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1 Introduction

In the overlapping generations (OLG) model, competitive equilibrium might not achieve an

optimal allocation, even when markets operate perfectly, as in the Arrow-Debreu abstraction. It

is now understood that this sort of inefficiency is caused by the lack of market clearing at infinity

(Geanakoplos, 1987). In order to design active policies (such as social security) which remedy

this type of inefficiency, it is important to identify optimality with easily verifiable conditions. A

cornerstone of the literature about characterizations of optimality in the OLG model is the work

per Balasko and Shell (1980). It contributed to the literature by demonstrating that optimality

of an equilibrium allocation in a deterministic OLG environment is characterized by conditions

on the equilibrium price corresponding to the allocation. One of implications of this result

is that, in a deterministic OLG model, we can examine whether the equilibrium allocation is

optimal by observing the associated equilibrium price and therefore the policy maker no longer

needs to examine the allocation itself (nor to know preferences).

Thanks to previous studies, we now know that the Balasko-Shell type of criteria of opti-

mality in a deterministic environment can be naturally extended to a stochastic environment.

For stationary feasible allocations, Peled (1984), Aiyagari and Peled (1991), Manuelli (1990),

Chattopadhyay (2001), and Ohtaki (2013a) found that optimality can be characterized by a

certain condition on the dominant root of the contingent price matrix related to a stationary

equilibrium. For general feasible allocations, on the other hand, Chattopadhyay and Gottardi

(1999), Chattopadhyay (2006), and Bloise and Calciano (2008) founded in a various level of

generality that the Balask-Shell type of optimality criteria is still applicable to equilibrium con-

tingent price processes.1 Therefore, even in a stochastic OLG environment, we might be able

to examine optimality of equilibrium allocations by observing the associated price (contingent

upon date-events).

Although one of important restrictions to obtain these results is a pair of convexity and

smoothness (such as the Gaussian curvature condition) of preferences, we aim to reexamine

a characterization of optimality in a stochastic OLG model with the maxmin expected utility

(MMEU) preference à la Gilboa and Schmeidler (1989) and Casadesus-Masanell, Klibanoff, and

Ozdenoren (2000). Differently from the standard expected utility hypothesis, a decision maker

1The Balasko-Shell type of optimality criteria can be also extended to the production economy. Interested
readers might be found, for example, Demange and Laroque (1999, 2000), Barbie, Hagedorn, and Kaul (2007),
and Gottardi and Kübler (2011).
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endowed with an MMEU preference assigns a set of probability measures, not a single probability

measure, to uncertainty and behaves as if she maximizes the minimum of expected utilities over

the set of measures. This multiplicity of priors is often called ambiguity, which is a case of true

uncertainty in the sense of Knight (1921).2 The MMEU preference is known as one of reasonable

ways to explain several anomalies such as the Ellsberg paradox (1961). It can be convex when its

von Neumann-Morgenstern utility index function is concave (Ohtaki, 2013b) but might not be

differentiable at some point as a result of the minimization of expected utilities. Therefore, one

of remarkable features of this article is to provide a characterization of optimality in a stochastic

OLG model with convex but nonsmooth preferences due to MMEU.

In order to capture the role of the MMEU preference, we consider a simple, but rather

canonical, stationary pure-endowment stochastic OLG model consisting of infinite horizon with

discrete time periods running from −∞ to ∞, finite Markov states, one perishable commodity

per period, and one two-period-lived agent per generation. Furthermore, we restrict our at-

tention on optimality of stationary feasible allocations and adopt conditional Pareto optimality

(CPO) as an optimality criterion.3 According to this criterion, agents’ welfare is evaluated by

conditioning their utility on the state at the date of their birth. In such a framework with the

MMEU preference, four observations are provided. First, CPO of a stationary feasible alloca-

tion is characterized by the set of dominant roots of matrices of marginal rates of substitution

at the allocation, which contains one. Second, CPO of a stationary equilibrium allocation is

characterized by the set of dominant roots of matrices of supporting prices, not the equilibrium

price matrix itself, which contains one. Third, the introduction of money in constant supply

achieves CPO, provided that a stationary equilibrium with circulating money exists. Fourth,

the introduction of equity cannot achieve CPO.

This article contributes to the literature by providing a characterization of optimality in a

stochastic OLG model with convex but nonsmooth preferences due to MMEU. Under smooth

preferences, CPO is characterized by the dominant root of the matrix of the rates of marginal

rates of substitution, being equal to one (Demange and Laroque, 1999; Ohtaki, 2013a). The

first observation is therefore a natural extension of the existing result. On the other hand, the

2In the tradition of Knight (1921), “uncertainty” is risk if it is reducible to a single probability measure and
otherwise true uncertainty.

3The concept of CPO is first introduced by Muench (1977). In this article, CPO can be identified with
conditional golden rule optimality, studied in Ohtaki (2013a) for example. This is because it is assumes that time
runs from −∞ to ∞ and therefore no initial old exists.
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second observation has a remarkable implication, i.e.: observing the equilibrium price does not

necessarily tell us whether the associated allocation is optimal. This is because we should now

consider the set of supporting price matrices, not the observed equilibrium price matrix itself,

to examine optimality. Although we have found such a violation of the Balasko-Shell type of

criteria of optimality, the third observation implies that intergenerational trade through money

ensures optimality, in the sense of CPO, of equilibrium allocations.

Finally, we should mention that this article also contributes to the literature about the

application of decision making under ambiguity to dynamic economics and finance. Decision

making under ambiguity is already applied to a wide range of intertemporal macroeconomic

models: asset pricing as in Epstein and Wang (1994, 1995), search theory as in Nishimura

and Ozaki (2004), real option as in Nishimura and Ozaki (2007), learning as in Epstein and

Schneider (2007), and growth theory as in Fukuda (2008) are such examples but these does

not necessarily addressed to the issue about optimality of allocations. Actually, there seems

few work characterizing optimality of allocations in a dynamic general equilibrium setting with

ambiguity. One of exception is the work per Dana and Riedel (2013).4 However, differently from

ours, their results are obtained in a finite-horizontal economy with the incomplete preference à

la Bewley (2002) and without overlapping of generations. To our best knowledge, therefore, this

article is the first of characterizing optimality under ambiguity in an infinite-horizontal general

equilibrium setting with overlapping of generations.

