a business cycle model where agents learn about the state of the economy by

accumulating capital. During recessions, agents invest less, and this generates noisier esti-

mates of macroeconomic conditions and an increase in uncertainty. The endogenous increase

in aggregate uncertainty further reduces economic activity, which in turn leads to more un-

certainty, and so on. Thus, through changes in uncertainty, learning gives rise to a multiplier

effect that amplifies business cycles. I use the calibrated model to measure the size of this

uncertainty multiplier.
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1 Introduction

What drives business cycles? A rapidly growing literature argues that shocks to uncertainty

are a significant source of business cycle dynamics—see, for example, Bloom (2009), Fernández-

Villaverde et al. (2011), Gourio (2012), and Christiano et al. (forthcoming). However, the literature

faces at least two important criticisms. In uncertainty shock theories, recessions are caused by

exogenous increases in the volatility of structural shocks. First, fluctuations in uncertainty may be,

at least partially, endogenous.1 The distinction is crucial because if uncertainty is an equilibrium

object that is coming from agents’ actions, policy experiments that treat uncertainty as exogenous

are subject to the Lucas critique. Second, some authors (Bachmann and Bayer 2013, Born and

Pfeifer 2012, and Chugh 2012) have argued that, given small and transient fluctuations in observed

ex-post volatility, changes in uncertainty have negligible effects. However, time-varying volatility

need not be the only source of time-varying uncertainty.2 If this is the case, these papers may be

understating the contribution of changes in uncertainty to aggregate fluctuations.

In this paper, I present a business cycle model where the level of economic activity influences

the level of aggregate uncertainty. The endogenous movement in uncertainty, in turn, affects

the level of economic activity. My goal is to quantify the role of this two-way feedback between

uncertainty and economic activity in explaining the fluctuations of macroeconomic variables.

I embed the idea of asymmetric learning (Veldkamp 2005 and Van Nieuwerburgh and Veldkamp

2006) into a standard DSGE framework with several real and nominal rigidities (Christiano et al.

2005). I introduce information frictions by subjecting the economy to aggregate shocks that agents

cannot directly observe, namely, shocks to the marginal efficiency of investment and shocks to the

depreciation rate of capital. Because the former are persistent while the latter are transitory, what

matters for agents’ optimal decision is the evolution of the efficiency of investment. Agents use

the path of capital stock and investment to form their estimates in a Bayesian manner.3 However,

the capital stock is not perfectly revealing about the unobservable shocks because it is subject to a

non-invertibility problem: Agents cannot tell whether an unexpectedly high realization of capital

stock is due to a high efficiency of investment or to a low depreciation rate of capital.

In the model, the level of investment endogenously determines the informativeness of the capital

stock about the shocks to the efficiency of investment. When agents invest less, their estimates

are imprecise because the level of capital stock is largely determined by the realization of the

depreciation shock. Conversely, when they invest more, their estimates are accurate because the

current capital mostly reflects shocks to the efficiency of investment. Thus, aggregate uncertainty

1See Bachmann et al. (2013) for supporting VAR evidence.
2Orlik and Veldkamp (2013) show that changes in uncertainty measured using survey data are stronger than

changes in GDP volatility.
3In the model, all information necessary for optimal learning is contained in the path of capital stock and

investment. While agents have access to other endogenous variables, including prices, those variables do not reveal
additional information about the unobservable shocks.
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becomes endogenously countercyclical over the business cycle.

The countercyclical uncertainty gives rise to a novel multiplier effect that amplifies business

cycles. Imagine that the economy is hit by a negative shock that lowers investment (for example,

an exogenous tightening of monetary policy). Since agents learn less about the current period

shock to the efficiency of investment, uncertainty increases. This, in turn, further reduces invest-

ment and other economic activity because of households’ precautionary motive and countercyclical

movements in markups. The opposite channel works when the economy is hit by a positive shock.

I call this amplification mechanism the uncertainty multiplier.

To measure the size of the uncertainty multiplier, I perform numerical simulations. The model

is calibrated to match the business cycle properties of the postwar U.S. quarterly data. An

interesting challenge I face is that the choice of the variance parameters has important effects on

the strength of learning dynamics. More specifically, when the variance of the depreciation shock

is very small compared to that of the shock to the efficiency of investment, the capital stock is

almost perfectly revealing about the shock to the efficiency of investment. Conversely, when the

depreciation shock is very large, the capital stock is uninformative and little learning takes place.

In both cases, fluctuations in aggregate uncertainty are negligible. To ensure that agents face a

realistic amount of information frictions, I pin down the variance parameters so that the model

replicates the properties of survey data on macroeconomic forecasts.

I find that, under the benchmark calibration with a full set of real and nominal rigidities, the

standard deviation of output is amplified by 18%. Other real variables, such as investment and

hours, are also amplified by a similar amount. The size of the amplification is nontrivial due to

two main features of the model. First, in my model, changes in uncertainty generate positive

comovements among real variables. Second, the uncertainty process is volatile and persistent

because it is tied to the movement of investment.

Finally, I provide an external validation of my theory by showing that it replicates the VAR

impulse response of the survey measure of uncertainty. In particular, it can account for the

negative relationship between output and uncertainty and it also reproduces gradual responses

of the two variables. This is because in the model uncertainty is inversely related to investment,

which exhibits hump-shaped dynamics, and this uncertainty in turn induces gradual adjustments

by households.

The rest of the paper is organized as follows. The next section describes my contributions with

respect to the existing literature. Section 3 presents the model and Section 4 discusses its solution

and calibration. Section 5 presents the results. Section 6 provides evidence of my theory from

survey data. Section 7 concludes with some directions for future research.

3



2 Connections to the Literature

This paper is related to several strands of the literature. First, it is related to a growing liter-

ature on uncertainty shocks. A leading example is a paper by Bloom (2009), who shows that

an exogenous increase in the volatility of firm-level productivity reduces output through a “wait-

and-see” effect due to investment irreversibility. Fernández-Villaverde et al. (2011) show that

volatility shocks to real interest rates generate sizable contractions in an otherwise standard small

open economy model. Other examples include Arellano et al. (2012), Basu and Bundick (2011),

Christiano et al. (forthcoming), Fernández-Villaverde et al. (2012), Gilchrist et al. (2010), Gourio

(2012), Ilut and Schneider (2011), and Schaal (2012). I show that time-varying uncertainty could

be an important amplification (rather than an impulse) mechanism of the business cycle. As

stated in the Introduction, this distinction is important because now uncertainty is an equilibrium

object.

Recently, some authors have argued that changes in uncertainty have negligible effects given

small and transient fluctuations in observed realized volatility (Bachmann and Bayer 2013, Born

and Pfeifer 2012, and Chugh 2012). In contrast, in my model, uncertainty features a large and per-

sistent fluctuation that is not linked with movements in the observed volatility of macro variables.4

As a result, unlike in these papers, changes in uncertainty have sizable effects.

Several papers attempt to account for the countercyclical firm-level volatility through conven-

tional first-moment shocks. For example, in Bachmann and Moscarini (2011), recessions induce

firms to price-experiment, which in turn raises the cross-sectional dispersion of price changes. See

also D’Erasmo and Boedo (2012), Kehrig (2011), and Tian (2012). Their focus is on the explana-

tion of the movement of ex-post volatility. I go one step further by highlighting the implications

of ex-ante uncertainty. This is why I can show that uncertainty is not only a by-product of agents’

response to first-moment shocks, but also an important factor that affects real allocations.

