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1 Introduction

For the last three decades, there has been a secular trend of concentration of income among the top

earners in the U.S. economy. According to Alvaredo et al. (2013), the top 1% income share, the share

of total income going to the richest top 1% of the population, declined from around 18% to 8% after

the 1930s, but the trend was reversed during the 1970s. Since then, the income share of the top 1% has

grown and had reached 18% by 2010, on par with the prewar level.

Along with the increasing trend in the top income share, a widening dispersion of income within

the top income group has also been observed over the same periods. It is known that the tail part of

the income distribution is described by a Pareto distribution very well. When income follows a Pareto

distribution with exponent λ, the ratio of the number of people who earn more than x1 to those who earn

more than x2, for any income levels x1 and x2, is (x1/x2)−λ. Thus, the Pareto exponent λ is a measure

of equality among the rich. The estimated Pareto exponent historically shows a close connection with

the top income share. This exponent declined from 2.5 in 1975 to 1.6 in 2010, along with the secular

increase in the top 1% income share.

There has been much debate about the causes of income concentration in recent decades. We pay

special attention to the decrease in the marginal income tax rate as a driving force of income dispersion

among the rich. The purpose of this paper is to develop a tractable dynamic general equilibrium model

of income distribution, and then, use the model to analyze how a decrease in the marginal income tax

rate affects income concentration.

Our main focus is income distribution; nevertheless, we require the model to be consistent with firm-

side stylized facts. A substantial part of the concentration of income in recent decades is due to the

increase in the incomes of top corporate executives and entrepreneurs (Piketty and Saez, 2003, Atkinson

et al., 2011, and Bakija et al., 2012). The pay and assets of a CEO strongly depend on his firm’s

performance (see Frydman and Jenter, 2010 for a survey). In standard neoclassical models, a firm’s

performance is determined by its productivity. Therefore, a model of income concentration should be

consistent with the stylized facts on the firm’s productivity. Zipf’s law is one of these facts. Zipf’s law

states that the firm size distribution, which is generated from the firm’s productivity shocks in standard

models (e.g., Luttmer, 2007), follows a special case of Pareto distribution with exponent λ = 1. Zipf’s

law is closely related to Gibrat’s law, which refers to the fact that the growth rate of a firm is independent
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of its size (see Gabaix, 2009 and Luttmer, 2010).1 We construct our model to be consistent with these

laws.

We develop a model of heterogeneous firms and the CEOs’ portfolio choices. In the model, the firms’

size and value result from idiosyncratic, firm-level productivity shocks. CEOs can invest in their own

firms’ risky stocks or in risk-free assets. The dispersion of CEOs’ incomes is determined by the risk taken

in their after-tax portfolio returns.

The contribution of the paper is summarized as follows. First, this paper presents a parsimonious neo-

classical growth model that generates Zipf’s and Gibrat’s laws of firms and Pareto’s law of incomes from

idiosyncratic, firm-level productivity shocks. The model is simple enough to allow analytical derivation

of the stationary distributions of firms and income. Second, we obtain an analytical expression for the

evolution of the probability density distribution of income in the transition path. Using this expression,

we can numerically compute the transition dynamics of income distribution since an unanticipated and

permanent cut in top marginal income tax rate. Third, we calibrate the model parameters and show

that the transition path of the model computed as above matches the decline in the Pareto exponent

of income distribution and the trend of increasing top income share observed in the last three decades.

Hence, we argue that the calibrated analysis of our model predicts that the tax cut and CEOs’ response

to tax in their portfolio can explain the widening dispersion and higher concentration of income occurred

in the U.S. The calibrated model also brings out testable implications for CEO portfolios and future

development of inequality under the current tax rate level.

Piketty and Saez (2003) argue that a cut in the top marginal income tax rate is a plausible reason for

the recent evolution of top incomes, as compared with other reasons such as skill-biased technical change.