The organization of this paper is as follows: Section 2 presents details of the model. Section 3

defines the concept of stationary feasibility of allocations and argues its basic property. Section 4

introduces the concept of CGRO and characterizes it for stationary feasible allocations. Section

5 applies results given in the previous section to stationary equilibrium allocations. Proofs of

main results are provided in Section 6. The Appendix provides some of mathematical tools

using this article.

4We can find a lot of studies characterizing optimality of allocations in a static, not dynamic, general equilibrium
environment: Billot, Chateauneuf, Gilboa, and Tallon (2000), Chateauneuf, Dana, and Tallon (2000), Dana
(2004), Kajii and Ui (2009), Rigotti and Shannon (2005, 2012), Rigotti, Shannon, and Strzalecki (2008), Dana
and Le Van (2010), Strzalecki and Werner (2011), and Carlier and Dana (2013) are such examples. Interested
readers might be able to find other applications of ambiguity to the static economic environment including Dow
and Werlang (1992), Mukerji and Tallon (1998, 2001, 2004a,b), Kajii and Ui (2005), Karni (2009), Rinaldi (2009),
Condie and Ganguli (2011), Gollier (2011), Lopomo, Rigotti, and Shannon (2011), and Mandler (2013).

3



2 Ingredients of the Economy

We consider a stationary pure-endowment stochastic overlapping generations model with

the maxmin expected utility (MMEU) preference. Time is discrete and runs from −∞ to ∞.

The stochastic environment is modeled by a stationary Markov process with its state space

S = {1, . . . , S}. Each element of S is called a state. The set of all probability measures on S is

denoted by ∆S.

After the realization of state st ∈ S in each period t ≥ 1, one new agent is born, lives for two

periods, and dies. In this article, she is often called an agent st. Her initial endowment stream

and preference are assumed to depend only on the realizations of states during her lifetime, not on

time nor on the past realizations. Thus, she is endowed with ωst = (ωy
st , (ω

o
stst+1

)st+1∈S) ∈ ℜ++×

ℜS
+ as the initial endowment stream, where ωy

st and ωo
st = (ωo

stst+1
)st+1∈S are endowments when

young and old, respectively. Also she ranks her consumption streams cst = (cyst , (c
o
stst+1

)st+1∈S) ∈

ℜ+ × ℜS
+ according to her lifetime utility function U st : ℜ+ × ℜS

+ → ℜ, where cyst and cost =

(costst+1
)st+1∈S are consumption when young and old, respectively. We assume that the lifetime

utility function belongs to the class of MMEU preferences, i.e.: for each s ∈ S, there exist a

nonempty, compact, and convex subset Πs of ∆S and a family {uss′ : s′ ∈ S} of real-valued

functions on ℜ+ ×ℜ+, each of which is strictly monotone increasing, concave, and continuously

differentiable on the interior of its domain, such that

U s(cys , (c
o
ss′)s′∈S) = min

πs∈Πs

∑
s′∈S

uss
′
(cys , c

o
ss′)πss′

for each (cys , (coss′)s′∈S) ∈ ℜ+×ℜS
+. Furthermore, assume that πss′ > 0 for each s, s′ ∈ S and each

πs ∈ Πs. Because u
ss′ is strictly monotone increasing, concave, and continuous for each s, s′ ∈ S,

it follows that, for each s ∈ S, U s is strictly monotone increasing, concave, and continuous.5 For

notational convenience, let Π :=
∏

s∈SΠs = {(πs)s∈S : (∀s ∈ S) πs ∈ Πs}, the set of transition

probability matrices induced by the family (Πs)s∈S.

In order to close this section, we introduce some notations. For each s ∈ S and each c =

(cy, (cos′)s′∈S) ∈ ℜ+ ×ℜS
+, let

Bs(c) := argmin
πs∈Πs

∑
s′∈S

uss
′
(cy, cos′)πss′ ,

5See also Ohtaki (2013b).
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which is the set of probability measures in Πs minimizing the expected utility given c. Also, for

each c = (cs)s∈S = (cys , (coss′)s′∈S)s∈S ∈ (ℜ+ ×ℜS
+)

S, let

B(c) =
∏
s∈S

Bs(cs),

the product of Bs(cs) over S. Note that Bs(cs) ⊂ Πs for each s ∈ S and B(c) ⊂ Π. Also note

that if c is fully-insured, it holds that Bs(cs) = Πs for each s ∈ S and therefore B(c) = Π.

Furthermore, for each s, s′ ∈ S, each c = (cy, (cos′)s′∈S) ∈ ℜ+ ×ℜS
+, and each π ∈ ∆S, let

mc
ss′(π) :=

uss
′

2 (cy, cos′)πs′∑
τ∈S u

sτ
1 (cy, coτ )πτ

Finally, for each c = (cs)s∈S = (cys , (coss′)s′∈S)s∈S ∈ (ℜ+ × ℜS
+)

S and π = [πss′ ] ∈ ∆S
S, let

Mc(π) := [mcs
ss′(πs)]s,s′∈S, which is a matrix of marginal rates of substitution given c and π.

The current restrictions on preferences imply that Mc(π) is a positive square matrix. By the

Perron-Frobenius theorem,6 any positive square matrix M has a unique dominant root, denoted

by λf (M), and it holds that My(M) = λf (M)y(M) for some positive vector unique up to

normalization, y(M).

3 Stationary Feasible Allocations

Let ω̄ss′ := ωy
s′ + ωo

ss′ for each s, s′ ∈ S, which is the total endowment when the current and

preceding states are s′ and s, respectively. A stationary feasible allocation of this economy is a

pair c = (cy, co) of functions cy : S → ℜ+ and co : S× S → ℜ+ such that cys′ + coss′ = ω̄ss′ for all

s, s′ ∈ S. It is interior if cs = (cys , (coss′)s′∈S) ≫ 0 for all s ∈ S and fully-insured (with respect to

the second-period consumption) if coss′ = coss′′ for each s, s′, s′′ ∈ S. Note that ω := (ωy, ωo) is one

of stationary feasible allocations. We denote by A the set of all stationary feasible allocations.