The main mechanism of this paper builds on a literature on asymmetric learning, for exam-

ple, Veldkamp (2005), Van Nieuwerburgh and Veldkamp (2006), Ordoñez (2012), and Görtz and

Tsoukalas (2013). They argue that the time-varying speed of learning about the macroeconomic

conditions could explain the asymmetries in growth rates over the business cycle. When the econ-

omy passes the peak of a boom, agents are able to precisely detect the slowdown, leading to an

abrupt crash. At the end of the recession, agents’ estimates about the extent of recovery are

noisy, slowing reactions and delaying booms. My contribution is to explore the direct effects of

endogenous fluctuations in uncertainty that shift the levels of macro variables. Recessions are

deeper because high uncertainty leads precautionary households to cut consumption. Booms are

stronger for the opposite reason. This channel has been overlooked in the previous literature.

A recent work by Fajgelbaum et al. (2013) independently develops similar ideas. There are

4Ilut and Schneider (2011) also propose a business cycle model where changes in uncertainty are not followed
by changes in volatility by assuming ambiguity-averse preferences.
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two key distinctions. First, in their paper the level of aggregate uncertainty is related to the

number of firms investing (extensive margin), while in my paper the level of investment influences

the level of uncertainty (intensive margin). As in Van Nieuwerburgh and Veldkamp (2006), this

specification allows me to perform realistic quantitative analysis without losing tractability. Sec-

ond, in their paper time-varying uncertainty feeds back into the level of economic activity through

irreversible investment, while in my paper uncertainty influences business cycles through counter-

cyclical markups due to nominal rigidities. The advantage of my approach is that the markup

channel generates comovements among real variables that are consistent with U.S. business cycles

(Basu and Bundick 2011).

Finally, this paper joins a long tradition in macroeconomics, starting from Lucas (1972), by

considering the role of imperfect information and expectations in shaping business cycle dynamics.

Recent contributions include Barsky and Sims (2012), Beaudry and Portier (2004), Eusepi and

Preston (2011), Lorenzoni (2009), Jaimovich and Rebelo (2009), and Schmitt-Grohe and Uribe

(2012). These papers emphasize changes in the mean of agents’ subjective estimates about fun-

damentals. The current paper, instead, demonstrates the importance of changes in the variance

of estimates about fundamentals. As a methodological contribution, I show how to apply higher-

order approximation methods to a model with linear information frictions.

3 The Model

I embed a learning problem into the capital accumulation process of a standard DSGE framework

(Christiano et al. 2005, Justiniano et al. 2010, and Smets and Wouters 2007). This framework is

a natural laboratory for my quantitative investigation, since it has now become the foundation of

applied research in both academic and government institutions.

In the first subsection, I describe the information frictions. In the second subsection, I present

the standard part of the model.

3.1 Learning and Endogenously Countercyclical Uncertainty

I divide this subsection into several parts. First, I describe the setup. Second, I provide concrete

examples that help interpret the baseline environment. Third, I express the learning process as a

Kalman filtering problem. Fourth, I present a simple example that illustrates the key properties

of the filtering problem. Finally, I rewrite the capital accumulation process from the perspective

of the agents. This clarifies the impact of changes in uncertainty on the agents’ decision making.
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3.1.1 Setup

The law of motion for capital, Kt, is subject to two types of aggregate disturbances:

Kt = (1− δt)Kt−1 + µtIt−1.

The depreciation shock, δt, follows

δt = δ − εδ,t,

where εδ,t is i.i.d. distributed from a normal distribution with mean zero and variance σ2
δ . The

investment shock, µt, determines the marginal efficiency of investment. I assume that µt follows

the stochastic process

µt = gt−1 + (1− ρµ)µ+ ρµµt−1 + εµ,t,

gt = ρggt−1 + εg,t,

where εµ,t and εg,t are i.i.d. distributed from a normal distribution with mean zero and variance σ2
µ

and σ2
g , respectively. The growth shock, gt, controls the growth rate of µt.

5 Agents cannot directly

observe the current or previous values of δt, µt, and gt. This informational assumption gives rise

to a non-invertibility problem: Agents cannot tell whether an unexpectedly high realization of

capital stock is due to a high efficiency of investment or to a low depreciation rate of capital. As

a result, they face a signal-extraction problem in forecasting the evolution of the shocks. Agents

use all available information, including the path of capital stock, to form their estimates.

A literal interpretation of the depreciation shock is that it represents an exogenous change

in the physical depreciation rate of capital. However, as in Gourio (2012), Gertler and Karadi

(2011), and Liu et al. (2011), a broader interpretation is possible. For example, it can represent

an economic obsolescence of capital. Alternatively, reallocation of capital may be subject to

temporary frictions and could show up as a change in the “quality” of aggregate capital.

The investment shock was originally proposed by Greenwood et al. (1988). In a medium-scale

DSGE model similar to the one employed in this paper, Justiniano et al. (2010) have found that

the shock is the most important driver of the U.S. business cycle. In general, there are two ways to

think about the investment shocks. The first interpretation is that they represent disturbances that

affect the transformation of consumption goods into investment goods. The second interpretation

is that they are shocks that affect the transformation of investment goods into installed capital.

In this paper, I adopt the second interpretation.6 An important implication of this interpretation

is that, unlike Fisher (2006), the investment shock does not affect the price of investment goods

relative to consumption goods. Thus, agents cannot back out the shocks by observing the price.

5The growth shock is not necessary for the main qualitative results. However, as I show below the shock helps
match some of the survey data moments.

6See Justiniano et al. (2011) for supportive evidence based on a DSGE model estimation.
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As summarized in Figure 1, the timing of events is as follows: At the end of period t − 1,

agents choose their investment level It−1 given the current capital level Kt−1 and their estimates

about the unobservable state. Then, at the beginning of period t, unobservable shocks are realized.

Finally, after observing the level of new capital Kt, agents update the estimates.7

3.1.2 More on the Setup: Concrete Examples

The information friction in the model is set up in a fairly stylistic way. However, the same

qualitative feature arises in a more concrete environment. Below, I provide two examples.

First, one can consider a setting where the aggregate capital stock is composed of distinct

vintages that are hit by stochastic depreciations.8 The process of µt is persistent, reflecting the

view that the productivity of “close-by” vintages are similar.9 Let Kt denote the sum of all

efficiency units of capital available for production in period t:

Kt =
S∑

s=0

Kt,s

whereKt,s is capital of vintage s that is available at time t. The vintages of capital evolve according

to

Kt,s =

µtIt−1 if s = 0

(1− δ)Kt−1,s−1 + εδt,s if s ≥ 1

where εδt,s is a stochastic capital depreciation to vintage s at time t. εδt,s, s = 1, . . . , S are distributed

from a multivariate normal distribution with mean zero and covariance matrix Σδ. While I assume

that draws are independent across time, I still allow for contemporaneous correlations among εδt,s.
10

The evolution of aggregate capital is then given by

Kt = (1− δ)Kt−1 + ε̃δt + µtIt−1

where ε̃δt ≡
∑S

s=1 ε
δ
t,s are distributed independently across time from a normal distribution with

mean zero and some variance σ̃δ.
11 Thus, in this example capital depreciation is transitory while

the marginal efficiency of investment is persistent.