Piketty et al. (2011) report that among the OECD countries, the countries that have experienced a sharp

rise in the top 1% income share are also the ones where the top marginal income tax rate has reduced

drastically. Our paper shares their view that a tax cut is an important factor. However, our model differs

from theirs in that a cut in top marginal income tax rate itself does not matter, as in the case that

dividend tax in the “new” explanation of dividend taxation (Sinn, 1991 and McGrattan and Prescott,

2005) does not affect investment decisions. Instead, in our model, a cut in top marginal income tax rate

relative to other taxes, such as capital gains and corporate taxes, does affect CEOs’ portfolio choices and

1Note that as Gabaix (2009) and Luttmer (2010) point out, deviations from Gibrat’s law are reported for young and
small firms. However, we exclude these issues from our analysis, because our focus is on the evolution of top earners who
manage big firms.
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the wealth and income distributions.

Recently, several papers have built models to understand why income distribution follows a Pareto

distribution. There are two types of approaches in the literature. The first explains Pareto’s law of

incomes by the assumption that other variables follow certain types of distributions. Gabaix and Landier

(2008) take this approach. They construct a model of the CEO’s pay that assumes that the firm size

distribution follows Zipf’s law and the CEO’s talent follows a certain distribution. Under the settings,

they show that the CEO’s pay follows a Pareto distribution. Their model has the advantage of being

consistent with the two stylized facts, that is, Zipf’s law of firms and Pareto’s law of incomes. However,

their model deals with the case where the Pareto exponent is constant. Jones and Kim (2012) extend

the model to be consistent with the recent decline in the Pareto exponent of income distribution in

the U.S. As compared to the papers taking this approach, our paper’s contribution is to build a model

that generates Zipf’s and Pareto’s laws, both from the productivity shocks of firms, without assuming

particular types of distributions.

The second approach explains Pareto’s law of incomes by idiosyncratic shocks. Using a household

model with a consumption function, Nirei and Souma (2007) show that idiosyncratic shocks on the

household’s asset returns generate Pareto’s law of assets and incomes. Benhabib et al. (2011 and 2012)

show a similar result for a model of households that optimally make saving and bequest decisions. These

models are not dynamic general equilibrium models, in the sense that they only consider the household’s

problem and not the firm’s. Nirei (2009) extends the framework to a Bewley-type model and shows

that idiosyncratic shocks on firms’ productivities generate Pareto’s law of incomes in a dynamic general

equilibrium environment. Toda (2012) also builds a similar, but more analytically tractable, dynamic

general equilibrium model and derive Pareto’s law. Our study follows this approach.2 As compared with

previous studies, this paper features a model that can explain Zipf’s law of firms, and analyzes how the

recent tax cut affects the evolution of top incomes.3

Perhaps, the closest paper to ours is Kim (2013), who follows the latter approach and builds a model

of human capital accumulation with idiosyncratic shocks that generates Pareto’s law of incomes (see

2Different from Benhabib et al. (2011), who adopt the overlapping generations setting, our model, adopting the perpetual
youth setting, does not take into account the bequest motive of households. Its justification comes from a finding in Kaplan
and Rauh (2013), who report, “Those in the Forbes 400 are less likely to have inherited their wealth or to have grown up
wealthy.”

3This paper’s model is also consistent with the fact that the firm’s productivity distribution also follows a Pareto
distribution (Mizuno et al., 2012).
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also Jones and Kim, 2013, who incorporate creative destruction into the model). Using the model, she

analyzes the impact of a cut in top marginal income tax in recent decades on the Pareto exponent of

income distribution. As compared with her paper, our paper’s contribution is to build a model that also

explains Zipf’s law of firms, from the same shocks that generate Pareto’s law of incomes. In addition,

because the mechanism through which a tax cut affects top incomes is different from hers, the predictions

of the models are also different. For example, in her model, an income tax cut encourages human capital

accumulation among top income earners. This would result in the increase in the level of the per capita

output in the U.S. in recent decades, as compared with previous periods and other countries such as

France. In contrast, in our model, a tax cut does not directly affect capital accumulation.

Finally, our model is also closely related with the general equilibrium models of firm size distribution

that explain Zipf’s law of firms (for a survey, see Luttmer, 2010). The basic mechanism employed in

our study to generate Zipf’s law of firms draws on the literature. In comparison to the literature, our

firm-side formulation is rather simplified, because our focus is to understand the evolution of top incomes.