In order to provide shaper argument, we impose a further restriction on the total endowment.

Throughout the rest of this paper, it is assumed that ω̄ss′ ≡ ω̄s′ for each s, s′ ∈ S, i.e.: the total

endowment depends only on the realization of the current state s′, not on the preceding state

s. Given this restriction, we can obtain a useful property of stationary feasible allocations.

Proposition 1 For any stationary feasible allocation c = (cy, co), it holds that:

A. for any s, s′ ∈ S, cys′ = ω̄s′ − coss′; and

B. for any s, s′, s′′ ∈ S, coss′′ = cos′s′′.

6See, for example, Debreu and Herstein (1953) and Takayama (1974) for more details on the Perron-Frobenius
theorem.
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The proof of this proposition is very preliminary and therefore it is omitted. This proposition

says that: at a stationary feasible allocation, (A) the first-period consumption is uniquely deter-

mined by the second-period consumption and (B) the second-period consumption is independent

of the state realized in the period when the agent is born. Therefore, the set of stationary fea-

sible allocations is identifiable with the set of pairs (xy, xo) of functions of S to ℜ+ such that

xys + xos = ω̄s for each s ∈ S or, more simply, with X := {xo ∈ ℜS
+ : (∀s′ ∈ S) 0 ≤ xos′ ≤ ω̄s′}.7

Similarly, an interior stationary feasible allocation is related to an element of the interior of X,

int.X. Note that, since ω is also a stationary feasible allocation, one can ignore the subscript s

of ωo
ss′ for each s, s′ ∈ S.8

Because the set X, elements of which are second-period consumptions, can be identified with

the set of stationary feasible allocations, we can derive another utility function on X, denoted

by Û s, from U s. To be more precise, for each s ∈ S, define the function Û s : X → ℜ by

(∀xo ∈ X) Û s(xo) := U s(ω̄s − xos, (x
o
s′)s′∈S).

One should note that, by this derived utility function Û s, we can draw indifferent curves in X.

To close this section, we illustrate this fact in the following two-state example.

Example 1 Suppose that S = {α, β} and there exist some real-valued functions vy and vo

on ℜ+ such that uss
′
(cy, co) = vy(c

y) + vo(c
o) for each (cy, co) ∈ ℜo

+. Because there are only

two states, α and β, we can write, for each s ∈ S, Πs = {πs ∈ ∆S : πsα ≤ πsα ≤ πsα}

for some πs, πs ∈ ∆S such that 0 < πsα ≤ πsα < 1. Furthermore, specify the economy by

(ω̄α, ω̄β) = (5, 6.5), and vy(x) = vo(x) = lnx for each x > 0.9 Note that, when πsα = πsα for

each s ∈ S, there exists no ambiguity and the model degenerates into one with the standard

expected hypothesis. The set X identifiable with the set of stationary feasible allocations is

then given by [0, 5] × [0, 6.5]. Therefore, it can be depicted by the box as in Figure 1, where

(παα, παα, πβα, πβα) = (0.75, 0.75, 0.25, 0.25) in Panel A of Figure 1 and (παα, παα, πβα, πβα) =

(0.25, 0.75, 0.25, 0.75) in Panel B of Figure 1. In Figure 1, we also draw indifferent curves, derived

from Û s for each s ∈ S, through the points (1, 1) and (2, 2). The blue and red curves are related

to Ûα and Ûβ , respectively. Note that Û s(1, 1) < Û s(2, 2) for each s ∈ S. Also note that, in the

7We can identify a stationary feasible allocation c with an element xo of X when it holds that coss′ = xo
s′ for

each s, s′ ∈ S.
8Therefore, the current model is close to one considered per Labadie (2004) rather than one considered per

Magill and Quinzii (2003).
9Interested readers can find in the work per Faro (2013) an axiomatization of the maxmin expected utility

preference with logarithmic index functions.
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Figure 1: Box Diagrams

presence of ambiguity (Panel B of Figure 1), indifferent curves have kinks on the 45 degree line.

This is because Û s might not be differentiable at (xoα, x
o
β) ∈ X such that xoα = xoβ . In fact, for

each s ∈ S and each xo ∈ X,

Û s(xo) = min
πs∈Πs

(
ln(ω̄s − xos) +

∑
τ∈S

πsτ lnx
o
τ

)
= ln(ω̄s − xos) + lnxoβ + min

πs∈Πs

[(
lnxoα − lnxoβ

)
πsα
]

=


ln(ω̄s − xos) + πsα lnx

o
α + (1− πsα) lnx

o
β if xoα > xoβ ,

ln(ω̄s − xos) + lnxos if xoα = xoβ , and

ln(ω̄s − xos) + πsα lnx
o
α + (1− πsα) lnx

o
β if xoα < xoβ .

Therefore, the slope of the agent s’s indifferent curve through xo ∈ X, denoted by M̂RSs(x
o) if

any, can be calculated as:10

M̂RSα(x
o) = − Ûα

1 (x
o)

Ûα
2 (x

o)
=


[(1 + παα)x

o
α − πααω̄α]x

o
β

(1− παα)(ω̄α − xoα)x
o
α

if xoα > xoβ ,

[(1 + παα)x
o
α − πααω̄α]x

o
β

(1− παα)(ω̄α − xoα)x
o
α

if xoα < xoβ ,

10For each s ∈ S, if Ûs is differentiable at xo ∈ X, then we can obtain that 0 = Ûs
1 (x

o)dxo
α + Ûs

2 (x
o)dxo

β .