Second, as will be discussed in detail below, an important feature of the capital accumulation

7In the Appendix, I discuss how to implement the investment problem in a decentralized competitive equilibrium.
Importantly, relative prices like the price of capital do not reveal the unobservable states and hence the information
frictions survive.

8Görtz and Tsoukalas (2013) also consider a model with the vintage view of capital stock.
9For example, the functions of iPhone 5 would be more similar to iPhone 4 than the 5 to the original iPhone.

10Continuing with the iPhone example, it is natural to think that iPhone 4 and iPhone 5 becomes obsolete by a
similar amount when iPhone 6 is introduced.

11The depreciation shock is additive in this example while it is attached to capital stock in the baseline model.
The difference matters little because capital stock is acyclical.
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technology is that it generates a procyclical signal-to-noise ratio. In the Appendix, I show how this

feature also arises from aggregation of investment units with common and idiosyncratic shocks.

3.1.3 The Kalman Filtering Problem

Agents update their estimates about µt and gt in an optimal (Bayesian) manner. The learning

process can be expressed as a Kalman filtering problem:[
µt

gt

]
=

[
(1− ρµ)µ

0

]
+

[
ρµ 1

0 ρg

][
µt−1

gt−1

]
+

[
εµ,t

εg,t

]
, (1)

Kt − (1− δ)Kt−1 = [It−1 0]

[
µt

gt

]
+Kt−1εδ,t. (2)

Equation (1) is the state equation that characterizes the evolution of the unobservable state.

Equation (2) is the measurement equation that describes the observables as a linear function of

the underlying state. I point out two things regarding the measurement equation. First, εδ,t serves

as a measurement error in the filtering system. Second, unlike standard time-invariant systems,

the coefficient matrices are time-varying.12

The key property of the system is that the signal-to-noise ratio is procyclical, which follows

from the fact that It−1

Kt−1
is procyclical. The flip side implication of this property is that uncertainty

is countercyclical. Denote Σt as the error-covariance matrix of the unobservable states,

Σt =

[
Vart(µt − µ̃t) Covt(µt − µ̃t, gt − g̃t)

· · · Vart(gt − g̃t)

]
,

then the elements of Σt are decreasing in It−1

Kt−1
. Intuitively, when agents invest less, their estimates

about the efficiency of investment are imprecise because the level of capital stock is largely deter-

mined by the realization of the depreciation shock. Conversely, their estimates are accurate when

they invest more because the current capital mostly reflects shocks to the efficiency of investment.

3.1.4 Understanding Why Uncertainty Is Countercyclical

I explain how a procyclical signal-to-noise ratio leads to countercyclical uncertainty by going

through a simple example. In particular, assume that there is no growth shock.13 Then the

12As in Veldkamp (2005) and Van Nieuwerburgh and Veldkamp (2006), I rule out active experimentation for
computational reasons. Cogley et al. (2007) have shown, in the context of U.S. monetary policy making, that the
two approaches (learning with and without experimentation) produce very similar decision rules.

13In the Appendix, I provide a full derivation with the growth shock.
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filtering problem reduces to

µt = (1− ρµ)µ+ ρµµt−1 + εµ,t, (3)

yt = It−1µt +Kt−1εδ,t, (4)

where (3) is the state equation and (4) is the measurement equation. I define yt ≡ Kt−(1−δ)Kt−1.

In period t− 1, agents enter with the mean estimate µ̃t−1 and its associated error variance Σt−1 ≡
Vart−1(µt−1 − µ̃t−1). Then, the period t − 1 prediction of µt and its associated error variance is

given by

µ̃t|t−1 = (1− ρµ)µ+ ρµµ̃t−1

Σt|t−1 = ρ2µΣt−1 + σ2
µ

After observing the outcome yt, they update their estimates according to

µ̃t = µ̃t|t−1 +Gaint(yt − It−1µ̃t|t−1),

where Gaint is the Kalman gain and is given by

Gaint =
I2t−1Σt|t−1

I2t−1Σt|t−1 +K2
t−1σ

2
δ︸ ︷︷ ︸

Informativeness of observation

· 1

It−1︸︷︷︸
Adjustment

.

The first term represents the informativeness of observation yt and is given by the variance of the

signal divided by the total variance (the variance of the signal and noise). The term is increasing

in It−1

Kt−1
. The second term is the scale adjustment term reflecting the fact that µt is multiplied by

It−1 in the observation.

The error variance associated with µ̃t is given by

Σt = (1−GaintIt−1)Σt|t−1

=
K2

t−1σ
2
δ

I2t−1Σt|t−1 +K2
t−1σ

2
δ︸ ︷︷ ︸

Un-informativeness of observation

·Σt|t−1.

The first line says that the error shrinks as we learn more from the observation; the error is

decreasing in the size of the Kalman gain. The second line says that the error variance is increasing

in the un-informativeness of the observation (the variance of noise divided by the total variance).

Since the un-informativeness term is decreasing in It−1

Kt−1
, Σt is decreasing in It−1

Kt−1
. Since investment

is much more volatile than capital, It−1

Kt−1
moves almost proportionally to It−1. Thus, less investment

leads to more uncertainty.
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3.1.5 Implications of Time-Varying Uncertainty From the Perspective of the Agents

How do changes in uncertainty about the current efficiency of investment affect agents’ decision

making? The key insight here is that, because shocks to the efficiency of investment are persistent,

uncertainty about the current state translates into uncertainty about the future realization of

capital.

To see this, it is useful to rewrite the capital accumulation equation from the perspective of

the agent at period t− 1:

Kt = (1− δt)Kt−1 + (µ̃t|t−1 + ut)It−1,

where µ̃t|t−1 is the mean forecast of µt at time t− 1 and ut is normally distributed with mean zero

and variance σ2
u,t. The innovation ut takes into account not only the exogenous innovation to µt,

but also its estimation error:

ut = µt − µ̃t|t−1

= (gt−1 − g̃t−1) + ρµ(µt−1 − µ̃t−1) + εµ,t,

and hence its variance is given by

σ2
u,t = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ.

Thus, the fluctuation in uncertainty shows up as a fluctuation in the variance of the innovation to

the mean forecast of the marginal efficiency of investment. Moreover, this fluctuation in variance

is persistent to the extent that investment is persistent.

3.2 Standard Part of the Model

I now describe other components of the model. The economy is composed of a final-goods sector,

intermediate-goods sector, household sector, employment sector, and a central bank. I start by

describing the production side of the economy.

3.2.1 The Final-Goods Sector

In each period t, the final goods, Yt, are produced by a perfectly competitive representative firm

that combines a continuum of intermediate goods, indexed by j ∈ [0, 1], with technology

Yt =

[∫ 1

0

Y
θp−1

θp

j,t dj

] θp
θp−1

.
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Yj,t denotes the time t input of intermediate good j and θp controls the price elasticity of demand

for each intermediate good. The demand function for good j is

Yj,t =

(
Pj,t

Pt

)−θp

Yt,

where Pt and Pj,t denote the price of the final good and intermediate good j, respectively. Finally,

Pt is related to Pj,t via the relationship

Pt =

[∫ 1

0

P
1−θp
j,t dj

] 1
1−θp

.