The organization of the paper is follows. Section 2 sets up a dynamic general equilibrium model.

Section 3 discusses the firm-side properties of the model and derives Zipf’s law of firms. Section 4

analyzes the aggregate dynamics of the model and defines the equilibrium. After defining the equilibrium,

Section 5 illustrates how in the steady state, the household asset and income distribution follows a Pareto

distribution. Section 6 analyzes how a tax cut affects top incomes in our model and contrasts the results

with the data. Finally, in Section 7, we present our concluding remarks.

2 Model

It is well known that the stationary distribution of certain types of stochastic processes follows a Pareto

distribution. The purpose of the model presented here is to incorporate these stochastic processes into

an otherwise standard general equilibrium model with incomplete markets and replicate Pareto distribu-

tions observed as stylized facts. Key assumptions that generate Zipf’s law of firms are that the firm’s

productivity is affected by multiplicative idiosyncratic shocks and there is a lower bound for the firm

size. Similarly, key assumptions that generate Pareto’s law of the households’ assets and incomes are

that these assets are affected by multiplicative idiosyncratic shocks and each household faces a constant

probability of death (that is, the perpetual youth assumption). In the next sections, we discuss how these

5



properties generate the laws.

2.1 Households

There is a continuum of households with a mass L. As in Blanchard (1985), by a Poisson hazard rate ν,

each household is discontinued and is replaced by a newborn household that has no bequest. Households

participate in a pension program. If a household dies, all of his non-human assets are distributed to living

households. The amount a living household gets is the pension premium rate ν times his financial assets.

The households consist of entrepreneurs and workers. A mass N of households are entrepreneurs

and the remaining L − N are workers. Each provides one unit of labor and earns wage income wt.

They also get government transfer tr t. Among these households, only entrepreneurs manage firms. An

entrepreneur managing his firm has the benefit of holding the stocks of his firm relatively cheaper, as

is explained shortly. Entrepreneurs leave their firm and become workers with a Poisson hazard rate pf .

Thus, there are two types of workers, namely, workers who were previously entrepreneurs and workers by

birth. We refer to the former as former entrepreneurs and the latter as innate workers.4

These households maximize expected discounted log utility

Et

∫ ∞

t
ln ci,se

−(β+ν)sds,

where β is the discount rate, by optimally choosing sequences of consumption ci,s and an asset portfolio.

As the asset portfolio, a worker can hold (i) a risk-free market portfolio bi,t that consists of the market

portfolio of firms’ stocks, and (ii) human assets ht that consist of wage incomes wt and government

transfers tr t. The risk-free market portfolio yields a net return rft (and pension premium ν) with certainty.

The human asset is defined by ht =
∫∞
t (wu + tru)e−

∫ u
t (ν+rfs )dsdu, whose return is

(ν + rft )ht =(wt + tr t) + dht/dt.

An entrepreneur can hold (i) a risk-free market portfolio bi,t and (ii) human assets ht, similar to a

worker. In addition, the entrepreneur can also hold (iii) risky stocks of his firm si,t. Owing to the setup

4 We introduce the former entrepreneurs for a purely quantitative reason. The qualitative results of this study are intact
even when pf = 0. Quantitatively, if we do not introduce former entrepreneurs and all of the entrepreneurs retain their
positions, the mobility of a household’s asset or income level becomes too slow or the Pareto exponent of income distribution
becomes too low, as compared with the data.
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of the model described in the following sections, the risky stocks are affected by uninsurable idiosyncratic

shocks; the risk and returns of an entrepreneur’s risky stocks are ex ante identical across entrepreneurs;

and the expected return of risky stocks exceeds that of the risk-free market portfolio because transaction

costs and tax rates differ between the two assets. Let qi,t and di,t be the price and dividend of the risky

stocks, respectively. Then, the return of the risky stock is described by the following stochastic process:

((1− τe)di,tdt+ dqi,t)/qi,t = µq,tdt+ σq,tdBi,t,

where τe is the tax rate on the risky stock and Bi,t is a Wiener process. Note that we interpret holding

risky stocks in the model as a CEO’s incentive scheme in the real world. In the numerical analysis, we

calibrate tax on risky stocks, τe, by the top marginal tax rate on ordinary income imposed on the CEO’s

pay. We discuss the similarity of our formulation with previous studies on CEO pay and compare our

model’s prediction with the data in Section 6.5.1.