Therefore, in such a case, M̂RSs(x
o) = −dxo

β/dx
o
α = −Ûs

1 (x
o)/Ûs

2 (x
o).
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and

M̂RSβ(x
o) = − Ûβ

1 (x
o)

Ûβ
2 (x

o)
=


πβα(ω̄β − xoβ)x

o
β

[(2− πβα)x
o
α − (1− πβα)ω̄β ]xoα

if xoα > xoβ ,

πβα(ω̄β − xoβ)x
o
β

[(2− πβα)xoα − (1− πβα)ω̄β ]xoα
if xoα < xoβ

if xoα ̸= xoβ but might not be calculated if xoα = xoβ (This is true when πsα < πsα). �

We often use the box diagram as in Example 1 to present examples. One can find the work

provided per Ohtaki (2012) for more details on the box diagram with differentiable lifetime

utility functions.11

4 Conditional Pareto Optimality

In this section, we define the concept of conditional Pareto optimality (CPO) and characterize

it. For any two stationary feasible allocations b and c, we say that b CPO-dominates c if

(∀s ∈ S) U s(bs) ≥ U s(cs)

with strict inequality somewhere. The concept of CPO is then defined as follows:

Definition 1 A stationary feasible allocation c is said to be conditionally Pareto optimal if

there exists no other stationary feasible allocation b that CPO-dominates c.

In this definition, “conditionally” means the fact that agents’ welfare is evaluated by con-

ditioning their lifetime utility on the state at the date of birth. Our definition of CPO closely

related to conditional golden rule optimality (CGRO) in the stochastic OLG model with the

initial old.

Remark 1 Note in our model that there exists no initial old, who is a one-period-lived agent

born in the initial period, because time runs from −∞ to ∞ and therefore there is no initial

period. When the initial period and the initial old exist, CPO should be the optimality criterion

considering the initial old’s welfare adding to other newly born agents’ welfare and it differs

from our definition of CPO. In such a case, our CPO is identifiable with CGRO, which is an

optimality criterion evaluating welfare ignoring the initial old, rather than CPO with the initial

old. Ohtaki (2013a) argued in detail on the relationship between CPO and CGRO in the smooth

preference model with the initial old.
11The authors welcome future generations (researchers) who call the box diagram presented in this article the

Ohtaki box diagram.
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Figure 2: Conditional Golden Rule Optimality

In the absence of ambiguity, we can apply the results per Ohtaki (2013a) to our model and

provide a characterization of interior CPO allocations. To be more precise, in such a case, i.e.:

when there exists some transition probability matrix π = (πs)s∈S such that Πs = {πs} for each

s ∈ S, an interior CPO allocation can be characterized by the dominant root of the unique

matrix of marginal rates of substitution, being equal to one. This type of characterizations

through the dominant roots is often called the dominant root criterion. However, the existing

result is obtained under smoothness of preferences. We have yet no idea on characterizations

of interior CPO allocations in the presence of ambiguity. In order to obtain some intuition

about characterizations of interior CPO allocations in the presence of ambiguity, we reconsider

a two-state example (without ambiguity) as in Example 1.

Example 2 Consider the same economy as Example 1. In the absence of ambiguity, there

exists some transition probability matrix p = (πs)s∈S such that Πs = {πs} for each s ∈ S. Let

c be a stationary feasible allocation. The dominant root criterion, λf (Mc(π)) = 1, is equivalent

to the condition that Mc(π)y(Mc(π)) = λf (Mc(π))y(Mc(π)) = y(Mc(π)) or equivalently

πααv
′
o(c

o
αα)yα(Mc(π))) + παβv

′
o(c

o
αβ)yβ(Mc(π)) = v′y(c

y
α)yα(Mc(π))
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and

πβαv
′
o(c

o
βα)yα(Mc(π))) + πββv

′
o(c

o
ββ)yβ(Mc(π)) = v′y(c

y
β)yβ(Mc(π)).

These equation imply that

v′y(c
y
α)− πααv

′
o(c

o
αα)

παβv′o(c
o
αβ)

=
yβ(Mc(π))

yα(Mc(π))
=

πβαv
′
o(c

o
βα)

v′y(c
y
β)− πββv′o(c

o
ββ)

,

which is equivalent to

M̂RSα(c
o
αα, c

o
αβ) = M̂RSβ(c

o
βα, c

o
ββ) > 0,

where the last strict inequality corresponds to the fact that y(Mc(π)) is a positive vector. One can

also verify that the last condition implies the dominant root criterion. Therefore, we can say that,

at a CPO allocation, indifferent curves of agents α and β are tangent to each other (and the slope

of them must be positive). With the same specification as Figure 1, i.e.: παα = παα = παα = 0.75

and πβα = πβα = πβα = 0.25, Panel A of Figure 2 depicts by the solid curve the set of CPO

allocations in the absence of ambiguitiy. �

Intuition for Characterization. If the tangency argument as in Example 2 is still applica-

ble in the presence of ambiguity, the stationary feasible allocation corresponding to (xoα, x
o
β) =

(2.85, 2.85) in Panel B of Figure 2, for example, might be CPO. Denote by c the stationary allo-

cation corresponding to (xoα, x
o
β) = (2.85, 2.85). At (xoα, x

o
β) = (2.85, 2.85), M̂RSα|πα=πα

(xo) ≈

1.43, M̂RSα|πα=πα(x
o) ≈ 2.30, M̂RSβ |πβ=πβ

(xo) ≈ 8.11, and M̂RSβ |πβ=πβ
(xo) ≈ 1.41, where

M̂RSs|πs=p(x
o) is the value of M̂RSs(x

o) calculated at πs = p for each p ∈ ∆S. Therefore, we

can observe that there might exists some a > 0 such that

v′y(c
y
α)− πααv

′
o(c

o
αα)

παβv
′
o(c

o
αβ)

= M̂RSα|πα=πα
(xo) ≤ a ≤ M̂RSα|πα=πα(x

o) =
v′y(c

y
α)− πααv

′
o(c

o
αα)

παβv′o(c
o
αβ)

and

πβαv
′
o(c

o
βα)

v′y(c
y
β)− πββv′o(c

o
ββ)

= M̂RSβ |πβ=πβ
(xo) ≤ a ≤ M̂RSβ |πβ=πβ

(xo) =
πβαv

′
o(c

o
βα)

v′y(c
y
β)− πββv

′
o(c

o
ββ)

.

These inequalities can be rewritten as

v′y(c
y
α)− πααv

′
o(c

o
αα)

παβv
′
o(c

o
αβ)

≤ a ≤
πβαv

′
o(c

o
βα)

v′y(c
y
β)− πββv

′
o(c

o
ββ)

and

πβαv
′
o(c

o
βα)

v′y(c
y
β)− πββv′o(c

o
ββ)

≤ a ≤
v′y(c

y
α)− πααv

′
o(c

o
αα)

παβv′o(c
o
αβ)

.
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Then, we can verify that

Mc(π)

[
1
a

]
≤
[
1
a

]
and Mc(π)

[
1
a

]
≥
[
1
a

]
.