3.2.2 The Intermediate-Goods Sector

The intermediate-goods sector is monopolistically competitive. In period t, each firm j rents Kj,t

units of capital stock from the household sector and buys Hj,t units of aggregate labor input from

the employment sector to produce intermediate good j using technology

Yj,t = ztK
α
j,tH

1−α
j,t .

zt is the level of total factor productivity that follows

zt = (1− ρz)z + ρzzt−1 + εz,t,

where εz,t is i.i.d. distributed from a normal distribution with mean zero and variance σ2
z .

14

Firms face a Calvo-type price-setting friction: In each period t, a firm can reoptimize its

intermediate-goods price with probability (1− ξp). Firms that cannot reoptimize index their price

according to the steady-state inflation rate, π.

3.2.3 The Household Sector

There is a continuum of households, indexed by i ∈ [0, 1]. In each period, household i chooses

consumption Ct, investment It, bond purchases Bt, and nominal wage Wi,t to maximize utility:

Et

∞∑
s=0

βsdt+s

[
(Ct+s − bCt+s−1)

1−σ

1− σ
−

H1+η
i,t+s

1 + η

]
,

where β is a discount factor, b represents consumption habit, σ controls the degree of risk aversion,

η controls (the inverse of) the Frisch labor supply elasticity, andHi,t is the number of hours worked.

14I specify the productivity process in levels rather than in logs so that it is consistent with the process of the
marginal efficiency of investment. During the simulation exercise, the level of productivity never falls below zero.
The same remark applies to the preference shock introduced below.
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dt is a preference shock that follows

dt = (1− ρd)d+ ρddt−1 + εd,t,

where εd,t is i.i.d. distributed from a normal distribution with mean zero and variance σ2
d.

The household’s budget constraint is

PtCt + PtIt +Bt ≤ Wi,tHi,t +Rk
tKt +Rt−1Bt−1 +Dt + Ai,t,

where Rk
t is the rental rate of capital, Kt is the stock of capital,15 Rt−1 is the gross nominal

interest rate from period t − 1 to t, and Dt is the combined profit of all the intermediate-goods

firms distributed equally to each household. I assume that households buy securities, whose payoffs

are contingent on whether they can reoptimize their wage.16 Ai,t denotes the net cash inflow from

participating in state-contingent security markets at time t.

As in Christiano et al. (2005), I add an investment adjustment cost to the capital accumulation

equation described above:

Kt = (1− δt)Kt−1 + µt

(
1− S

(
It−1

It−2

))
It−1, (5)

where

S

(
It−1

It−2

)
=

κ

2

(
It−1

It−2

− 1

)2

,

with κ > 0. Other components of the capital accumulation, like the stochastic process of shocks

or the informational structure, are exactly the same as described in the previous section.

3.2.4 The Employment Sector and Wage Setting

In each period t, a perfectly competitive representative employment agency hires labor from house-

holds to produce an aggregate labor service, Ht, using technology

Ht =

[∫ 1

0

H
θw−1
θw

i,t di

] θw
θw−1

,

where Hi,t denotes the time t input of labor service from household i and θw controls the price

elasticity of demand for each household’s labor service. The agency sells the aggregated labor

input to the intermediate firms for a nominal price of Wt per unit. The demand function for the

15Note that Kt is the capital stock after the period t shock to the capital accumulation equation is realized.
16The existence of state-contingent securities ensures that households are homogeneous with respect to consump-

tion and asset holdings, even though they are heterogeneous with respect to the wage rate and hours because of
the idiosyncratic nature of the timing of wage reoptimization. See Christiano et al. (2005).
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labor service of household i is

Hi,t =

(
Wi,t

Wt

)−θw

Ht,

where Wi,t denotes the nominal wage rate of the labor service of household i. Wt is related to Wi,t

via the relationship

Wt =

[∫ 1

0

W 1−θw
i,t di

] 1
1−θw

.

Households face a Calvo-type wage-setting friction: In each period t, a household can reoptimize

its nominal wage with probability (1− ξw). Households that cannot reoptimize index their wage

according to the steady-state inflation rate, π.

3.2.5 The Central Bank, Resource Constraint, and Equilibrium

The central bank follows a Taylor rule with interest-rate smoothing:

Rt

R
=

(
Rt−1

R

)ρR
{(

πt

π

)φπ
(

Yt

Yt−1

)φY
}1−ρR

exp(εR,t),

where R is the steady-state level of the nominal interest rate, ρR is the persistence of the rule, and

φπ and φY are the size of the policy response to the deviation of inflation and output growth from

their steady states, respectively. εR,t is a monetary policy shock and is i.i.d. distributed from a

normal distribution with mean zero and variance σ2
R.

Finally, the aggregate resource constraint is Ct + It = Yt. I employ a standard sequential

market equilibrium concept and hence its formal definition is omitted.

4 Model Solution and Calibration

I follow Fernández-Villaverde et al. (2011) and solve the model using a third-order perturbation

method around its deterministic steady state.17 I use perturbation because the model has many

state variables and it is the only method that delivers an accurate solution in a reasonable amount

of time (Aruoba et al. 2006). The third-order approximation is necessary because my purpose

is to analyze the direct impact of endogenous changes in aggregate uncertainty. In a standard

first-order approximation, changes in uncertainty play no role since the decision rules of agents

are forced to follow a certainty equivalence principle. In the second-order approximation, changes

in uncertainty only appear in the decision rules as cross-product terms with other state variables.

Only in the third-order approximation do changes in uncertainty show up as an independent term.

The parameterization of the model is done in two steps. In the first step, I fix several parameter

values following micro evidence or estimates found in other papers. In the second step, I choose

17The computation is carried out with Dynare (http://www.dynare.org/).
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values of the remaining parameters by matching the simulated moments of the model to the data.

The first step reduces the number of parameters to be calibrated and thus sharpens the exercise

in the second step.

The discount factor, β, is set so that the model steady-state interest rate implied by the Euler

equation matches that of the data. The capital share is set to 0.3. δ = 0.02 implies an annual

depreciation rate of 8%. The elasticity of goods demand θp = 21 and labor demand θw = 21 are

consistent with previous estimates, for example, Altig et al. (2011).

I set σ = 2 and the habit persistence parameter is set to b = 0.75. The latter value is in line

with the estimates found in Smets and Wouters (2007) and Justiniano et al. (2010). As emphasized

in Boldrin et al. (2001), a strong habit persistence parameter helps to account for various asset

pricing puzzles. Chetty et al. (2011) suggest a Frisch elasticity of labor supply of 0.5 for a macro

model that does not distinguish between intensive and extensive margins. This leads to η = 2.

The Calvo price and wage parameters imply an average duration of one year. As found in

Smets and Wouters (2007) and Justiniano et al. (2010), prices and wages need to be sufficiently

sticky in order to account for the inflation and wage dynamics in the data. Turning to the

monetary policy parameter, I match the steady-state inflation rate to its historical mean. The

Taylor rule coefficients feature inertia with a strong response to inflation and a weak response

to output growth (Levin et al. 2006, Smets and Wouters 2007, and Justiniano et al. 2010). The

persistence coefficients for the technology shock and preference shock are set to ρz = 0.95 (Cooley

and Prescott 1995) and ρd = 0.22 (Smets and Wouters 2007), respectively.