Let ai,t = si,tqi,t + bi,t + ht denote the total wealth of a household. (Note that if the household is a

worker, si,t = 0.) The total wealth accumulates according to the following process:

dai,t = (ν(si,tqi,t + bi,t) + µq,tsi,tqi,t + rft bi,t + (ν + rft )ht − ci,t)dt

+σq,tsi,tqi,tdBi,t

= µa,tai,tdt+ σa,tai,tdBi,t. (1)

where µa,tai,t ≡ νai,t+µq,txi,tai,t+ rft (1−xi,t)ai,t− ci,t, σa,tai,t ≡ σq,txi,tai,t, and xi,t is the share of ai,t

invested in the risky stocks. dBi,t is a multiplicative shock to the asset accumulation, in that the shock

is multiplied by the current asset level ai,t.

The household’s dynamic programming problem is specified as follows:

V i(ai,t,St) = max
ci,t,xi,t

ln ci,tdt+ e−(β+ν)dt Et[V
i′(ai,t+dt,St+dt)] (2)

subject to (1), where St is a set of variables that describes the aggregate dynamics of the model (for the

definition, see Section 4) and V i denotes value functions of household characteristics i. That is, if the

household is an entrepreneur, i = e; and if he is a worker, i = ℓ (more specifically, if he is an innate
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worker, i = w; and if he is a former entrepreneur, i = f). Note that if the household is an entrepreneur,

the household characteristics in the next period, denoted by i′, can be both entrepreneur and worker. If

the household is an innate worker or a former entrepreneur, i′ = i.

The household problem is a variant of Merton’s dynamic portfolio problem (Merton, 1969, 1971, 1973,

Campbell and Viceira, 2002, and Benhabib et al., 2012). It is well known that the solution of the problem

under the log utility follows the myopic rules

xi,t =

⎧
⎪⎪⎨

⎪⎪⎩

µq,t−rft
σ2
q,t

, if i = e,

0, otherwise,

(3)

vi,t =β + ν, (4)

where vi,t is the consumption–wealth ratio (see Appendix A for derivations), and satisfies the transver-

sality condition

lim
T→∞

e−(β+ν)T E0

[
V i(ai,T ,ST )

]
= 0. (5)

In the model, we assume that entrepreneurs can hold risky stocks of their own firms. We can relax

the assumption and allow households to hold risky stocks of the firms not managed by the households,

whose expected returns are as low as that of risk-free assets, rf , owing to transaction costs and a different

tax rate that are explained in the next section. Then, because the shocks on risky stocks are assumed to

be uncorrelated with one another, the optimal portfolio share of another firm’s risky stocks x′
i,t becomes

(rft − rft )/(σ
′
q,t)

2 = 0, where σ′
q,t is the volatility of these risky stocks (see e.g., Campbell and Viceira,

2002). This implies that the results are unchanged even when the assumption is relaxed.

2.2 Firms and the financial market

A continuum of firms with a mass N produces differentiated goods. As in McGrattan and Prescott

(2005), each firm issues shares and owns and self-finances capital kj,t. As noted above, the entrepreneur

of the firm can directly own shares of his firm. Financial intermediaries also own the firm’s shares, and

by combining the shares of all of these firms, issue risk-free market portfolios to households. This helps

to diversify the idiosyncratic shocks of the firms. The financial intermediaries incur ι per dividend dj,t
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as transaction costs. We assume that financial intermediaries own the majority shares, or that when an

entrepreneur owns his firm’s shares in the form of preferred stocks without voting rights. Under the setup,

firms maximize expected profits following the interest of financial intermediaries. Then, the market value

of a firm becomes the net present value of the after-tax profits discounted by the risk-free rate rft . We

make these assumptions to simplify the analysis.