By applying the Perron-Frobenius theorem, therefore, we can obtain that

λf (Mc(π)) ≤ 1 ≤ λf (Mc(π)),

which might be equivalent to

1 ∈
{
λf (M) : M ∈ Mc(Π)

}
=: D,

where D is the set of dominant roots of the matrices of marginal rates of substitution given

Π = (Πs)s∈S. Here, we have obtained a new dominant root criterion.

The last inclusion seems a natural extension of the standard dominant root criterion. How-

ever, we should remark that we have found the last inclusion for a fully-insured stationary

feasible allocation in a two-state economy. Taking care of cases for multi-state stationary feasi-

ble allocations not necessarily being fully-insured, we can obtain the following characterization

of CPO.

Theorem 1 An interior stationary feasible allocation c is conditionally Pareto optimal if and

only if 1 ∈
{
λf (M) : M ∈ (Mc ◦B)(c)

}
.

Note that the set of matrices of marginal rates of substitution is calculated given B(c), not

Π. Therefore, even when Πs has multiple elements for each s ∈ S, the equivalent condition

degenerates into the standard one if B(c) is singleton, i.e.: c is CPO if and only if the dominant

root of a unique matrix of marginal rates of substitution is equal to one. As a corollary of the

previous theorem, we can characterize CPO for fully-insured stationary feasible allocations.

Corollary 1 An interior fully-insured stationary feasible allocation c is conditionally Pareto

optimal if and only if 1 ∈
{
λf (M) : M ∈ Mc(Π)

}
.

When there exists no ambiguity, the model degenerates into one with standard expected utility

model and the set of dominant roots of the matrices of the marginal rates of substitutions become

singleton. Therefore, we can also obtain the following corollary.
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Corollary 2 Suppose that there exists some transition probability matrix p = (πs)s∈S such that

Πs = {πs} for each s ∈ S. Then, an interior stationary feasible allocation c is conditionally

Pareto optimal if and only if 1 = λf (Mc(π)).

This is consistent with Theorem 2 of Ohtaki (2013b), which characterizes CPO when lifetime

utility functions are differentiable.

5 Optimality of Stationary Equilibrium Allocations

The previous section characterized CPO of stationary “feasible” allocations. The results also

correspond to welfare analysis of stationary equilibrium. This section examines the relationship

between CPO and stationary “equilibrium” allocations.

5.1 Supporting Price Matrix

We first define the concept of supporting price matrices, which can be interpreted as candi-

dates of the equilibrium prices given an allocation:

Definition 2 Let c be a stationary feasible allocation. A positive matrix P = [pss′ ]s,s′∈S is a

supporting price matrix of c if

U s(bs) > U s(cs) implies bys +
∑
s′∈S

boss′pss′ > cys +
∑
s′∈S

coss′pss′

for each stationary feasible allocation b and each s ∈ S. Moreover, we denote by P(c) the set of

all supporting price matrix.

The set of supporting price matrices has a closed representation:

Proposition 2 For each interior stationary feasible allocation c, P(c) = (Mc ◦B)(c).

Remark 2 Bloise and Calciano (2008) characterized optimality of feasible allocations, which

are allowed not to be stationary, by examining its supporting prices. Their results required a

supporting price of a feasible allocation smoothly supports the allocation. However, in our model,

a stationary feasible allocations might not be smoothly supported due to indifferentiability of

lifetime MMEU functions. As shown by Proposition 2, we can observe that P(c) = (Mc ◦B)(c)

for each stationary feasible allocation c, i.e.: the set of support prices for c coincides with the

set of matrices of marginal rates of substitution induced by c. One of important implications

12



of this observation is that for each fully-insured stationary feasible allocation c, the set of its

supporting prices, P(c), has multiple elements. Actually, it must be equal to the set Mc(Π). In

such a case, one should remark that a fully-insured stationary feasible allocation is not smoothly

supported.

As remarked above, we cannot necessarily apply characterizations per Bloise and Calciano

(2008) to our model. Combining Theorem 1 with Proposition 2, we can obtain the following

characterization:

Theorem 2 An interior stationary feasible allocation c is conditionally Pareto optimal if and

only if 1 ∈ λ(P(c)).

As a corollary, one can find that an interior stationary feasible allocation might be CPO even

when the dominant root of its given supporting price matrix is not equal to one. This is a

remarkable difference from the standard argument with smooth preferences.

5.2 Complete Market

We now define a stationary equilibrium with complete market, i.e.: a stationary equilibrium

at which agents can buy and sell all contingent commodities in a centralized market.

Definition 3 A pair (P ∗, c∗) of a positive price matrix P ∗ = [p∗ss′ ]s,s′∈S of contingent commodi-

ties and a stationary feasible allocation c∗ = (c∗s)s∈S is called a stationary equilibrium if

• for all s ∈ S, c∗s belongs to the set

argmax
(cys ,cos)∈ℜ+×ℜS

+

{
U s(cs) : c

y
s +

∑
s′∈S

coss′p
∗
ss′ ≤ ωy

s +
∑
s′∈S

ωo
ss′p

∗
ss′

}

given p∗s; and

• for all s, s′ ∈ S, c∗ys′ + c∗oss′ = ω̄ss′ .

In this definition, the former condition is the optimization problem of each agent s ∈ S subject

to a lifetime budget constraint, and the latter is the market clearing conditions. Moreover, for

each stationary feasible allocation c, we denote by P∗(c) the set of all positive price matrix

P = [pss′ ]s,s′∈S such that (P, c) is a stationary equilibrium. Because it can be easily verify that

P∗(c) ⊂ P(c), we can obtain the following proposition:
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Proposition 3 An interior stationary feasible allocation c is conditionally Pareto optimal if

1 ∈ λ(P∗(c)).