To determine the values of other parameters, I choose them so that the moments simulated

from the model matches the selected moments in the data.18 There are 9 parameters to calibrate:

{κ, ρµ, ρg, σz, σd, σR, σµ, σg, σδ}. I target the following 9 data moments:

• Macroeconomic variables:

Standard deviations of output, investment, and consumption.

Correlations of investment with respect to output.

Autocorrelation of output, investment, and consumption.

• Forecast errors from the Survey of Professional Forecasters:

1st-order autocorrelation and mean size of forecast errors on nominal GDP growth.

Table 1 summarizes the resulting parameter values.

The calibration of the standard deviation of the depreciation shock σδ needs further discussion.

The parameter is important because it determines the strength of information frictions. When

18To simulate the model, I use the pruning procedure as described in Kim et al. (2008) and Den Haan and
De Wind (2012). I compute a total of 200 replications of 272 period simulations. I throw away the initial 100
periods, which leaves me with the sample size of the US data (172 periods). For each sample I compute the business
cycle moments and then take medians across 200 replications. I checked that the results are not driven by explosive
behavior.
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σδ is very small, the learning problem becomes trivial. When σδ is very large, agents learn little

about the aggregate state. Thus in both cases, changes in the level of investment have a negligible

effect on the level of uncertainty. I discipline the choice of σδ by using statistics on forecast

errors in the Survey of Professional Forecasters data.19 The first row in Table 2 reports statistical

properties of the one-quarter-ahead median forecast errors on nominal GDP growth rate.20 The

second column shows that the forecast errors of GDP growth are positively autocorrelated. The

third column shows the mean size of forecast errors (i.e., forecast precision). I also report the

model predictions of the forecast errors for various values of σδ.
21 First note that for all values

of σδ reported, the autocorrelations are positive. This is due to the relatively high persistence

parameter of the investment growth shock, ρg. The forecast errors are autocorrelated because

agents only gradually realize the change in growth rate in response to an innovation to gt. As σδ

increases, the autocorrelation decreases because of the additional noise in the filtering problem.

On the other hand, the size of the error increases with σδ simply because the information friction

becomes more severe. I choose 100σδ = 0.015, which matches both the autocorrelation and the

size well.

As a preliminary diagnosis of the model’s performance, I compare the business cycle moments

from the data and the model in Table 3. The model matches the data reasonably well, even for

moments that are not explicitly targeted.

5 Results

In this section, I present the results. First, by comparing impulse responses and business cycle

moments, I quantify the size of the uncertainty multiplier. Second, I examine the sensitivity of

the size of the multiplier to different parameter values for the shock processes. Finally, I highlight

the role of real and nominal rigidities by shutting each component one-by-one.

5.1 The Size of the Uncertainty Multiplier

I divide the presentation of the main results into two parts. First, I use impulse responses to

explain the basic mechanism of the uncertainty multiplier. Second, I compute business cycle

moments and measure the size of the multiplier.

19A similar calibration strategy has been used in, for example, Eusepi and Preston (2011) and Görtz and Tsoukalas
(2013).

20I choose the nominal GDP growth rate because this is the longest forecast series available from the survey.
Also, the forecasts do not appear to be biased because the time-series average of the forecast errors is very close to
zero.

21For the computation of the numbers reported in this table, I only change the value of σδ and fix other parameters
at the benchmark calibration reported in Table 1.
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5.1.1 Impulse Response Analysis

Before examining the impulse responses, I need to consider how to measure the effects of endoge-

nous changes in uncertainty. One potential way is to compare the baseline model with a version

of the model without any information friction (i.e., agents know the true value of the shocks).

However, this approach is problematic since it confounds the effects of changes in the variance

of the agents’ estimates (which is the main focus of the paper) with the effects of changes in the

mean of the estimates. Therefore, I consider a version of the model where agents’ perception of

the variance of the estimates is held constant but they still face information frictions. This way, I

can precisely quantify the contribution of fluctuations in uncertainty to business cycle dynamics.

I examine the impulse responses to a one-standard-deviation contractionary monetary policy

shock. Recall that from the perspective of the agent at the end of period t − 1, the capital

accumulation equation can be rewritten as follows:

Kt = (1− δt)Kt−1 + (µ̃t|t−1 + ut)It−1,

where ut is normally distributed with mean zero and variance σ2
u,t. In the baseline model featuring

the uncertainty multiplier, σ2
u,t is given by

σ2
u,t = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ.

I shut down the uncertainty multiplier by fixing expectations over σ2
u,t at its steady-state level:

σ2
u,t = ρ2µΣ

11
ss + 2ρµΣ

12
ss + Σ22

ss + σ2
µ,

where Σ11
ss , Σ

12
ss , and Σ22

ss are the steady-state levels of Σ11
t , Σ12

t , and Σ22
t . Intuitively, agents act

as if ex-ante uncertainty is constant, even though the size of the ex-post forecast error about the

marginal efficiency of investment is time-varying.

Figure 2 shows that the output decline in response to a monetary policy shock is deeper when

the uncertainty multiplier is present. This is because, as shown in Figure 3, in the baseline

model agents perceive an increase in uncertainty about the future realization of effective capital

(increase in σu,t). The increase in uncertainty is due to a decline in investment originated from a

contractionary monetary policy shock. This increase in uncertainty contributes to the additional

drop in output compared to the case where the uncertainty multiplier is turned off (σu,t is held

constant). Figure 3 also shows that the declines in other real variables are amplified by a similar

amount. However, for nominal variables like inflation and the interest rate, the amplification is

negligible.

The uncertainty multiplier amplifies the contraction in economic activity for the following rea-

sons. Due to the precautionary motive, an increase in uncertainty induces households to consume
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less and save more. However, on the saving side, the physical capital becomes a worse hedge

for aggregate shocks because the return on capital is subject to more uncertainty. On net, this

risk-aversion channel dominates and investment falls as well.

Why, then, do the working hours fall? On the one hand, the fall in consumption induces

a desire for households to supply more labor. On the other hand, since aggregate demand is

lower, firms demand less labor for a given wage. Since wages are sticky, wages cannot adjust to

accommodate more labor and thus equilibrium hours fall. Since prices are sticky, firms increase

their price markups and this leads to a further decline in hours. The overall outcome is that

output drops substantially.

It is important to stress that in my model, an increase in uncertainty generates a simultaneous

fall in output, investment, consumption, and hours. In standard real business cycle models, an

increase in uncertainty reduces consumption but also induces a “precautionary labor supply”

(Basu and Bundick 2011). As a result, contrary to the data, consumption and hours move in

opposite directions. With nominal rigidities, the business cycle comovement is restored through

countercyclical movements in markups.

5.1.2 Business Cycle Moments

I measure the size of the uncertainty multiplier by computing the business cycle moments with and

without the multiplier. Figure 4 plots the sample path of output from numerical simulations. The

uncertainty multiplier amplifies both booms and recessions because uncertainty decreases during

booms and increases during recessions. To quantify the magnitude of the amplification, Table 4

compares the standard deviations of output and other variables. The size of the amplification is

nontrivial. In particular, the standard deviation of output is 1.18 times larger with the multiplier.22

Other real variables like investment and hours are amplified by a similar amount.23 Consistent with

the findings from the impulse response analysis, for inflation and the interest rate the amplification

is negligible.

Table 5 reports the output uncertainty multiplier for various parameterizations of the standard

deviation of the depreciation shock, σδ. First, note that the relationship between the size of σδ

and the multiplier is non-monotonic for the reason discussed in the previous section. Second,

for a reasonable range of parameterizations of σδ, the size of the multiplier is similar to the

baseline value. For example, consider 100σδ = 0.050. While this parameterization implies that

the autocorrelation is too low and the forecast errors are too large, the uncertainty multiplier for

output is 1.16.

22The baseline numbers are derived from the HP-filtered (λ = 1600) moments. The multiplier is of similar
magnitude when other detrending methods are used. For example, when I use linearly detrended moments, the
uncertainty multiplier for output is 1.28.

23The amplification of consumption is smaller than other real variables because I used a flexible method (HP
filter) to detrend the data. When I use linearly detrended moments, the uncertainty multipliers for investment,
consumption, and hours are 1.26, 1.26, and 1.28, respectively.

17



5.2 Changing the Parameters of the Shock Processes

I consider the effects of changing the parameters of the shock processes from the benchmark

calibration. The exercise provides additional insights regarding determinants of the size of the

uncertainty multiplier.

Table 6 reports the uncertainty multiplier for output under different parameterizations of the

standard deviation of the investment shock σµ and the growth shock σg. I change the ratio of

the standard deviations, σµ/σg, from the benchmark calibration (σµ/σg = 0.35) while keeping

the standard deviation of output constant. The multiplier is increasing in the relative size of

the growth shock. Intuitively, agents respond more to changes in uncertainty about the expected

trend growth than to those about the fluctuation around the trend. The uncertainty multiplier

is also increasing in the absolute size of the shocks. This can be seen in Table 7, where I scale

the standard deviations of shocks (σz, σd, σR, σµ, σg, and σδ) proportionally from the benchmark

calibration. The reason is that the fluctuation in uncertainty becomes more important to agents’

decision making as the volatility of shocks becomes larger.

The results in this subsection have an interesting implication for emerging market economies.

As shown in Aguiar and Gopinath (2007), these economies feature more volatile business cycles

that could be well characterized by fluctuations in expected growth rates.24 This suggests that

the uncertainty multiplier may be much larger in emerging markets than in the U.S.

5.3 The Role of Real and Nominal Rigidities

The benchmark model features several real and nominal rigidities that are absent in a plain

vanilla real business cycle model. Table 8 reports the uncertainty multiplier for output under

various combinations of frictions.

I highlight three observations. First, nominal rigidities are crucial for generating sizable mul-

tipliers. The output uncertainty multiplier is 1.05 without sticky prices and 1.02 without sticky

wages. This point connects to Basu and Bundick (2011) and Fernández-Villaverde et al. (2012),

who argue that countercyclical markups due to nominal rigidities are important in accounting for

the quantitative effects of changes in uncertainty. Second, frictions on the real side of the economy

also matter. The real rigidities magnify households’ response to changes in uncertainty because

(i) they make future adjustments in consumption and investment more costly and (ii) they make

investment more persistent and hence make uncertainty more persistent. Third, there are interac-

tions among each set of rigidities. For example, while both the economy with real rigidities only

and the economy with nominal rigidities only produce negligible output amplification (1.00 and

1.02, respectively), when the full set of rigidities is present, the amplification is nontrivial (1.18).

24See also Boz et al. (2011), who extend Aguiar and Gopinath (2007)’s analysis by incorporating a learning
problem.
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6 Survey Data Evidence

In this section, I use survey data that directly measure subjective uncertainty and argue that

the model is consistent with the data. In particular, I show that the model replicates the VAR

relationship between output and uncertainty.

Since uncertainty is an ex-ante concept, its measurement using ex-post realized data is inher-

ently difficult. Probabilistic forecasts reported in the Survey of Professional Forecasters are unique

in yielding numeric values on ex-ante uncertainty for a sufficiently long period of time. This survey

asks each forecaster for a subjective probability density of the annual percentage change in real

GDP. Following the standard in the literature (Zarnowitz and Lambros 1987 and D’Amico and

Orphanides 2008), I take the average across the standard deviations of those probability densities

for each forecaster and use it as a measure of uncertainty.25 While the survey data start from

1968:Q4, concerns regarding data consistency and missing data force me to conduct the analysis

using the data during the period 1986:Q2–2011:Q4.26 Finally, since the survey asks for the per-

centage change in GDP between the previous and current calendar year, there is a seasonality

in the forecast horizons. For example, in the first quarter, it is a 4-quarter-ahead forecast. In

the second quarter, it is a 3-quarter-ahead forecast. I eliminate this seasonality by applying the

Tramo-Seats filter.27

I characterize the relationship between real GDP and uncertainty with a generalized impulse

response analysis (Pesaran and Lambros 1998) from a bivariate VAR with four lags. The general-

ized impulse response is appealing in this context because, in contrast to a standard recursive VAR,

the results are invariant to the ordering of variables.28 Both variables are logged and HP-filtered

with λ = 1600. I emphasize that the purpose of this exercise is to look for a statistical relationship

between output and uncertainty. Hence, no causal inference is drawn from the impulse responses.

Figure 5 shows that, in the data, an increase in uncertainty is associated with a decline in output

that reaches a trough after five quarters. On the other hand, an increase in output is associated

with a decline in uncertainty. Hence the VAR responses indicate a clear negative relationship

between output and uncertainty. The figure also shows that running a VAR on the artificial data

from the model generates impulse responses that are in line with the actual data.29 In the model,

25The survey asks each forecaster to place probabilities in bins spanning a wide range of outcomes for the
percentage change in real GDP. To compute the individual standard deviations, I fit a normal distribution to the
individual probabilities. For more details, see D’Amico and Orphanides (2008). I have also tried other methods
and obtained similar results.

26Nevertheless I conducted the analysis using the whole sample period and found similar results.
27Since the survey response between the current and the following year is also available, it is possible to construct

uncertainty data with different forecast horizons. I have conducted the analysis with different forecast horizons
and found similar results.

28Nevertheless I also tried a recursive VAR and obtained similar results.
29In the model, I define uncertainty as the standard deviation of the density forecast (conditional on the agents’

information sets) of the annual percentage change in output: Stdt+s|t(∆Yt+s). The forecast horizon is chosen in a
way consistent with the survey data.
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the negative relationship between output and uncertainty is due to the endogenous movement

in uncertainty and its feedback to real economic activity. Note that the model replicates well

the gradual responses of the two variables. This is because uncertainty is driven by investment,

which exhibits hump-shaped dynamics, and this uncertainty in turn induces gradual adjustments

by households.

7 Conclusion

Much learning about macroeconomic conditions seems to occur through actually undertaking

economic activity. This paper formalized the idea in an equilibrium business cycle framework and

explored its quantitative implications. Recessions are times of high uncertainty because agents

invest less and hence learn less about the state of the economy. The endogenous fluctuations in

aggregate uncertainty interact with rigidities and amplify business cycles.

Because the level of learning is tied to the level of investment, changes in uncertainty are large

and persistent. As a result, the size of the amplification is nontrivial. Under the benchmark

calibration, the uncertainty multiplier amplifies the standard deviation of output by 18%. Other

real variables, such as investment and hours, are also amplified by a similar amount.
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Görtz, Christoph and John D. Tsoukalas, “Learning, Capital-Embodied Technology and

Aggregate Fluctuations,” Review of Economic Dynamics, 2013, 16, 708–723.