In the existing literature with smooth preferences, one of advantages of the dominant root

criterion for an equilibrium allocation is that we can examine optimality of the allocation by

examining the dominant roots of the observed equilibrium price and the policy maker does not

need information about the allocation nor preferences. On the other hand, in the presence of

ambiguity, we should remark the fact that we may not say anything about optimality of an

observed stationary equilibrium (P, c) because optimality of its allocation is examined by the set

of supporting prices, P(c), not an observed equilibrium contingent price matrix P . Exceptionally,

however, when the observed price matrix has the dominant root being unity, we can say that

the correspondence equilibrium allocation is optimal.

Corollary 3 For each stationary equilibrium (P, c) with cs ≫ 0 for each s ∈ S, c is conditionally

Pareto optimal if λf (P ) = 1.

As noted above, one should note that, even when λf (P ) ̸= 1, the correspondence equilibrium

allocation may be CPO.

We close this subsection with a result in the absence of ambiguity. When there is no ambi-

guity, the model degenerates into one with standard expected utility model and we can obtain

the well-known characterization of CPO for stationary equilibrium allocations.

Corollary 4 Suppose that there exists some transition probability matrix π = (πs)s∈S such that

Πs = {πs} for each s ∈ S. Then, for each stationary equilibrium (P, c) with cs ≫ 0 for each

s ∈ S, c is conditionally Pareto optimal if and only if λf (P ) = 1.

This is consistent with Proposition 2 of Ohtaki (2013b), which characterizes CPO for stationary

equilibrium allocations when lifetime utility functions are differentiable.

5.3 Sequentially Complete Markets with Money

As shown in the previous proposition, a stationary equilibrium itself might not be CPO

even when markets operate perfectly. However, we can construct a market mechanism which

generates a CPO allocation by introducing an infinitely-lived outside asset, which yields no

dividend, money. Suppose in the this subsection that there exists one unit of money. Also

suppose that spot markets of one-period contingent claims exist and are complete.
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Definition 4 A triplet (q∗, P ∗, c∗) of a positive money price vector q∗ ∈ ℜS
++, a positive price

matrix P ∗ = [p∗ss′ ]s,s′∈S of contingent claims, and a stationary feasible allocation c∗ = (c∗s)s∈S is

called a stationary equilibrium with circulating money if there exists some money holding vector

m∗ ∈ ℜS and some contingent claim portfolio matrix θ∗ ∈ ℜS×S such that

• for all s ∈ S, (c∗s,m
∗
s, θ

∗
s) belongs to the set

argmax
(cys ,cos,ms,θs)

{
U s(cs) :

cys = ωy
s − q∗sms −

∑
s′∈S θss′pss′

(∀s′ ∈ S) coss′ = ωo
ss′ + q∗s′ms + θss′

}
given q∗ and p∗s; and

• for all s, s′ ∈ S, m∗
s = 1 and θ∗ss′ = 0.

In this definition, the former condition is the optimization problem of each agent s ∈ S subject

to sequential budget constraints, and the latter is the asset market clearing conditions. One can

easily verify that the good market equilibrium condition also holds at a stationary equilibrium

with circulating money.

We can then find that an introduction of money may generate a CPO allocation:

Theorem 3 An interior stationary feasible allocation of a stationary equilibrium with circulat-

ing money, if any, is always conditionally Pareto optimal.

In other words, when a stationary equilibrium with circulating money exists, it always generates

a CPO allocation. This financial intermediate role of money for remedying inefficiency in the

OLG model is a well-known result in the literature and the last theorem showed that the result

still holds even in the presence of ambiguity.

Remark 3 Gottardi (1996) considered a stochastic OLG model, wherein each generation con-

sists of heterogeneous agents with differentiable lifetime utility functions and several securities

exist, and showed that a stationary monetary equilibrium generically exists and is locally iso-

lated.12 Applying his result, we can show generic existence of stationary equilibrium with

circulating money. This is because his proof of generic existence itself is independent of differ-

entiability of lifetime utility functions. We should remark, however, that stationary monetary

equilibrium might not be locally isolated because lifetime utility functions in our model are not

12To impose not only smoothness but also additive separability and some elasticity condition on the lifetime
utility function, one can observe uniqueness of stationary equilibrium circulating money. See for example Ohtaki
(2013c).
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differentiable in the presence of ambiguity. Indeterminacy and its robustness are therefore left

to open.13

5.4 Sequentially Complete Markets with Equity

We finally consider an economy with “equity” instead of “money.” Suppose in this subsection

that there exists one unit of an infinitely-lived asset yielding a dividend of ds ≥ 0 units of the

consumption good at state s ∈ S, where d ∈ ℜS
+ \ {0}.14 Also suppose that spot markets of

one-period contingent claims exist and are complete.

Definition 5 A triplet (q∗, P ∗, c∗) of a positive equity price vector q∗ ∈ ℜS
++, a positive price

matrix P ∗ = [p∗ss′ ]s,s′∈S of contingent claims, and a stationary feasible allocation c∗ = (c∗s)s∈S

is called a stationary equilibrium with equity if there exists some equity holding vector z∗ ∈ ℜS

and some contingent claim portfolio matrix θ∗ ∈ ℜS×S such that

• for all s ∈ S, (c∗s, z
∗
s , θ

∗
s) belongs to the set

argmax
(cys ,cos,zs,θs)

{
U s(cs) :

cys = ωy
s − q∗szs −

∑
s′∈S θss′pss′

(∀s′ ∈ S) coss′ = ωo
ss′ + (q∗s′ + ds′)zs + θss′

}
given q∗ and p∗s; and

• for all s, s′ ∈ S, z∗s = 1 and θ∗ss′ = 0.

In this definition, the former condition is the optimization problem of each agent s ∈ S subject

to sequential budget constraints, and the latter is the asset market clearing conditions. One can

easily verify that the good market equilibrium condition also holds at a stationary equilibrium

circulating equity.

We should note that, even in the economy with equity, CPO of an interior stationary feasible

allocation can be characterized as Theorem 1, by redefining the total endowment as ω̄s′ =

ωy
s′ + ωo

s′ + ds′ for each s′ ∈ S. Therefore, our task is to examine optimality of stationary

equilibrium allocations with equity. The following statement is the last theorem of this article:

Theorem 4 An interior stationary feasible allocation of a stationary equilibrium with equity, if

any, is never conditionally Pareto optimal.