Gourio, François, “Disaster Risk and Business Cycles,” American Economic Review, 2012, 102,

2734–2766.

Greenwood, Jeremy, Zvi Hercowitz, and Gregory W. Huffman, “Investment, capacity

utilization, and the real business cycle,” American Economic Review, 1988, 78, 402–417.

Haan, Wouter J. Den and Joris De Wind, “Nonlinear and Stable Perturbation-Based Ap-

proximations,” 2012. Manuscript, London School of Economics.

Ilut, Cosmin and Martin Schneider, “Ambiguous Business Cycles,” 2011. Manuscript, Duke

University.

Jaimovich, Nir and Sergio Rebelo, “Can News about the Future Drive the Business Cycle?,”

American Economic Review, 2009, 99, 1097–1118.

Justiniano, Alejandro, Giorgio E. Primiceri, and Andrea Tambalotti, “Investment

Shocks and Business Cycles,” Journal of Monetary Economics, 2010, 57, 132–145.

, , and , “Investment Shocks and the Relative Price of Investment,” Review of Economic

Dynamics, 2011, 14, 102–121.

Kehrig, Matthias, “The Cyclicality of Productivity Dispersion,” 2011. Manuscript, University

of Texas at Austin.

Kim, Jinill, Sunghyun Kim, Ernst Schaumburg, and Christopher A. Sims, “Calculating

and using second-order accurate solutions of discrete time dynamic equilibrium models,” Journal

of Economic Dynamics and Control, 2008, 32, 3397–3414.

Levin, Andrew T., Alexei Onatski, John C. Williams, and Noah Williams, “Monetary

Policy Under Uncertainty in Micro-Founded Macroeconomic Models,” in “NBER Macroeco-

nomics Annual 2005,” MIT press, 2006, pp. 229–287.

Liu, Zheng, Daniel F. Waggoner, and Tao Zha, “Sources of Macroeconomic Fluctuations:

A Regime-Switching DSGE Approach,” Quantitative Economics, 2011, 2, 251–301.

23



Lorenzoni, Guido, “A Theory of Demand Shocks,” American Economic Review, 2009, 99, 2050–

2084.

Lucas, Robert E., “Expectations and the Neutrality of Money,” Journal of Economic Theory,

1972, 4, 103–124.
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Appendix

A Data Source

The data set spans the period 1969Q1 to 2011Q4.30 Whenever the data set is provided in monthly

frequencies, I simply take the average to transform it into quarterly frequencies.

Data from the National Income and Product Accounts are downloaded from the Bureau of

Economic Analysis website. Nominal GDP, nominal consumption (defined as the sum of personal

consumption expenditures on nondurables and services), and nominal investment (defined as the

sum of gross private domestic investment and personal consumption expenditures on durables)

are divided by the civilian noninstitutional population,31 downloaded from the Bureau of Labor

Statistics (BLS hereafter) website, to convert the variables into per capita terms. I then divide

them by the GDP deflator to convert them into real terms.

Working hours are measured by nonfarm business hours (available on the BLS website) divided

by the population. Real wages are measured by hourly compensation in nonfarm business sectors

(available on the BLS website) divided by the GDP deflator. Inflation rates are measured by

changes in the GDP deflator. I use the effective federal funds rates (downloaded from the Federal

Reserve Board website) to measure the nominal interest rates.

To compute the forecast error statistics, I use the median forecast of nominal GDP growth rate,

downloaded from the FRB Philadelphia website. The one-period-ahead forecast error is defined as

the one-period-ahead nominal GDP growth rate forecast minus the realized nominal GDP growth

rate.

B Countercyclical Uncertainty: Full Derivation

I restate agents’ Kalman-filtering problem below:[
µt

gt

]
=

[
(1− ρµ)µ

0

]
+

[
ρµ 1

0 ρg

][
µt−1

gt−1

]
+

[
εµ,t

εg,t

]
,

Kt − (1− δ)Kt−1 = [It−1 0]

[
µt

gt

]
+Kt−1εδ,t.

30I pick this starting date because the Survey of Professional Forecasters began around that time.
31Since raw population data display occasional breaks due to changes in population controls, I use an HP-filtered

(λ = 1600) trend instead.
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At the end of period t− 1, agents forecast the values of {µt, gt}:

µ̃t|t−1 = (1− ρµ)µ+ ρµµ̃t−1 + g̃t−1,

g̃t|t−1 = ρggt−1.

The elements of the associated forecasting error covariance matrix, Σt|t−1, are

Σ11
t|t−1 = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ,

Σ12
t|t−1 = ρµρgΣ

12
t−1 + ρgΣ

22
t−1,

Σ21
t|t−1 = Σ12

t|t−1,

Σ22
t|t−1 = ρ2gΣ

22
t−1 + σ2

g .

After observing period t realization of capital, Kt, agents update their belief according to

µ̃t = µ̃t|t−1 +
It−1Σ

11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

· {Kt − (1− δ)Kt−1 − It−1µ̃t−1},

g̃t = g̃t|t−1 +
It−1Σ

12
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

· {Kt − (1− δ)Kt−1 − It−1µ̃t−1}.

The elements of the forecasting error covariance matrix are given by

Σ11
t =

[
1−

I2t−1Σ
11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

]
Σ11

t|t−1,

Σ12
t =

[
1−

I2t−1Σ
11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

]
Σ12

t|t−1,

Σ21
t = Σ12

t ,

Σ22
t = Σ22

t|t−1 −
I2t−1(Σ

12
t|t−1)

2

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

.

Thus, the elements of Σt are decreasing in It−1

Kt−1
.

C Investment Problem in a Decentralized Equilibrium

To implement the investment problem in a decentralized competitive equilibrium, consider per-

fectly competitive capital producers owned by the households. At the end of each period t, they

purchase investment goods It and capital Kt from households. The price of investment goods

relative to consumption goods is unity and the price of capital is Q̃t. In period t + 1, they build

new capital Kt+1 using the technology (5). The capital producers can observe the path of capital
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stock and investment but cannot observe the underlying shocks. The new capital is sold at price

Qt+1. The profits are transferred back in a lump-sum manner each period.

The capital producers choose the inputs It and Kt to maximize their discounted sum of profits:

max
It,Kt

−λt(It + Q̃tKt) + Et

∞∑
s=0

βs+1λt+s+1

[
Qt+s+1

{
(1− δt+s+1)Kt+s + µt+s+1

(
1− S

(
It+s

It+s−1

))
It+s

}
− It+s+1 − Q̃t+s+1Kt+s+1

]
.

The first-order conditions of this profit maximization problem yield an evolution for the expected

price of capital:

λt = βEt

[
λt+1Qt+1µt+1

{
1− S

(
It
It−1

)
− S ′

(
It
It−1

)
It
It−1

}
+ βλt+2Qt+2µt+2S

′
(
It+1

It

)(
It+1

It

)2]
.

They also provide an expression for the “rental” rate of capital:

λtQ̃t = βEt[(1− δt)λt+1Qt+1],

which says that the price of capital at the end of period takes into account the discounting and

depreciation that occur at the beginning of the next period.