13The issue about indeterminacy and its robustness in a stochastic OLG model under ambiguity has been
studied per Ohtaki and Ozaki (2013).

14Therefore, the asset can be the equity of any productive asset like “land” or a Lucas “tree.” It can be
identified with money if ds = 0 for each s ∈ S.
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In other words, when a stationary equilibrium with equity exists, it does never generate a CPO

allocation.

Remark 4 Suboptimality of the equity market in the deterministic OLG model has been argued

per Dow and Gorton (1993). Theorem 4 extends their result to the stochastic environment.

This observation on suboptimality of the equity market follows from the lack of the initial olds.

Actually, consider a case that the initial old exists and redefine CPO as treating the initial old’s

welfare. In such a case, we can verify CPO of stationary equilibrium with equity by applying

Sakai (1988).

6 Proofs

Proof of Theorem 1. Let c = (cys , (coss′)s′∈S)s∈S be an interior stationary feasible allocation and

let xys := cys and xos′ := coss′ for each s, s′ ∈ S. By Proposition 1.B, (xy, xo) is well defined. It is

easy to verify that c is a CPO allocation if and only if there exists a Pareto weight γ : S → ℜ++

such that

c ∈ argmax
b∈A

∑
s∈S

γsU s(bs),

where A is the set of stationary feasible allocations. Because c is a stationary feasible allocation,

we can obtain from Proposition 1.A that xys′ = cys′ = ω̄s′ − coss′ = ω̄s′ − xos′ for each s, s′ ∈ S.

Then, it follows that c is CPO if and only if there exists γ : S → ℜ++ such that

0 ∈ ∂

(∑
s∈S

γsÛ s(xo)

)
(1)

=
∑
s∈S

∂

(
γs min

πs∈Πs

∑
s′∈S

uss
′
(ω̄s − xos, x

o
s′)πss′

)
(2)

=
∑
s∈S

co


γs


us1
2 (ω̄1 − xo

1, x
o
1)πs1

...
−
∑

τ∈S u
sτ
1 (ω̄s − xo

s, x
o
τ )πsτ + uss

2 (ω̄s − xo
s, x

o
s)πss

...
usS
2 (ω̄1 − xo

S , x
o
S)πsS

 : πs ∈ Bs(cs)


(3)

=


(
−γs

∑
τ∈S

usτ1 (ω̄s − xos, x
o
τ )πsτ +

∑
s′

γs
′
us

′s
2 (ω̄s′ − xos′ , x

o
s)πs′s

)
s∈S

: π ∈ B(c)

 ,(4)

or equivalently,

γ ∈ {γMc(π) : π ∈ B(c)} ,
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where ∂f represents the supperdifferential of f (See Definition A in the Appendix), Eq.(1) follows

from Theorem C in the Appendix, Eq.(2) follows from Theorem A in the Appendix, Eq.(3)

follows from Theorem B in the Appendix, and Eq.(4) follows from easy calculation and the fact

that Bs(cs) is convex for each s ∈ S. The last inclusion is equivalent to γminπ∈B(c)Mc(π) ≤ γ ≤

γmaxπ∈B(c)Mc(π) for each M ∈ (Mc ◦ B)(c). By the Perron-Frobenius theorem, therefore, the

existence of γ ∈ ℜS
++ such that γ ∈ {γMc(π) : π ∈ B(c)} is equivalent to λf (minπ∈B(c)Mc(π)) ≤

1 ≤ λf (maxπ∈B(c)Mc(π)), or equivalently, 1 ∈
{
λf (M) : M ∈ (Mc ◦B)(c)

}
. This completes the

proof. Q.E.D.

Proof of Proposition 2. Let c be an interior stationary feasible allocation. We first show P(c) ⊂

(Mc ◦ B)(c). Let P = [pss′ ]s,s′∈S ∈ P(c) be a supporting price matrix. By their definitions,

(P, c) satisfies that U s(cs) ≥ U s(bs) for each stationary feasible allocation b satisfying that

bys +
∑

s′∈S boss′pss′ ≤ cys +
∑

s′∈S coss′pss′ and each s ∈ S. Therefore, cos = (coss′)s′∈S belongs to the

set

argmax
bos∈ℜS

+

U s

(
cys +

∑
s′∈S

(coss′ − boss′)pss′ , b
o
s

)
.

Then, for each s ∈ S, cos = (coss′)s′∈S must be characterized by

0 ∈ ∂

(
min
πs∈Πs

∑
s′∈S

uss
′

(
cys +

∑
τ∈S

(cosτ − cosτ )psτ , c
o
ss′

)
πss′

)

=


(
−pss′

∑
τ∈S

usτ1 (cys , c
o
sτ )πsτ + uss

′
2 (cys , c

o
ss′)πss′

)
s′∈S

: πs ∈ Bs(cs)

 (5)

because of Theorem B and C in the Appendix. This implies that

P ∈ {Mc(π) : π ∈ B(c)}

and therefore P(c) ⊂ (Mc ◦B)(c).

Conversely, let M = [mss′ ]s,s′∈S ∈ (Mc ◦ B)(c). By its definition, it follows that there exists

some π ∈ B(c) such that, for each s, s′ ∈ S,

mss′ =
uss

′
2 (cys , coss′)πss′∑

τ∈S u
sτ
1 (cys , cosτ )πsτ

,

or equivalently,

0 = −mss′
∑
τ∈S

usτ1 (cys , c
o
sτ )πsτ + uss

′
2 (cys , c

o
ss′)πss′ .
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Then, it follows from Eq.(5) that M must be a supporting price matrix of c, which implies

M ∈ P(c). This completes the proof. Q.E.D.

Proof of Theorem 2. It follows from Theorem 1 ad Proposition 2. Q.E.D.

Proof of Proposition 3. Let c be an interior stationary feasible allocation. In order to prove

Proposition 3, we should show that P∗(c) ⊂ P(c). Let P = [pss′ ]s,s′∈S ∈ P∗(c) and b be an

arbitrary stationary feasible allocation satisfying that bys +
∑

s′∈S b
o
ss′pss′ ≤ cys +

∑
s′∈S c

o
ss′pss′

for each s ∈ S. Then, it follows that bys +
∑

s′∈S b
o
ss′pss′ ≤ ωy

s +
∑

s′∈S ω
o
ss′pss′ for each s ∈ S.