Finally, relative prices like the price of capital, Qt, do not reveal additional information about

the unobservable shocks. This is simply because capital producers also face the filtering problem

described in Section 2 in the main text.

D Procyclical Signal-to-Noise Ratio Arising From Aggre-

gation

The procyclical signal-to-noise ratio arises from aggregation of investment units with common and

idiosyncratic shocks. The argument does not require depreciation shocks and closely follows the

discussion made in Van Nieuwerburgh and Veldkamp (2006).

Consider an economy with many investment units, where each unit has a technology that

transforms investment goods into efficiency units of capital. The capital production is increasing

in the number of investment units operating. Denote Nt as the number of investment units

operating at time t. The output of each unit is the product of its own efficiency, which has a

common component µt and idiosyncratic component ηit, and its input normalized to iit = 1. Then,
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aggregate net investment is the sum of output of all the investment units:

Kt − (1− δ)Kt−1 =
Nt∑
i=1

(µt + ηit)i
i
t = µtNt +

Nt∑
i=1

ηit

Define the signal-to-noise ratio as Var(µtNt)/Var(
∑Nt

i=1 η
i
t). Then, as long as the correlation of

idiosyncratic shocks across investment units is less than one, the signal-to-noise ratio is increasing

in the number of units operating, Nt. A more detailed proof of this argument can be found in Van

Nieuwerburgh and Veldkamp (2006).
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Figure 1: Timing of events
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Figure 2: The uncertainty multiplier amplifies output response to a monetary policy shock
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Notes: Since third-order approximations move the ergodic distribution of endogenous variables away from the

steady state (Fernández-Villaverde et al. 2011), I report the impulse responses in terms of percent deviation from

the ergodic mean.
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Figure 3: Responses of other real variables are also amplified
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Figure 4: The uncertainty multiplier amplifies business cycles

0 10 20 30 40 50 60 70 80

−6

−4

−2

0

2

4

6

Quarter

P
er

ce
nt

 d
ev

ia
tio

n 
fr

om
 H

P
 tr

en
d 

(λ
=

16
00

)

Simulated path of output

 

 
With uncertainty multiplier
Without uncertainty multiplier

32



Figure 5: Impulse responses in a bivariate VAR
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Table 1: Parameters and targets

Description Value Comments/Targets
Technology and preference
β Discount factor 0.9948 Historical mean of interest rate
θp Goods demand elasticity 21 5% price markup (Altig et al. 2011)
θw Labor demand elasticity 21 5% wage markup (Altig et al. 2011)
α Capital share 0.3 Standard choice
δ Depreciation rate 0.02 8% annual depreciation
σ Preference parameter 2 Standard choice
η Inverse Frisch elasticity 2 Frisch elasticity = 0.5 (Chetty et al. 2011)
b Habit persistence 0.75 Smets and Wouters (2007)
κ Investment adj. cost 0.34 Calibrated
ξp Calvo price 0.75 Duration of price 4 quarters
ξw Calvo wage 0.75 Duration of wage 4 quarters
Monetary policy
π SS inflation rate 1.0095 Historical mean of inflation rate
ρR Taylor rule smoothing 0.9 Standard choice
φπ Taylor rule inflation 2 Standard choice
φY Taylor rule output growth 0.1 Standard choice
Shock process
ρz Technology 0.95 Cooley and Prescott (1995)
ρd Preference 0.22 Smets and Wouters (2007)
ρµ Investment level 0.91 Calibrated
ρg Investment growth 0.855 Calibrated
100σz Technology 0.2 Calibrated
100σd Preference 4.2 Calibrated
100σR Monetary policy 0.01 Calibrated
100σµ Investment level 0.25 Calibrated
100σg Investment growth 0.72 Calibrated
100σδ Depreciation 0.015 Calibrated
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Table 2: Identification of σδ from survey data moments

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |)

Data 0.17 0.55
Model
100σδ = 0.005 0.18 0.49
100σδ = 0.010 0.19 0.53
100σδ = 0.015 0.17 0.58
100σδ = 0.025 0.14 0.69
100σδ = 0.050 0.13 0.92

Notes: The forecast errors are multiplied by 100 to express them in percentage terms. The data statistics are
calculated using the final data vintage. As a robustness check, I calculated the statistics using alternative data
vintages and found that they are similar. For example, (Corr(FE1Q

t , FE1Q
t−1),Mean(|FE1Q

t |)) for the first, the
third, and the fifth vintages are (0.23, 0.47), (0.18, 0.52), and (0.20, 0.54), respectively.
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Table 3: Business cycle moments

Std. Corr(Yt, Xt) AR(1)
Data
Output 1.61 1.00 0.87
Investment 6.31 0.94 0.87
Consumption 0.93 0.84 0.87
Hours 1.99 0.88 0.92
Real wage 0.84 0.07 0.76
Inflation 0.29 0.18 0.48
Interest rate 0.41 0.34 0.75
Model
Output 1.61 1.00 0.89
Investment 6.39 0.90 0.92
Consumption 0.92 0.59 0.81
Hours 2.26 0.98 0.87
Real wage 1.05 -0.36 0.89
Inflation 0.46 0.12 0.68
Interest rate 0.26 -0.29 0.93

Notes: Both data and model moments are in logs, HP-filtered (λ = 1600), and multiplied by 100 to express them
in percentage terms.
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Table 4: The size of the amplification

Amplification
σWith multiplier/σWithout multiplier

Output 1.18
Investment 1.25
Consumption 1.05
Hours 1.22
Real wage 1.10
Inflation 1.03
Interest rate 1.04

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600).
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Table 5: The uncertainty multiplier for different values of σδ

Output

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |) amplification

Data 0.17 0.55
Model
100σδ = 0.005 0.18 0.49 1.10
100σδ = 0.010 0.19 0.53 1.17
100σδ = 0.015 0.17 0.58 1.18
100σδ = 0.025 0.14 0.69 1.23
100σδ = 0.050 0.13 0.92 1.16

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). The forecast errors are multiplied
by 100 to express them in percentage terms.

38



Table 6: The uncertainty multiplier is increasing in the relative size of the growth shock

Std. of Output

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |) investment amplification

Data 0.17 0.55 6.31
Model
σµ/σg = 1.00 0.13 0.69 6.37 1.16
σµ/σg = 0.35 0.17 0.58 6.39 1.18
σµ/σg = 0.00 0.17 0.56 6.46 1.21

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). σµ and σg are scaled so that the
standard deviation of output is the same as that in the benchmark specification (σY = 1.61).
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Table 7: The uncertainty multiplier is increasing in the size of shocks

Output Output
standard dev. amplification

Data 1.61
Model
σ × 0.9 1.30 1.14
σ × 1.0 1.61 1.18
σ × 1.1 2.39 1.32

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). I define σ ≡ (σz, σd, σR, σµ, σg, σδ).
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Table 8: The role of real and nominal rigidities

Consump. Investment Sticky Sticky Output
habit adj. cost price wage amplification
X X X X 1.18
X X X 1.05
X X X 1.02
X X 1.00

X X X 1.06
X X X 1.03

X X 1.02
1.00

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). For each specification, I scale

(σz, σd, σR, σµ, σg, σδ) proportionally to generate the standard deviation of output as in the benchmark

specification (σY = 1.61).
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