Because (P, c) is a stationary equilibrium, it holds that U s(cs) ≥ U s(bs) for each s ∈ S, which

implies that P ∈ P(c). Q.E.D.

Proof of Theorem 3. By the sequential budget constraints of an agent, we can obtain the agent’s

lifetime budget constraint such that: for all s ∈ S,

cys +
∑
s′∈S

coss′pss′ ≤ ωy
s +

∑
s′∈S

ωo
ss′pss′ +

(∑
s′∈S

qs′pss′ − qs

)
m.

By this equation, we can obtain the no arbitrage condition when the money price is positive,

i.e., q = P · q for any stationary equilibrium with circulating money, (q, P, c), with cs ≫ 0 for

each s ∈ S. In order to verify this, we should show that

(∀s ∈ S) qs =
∑
s′∈S

pss′qs′ .

Suppose the contrary that qs ̸=
∑

s′∈S pss′qs′ for some s ∈ S. If qs <
∑

s′∈S pss′qs′ , then agent

born at state s will choose ∞ as m and his/her optimization problem has no solution. On

the other hand, if qs >
∑

s′∈S pss′qs′ , then agent born at state s will choose −∞ as m and

his/her optimization problem has no solution.15 In any cases, we obtain a contradiction, so that

qs =
∑

s′∈S pss′qs′ for all s ∈ S.

Suppose now that there exists at least one stationary equilibrium with circulating money,

(q, P, c), satisfying that cs ≫ 0 for all s ∈ S. We have obtained that Pq = q, at which the lifetime

budget constraint coincides with that in the complete market. Because qs is now positive for

all s ∈ S, it follows from the Perron-Frobenius theorem that the S × S matrix P with positive

15When one wished to impose the lower bound for possible m, m ≥ 0 for example, the agent born state s
chooses 0 as the amount of money holding. However, this contradicts the fact that m should be equal to 1 at a
stationary equilibrium with circulating money.
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coefficients has the dominant root equal to unity. Now it follows from Corollary 3 that the

equilibrium allocation c is CPO. This completes the proof of Theorem 3.16 Q.E.D.

Proof of Theorem 4. By the sequential budget constraints of an agent, we can obtain the agent’s

lifetime budget constraint such that: for all s ∈ S,

cys +
∑
s′∈S

coss′pss′ ≤ ωy
s +

∑
s′∈S

ωo
ss′pss′ +

(∑
s′∈S

(qs′ + ds′)pss′ − qs

)
z.

By this equation, we can obtain the no arbitrage condition such that q = P · (q + d) for any

stationary equilibrium with equity, (q, P, c), with cs ≫ 0 for each s ∈ S, where q+d = (qs+ds)s∈S.

In order to verify this, we should show that

(∀s ∈ S) qs =
∑
s′∈S

pss′(qs′ + ds′).

Suppose the contrary that qs ̸=
∑

s′∈S pss′(qs′ + ds′) for some s ∈ S. If qs <
∑

s′∈S pss′(qs′ + ds′),

then agent born at state s will choose ∞ as z and his/her optimization problem has no solution.

On the other hand, if qs >
∑

s′∈S pss′(qs′ + ds′), then agent born at state s will choose −∞ as z

and his/her optimization problem has no solution. In any cases, we obtain a contradiction, so

that qs =
∑

s′∈S pss′(qs′ + ds′) for all s ∈ S.

Suppose now that there exists at least one stationary equilibrium with equity, (q, P, c),

satisfying that cs ≫ 0 for all s ∈ S. We have obtained that P (q + d) = q, at which the lifetime

budget constraint coincides with that in the complete market. By the fact that d ∈ ℜS
+ \ {0},

it holds that Pq < P (q + d) = q. Therefore, it follows from the Perron-Frobenius theorem that

the S × S matrix P with positive coefficients has the dominant root less than unity. Now it

follows from Corollary 3 that the equilibrium allocation c is not CPO. This completes the proof

of Theorem 4. Q.E.D.

Appendix: Superdifferential and its Calculus

This appendix aims to introduce the definition of superdifferential and its calculus rules. We

first define the concept of superdifferential following Rockafellar (1970, p.214) and Hiriart-Urruty

and Lemaréchal (2004, Definition D.1.2.1).

16To prove Theorem 3, we have adopted an indirect way of applying the dominant root criterion under ambiguity.
Applying the technique provided per Sakai (1988), one can provide a more direct proof of Theorem 3.
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Definition A For each concave real-valued function f on ℜn and each x ∈ ℜn, the set

∂f(x) := {s ∈ ℜn : (∀y ∈ ℜn) f(y) ≤ f(x) + ⟨s, y − x⟩ }

and each of its elements are called the superdifferantial and a supergradient of f at x, respectively.

The following result follows from Hiriart-Urruty and Lemaréchal (2004, Theorem D.4.1.1).

Theorem A For each concave real-valued functions f1 and f2 on ℜn, each positive numbers a1

and a2, and each x ∈ ℜn, ∂(a1f1 + a2f2)(x) = a1∂f1(x) + a2∂f2(x).

We should note that this observation does not necessarily hold for more general concave functions

(Rockafellar, 1970, p.223).

The next result follows from Hiriart-Urruty and Lemaréchal (2004, Corollary D.4.4.4).

Theorem B Let J be a compact set in some metric space and {fj}j∈J be a family of differen-

tiable concave real-valued functions on ℜn. Define the real-valued function f on ℜn by

f(x) := inf
j∈J

fj(x)

and let J(x) := {j ∈ J : fj(x) = f(x)} for each x ∈ ℜn. Then, it follows that

∂f(x) = co {∇fj(x) : j ∈ J(x)} .

Finally, we provide a useful result following from Hiriart-Urruty and Lemaréchal (2004,

Theorem D.2.2.1), for optimization.

Theorem C For each concave real-valued function f on ℜn and each x ∈ ℜn, f(x) ≥ f(y) for

each y ∈ ℜn if and only if 0 ∈ ∂f(x).
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