2.2.1 Financial intermediary’s problem

In this model, returns and risks on risky stocks are ex ante identical across firms and that shocks on the

risky stocks are uncorrelated with each other. Then, a financial intermediary maximizes residual profit

by diversifying the risks on risky stocks and issuing risk-free assets as follows:

max
sfj,t

Et

[∫ N

0

{
(1− τf − ι)dj,tdt+ dqj,t

}
sfj,tdj

]
− rft dt

(∫ N

0
qj,ts

f
j,tdj

)
,

where sfj,t is the shares of firm j owned by the financial intermediary and τf is the dividend tax, which is

different from the tax rate on risky stocks τe. We interpret τf in the numerical analysis as a combination

of capital gains and corporate income taxes. In Section 6, we account for the evolution of top incomes

by the change in the difference between these tax rates. The solution of the problem leads to

rft qj,tdt = Et[(1− τf − ι)dj,tdt+ dqj,t]. (6)

2.2.2 Firm’s problem

There are heterogeneous firms in the economy. The production function of firm j is

yj,t = zj,tk
α
j,tℓ

1−α
j,t .

The productivity of the firm evolves as

dzj,t = µzzj,tdt+ σzzj,tdBj,t,
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where Bj,t is a Wiener process that is uncorrelated with shocks in other firms. dBj,t is a multiplicative

shock to the productivity growth, because the shock is multiplied by its productivity level zj,t. Under

the formulation, when the firm’s size is proportional to its productivity, as will be shown below, Gibrat’s

law of firms holds; that is, the growth rate of the firm is independent of the firm’s size.

In order to derive the property that the firm-size distribution follows Zipf’s law, we impose the

following assumptions on the minimum level of firm size. Following Rossi-Hansberg and Wright (2007),

who construct a model of establishment size dynamics, we assume that there is a minimum level of

employment ℓmin, that is,

ℓj,t ≥ ℓmin.

A firm whose optimal employment is less than ℓmin is restructured. More precisely, we define the

productivity level zmin as the one at which, when the firm optimally chooses labor (following (7) below),

ℓj,t = ℓmin. We assume that the firm whose productivity zj,t is less than zmin has to be restructured such

that the firm buys productivities and accompanying capital from other firms at the market price, in order

to increase its own size. Correspondingly, we assume that each firm sells a constant fraction of its capital

to the firms undergoing restructuring (in the next section, we discuss how these deals are conducted).

A firm chooses the investment level dkj,t and employment ℓj,t to maximize profit as follows:

rft q(kj,t, zj,t,St)dt =Et

[
max

dkj,t,ℓj,t
(1− τf − ι)dj,tdt+ dq(kj,t, zj,t,St)

]
. (7)

The dividend dj,t consists of

dj,tdt = (pj,tyj,t − wtℓj,t − δkj,t) dt− dkj,t,

where pj,t and yj,t are, respectively, the price and quantity of the good produced by the firm, kj,t is the

capital, wt is the wage rate, and δ is the depreciation rate.

By solving the firm’s maximization problem, we obtain the following conditions (see Appendix B for
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details):

MPKt ≡ rft + δ =
∂pj,tyj,t
∂kj,t

, (8)

wt =
∂pj,tyj,t
∂ℓj,t

. (9)

Two remarks need to be made about the firm’s problem. First, in the model, the marginal product

of capital, MPK, becomes the same among firms, because the stochastic discount factor of those who

own diversified bonds is not correlated with the shock of firm j. Second, because taxes in the model

are imposed on dividends, as found in the “new view” literature of dividend taxation (Sinn, 1991 and

McGrattan and Prescott, 2005), they do not distort MPK.

2.3 Aggregation and market conditions

We now consider the market conditions for the aggregate economy. (Throughout the paper, we use

upper case letters to denote aggregate variables.) Goods that a mass N of firms produces are aggregated

according to

Yt =

(∫ N

0

(
1

N

)1−ρ
yρj,tdj

) 1
ρ

. (10)

We assume that the aggregate good Y is produced competitively. Other aggregate variables are simply

summed up over the households or firms. For example, Ct =
∫ L
0 ci,tdi and Kt =

∫ N
0 kj,tdj.

The market clearing condition for final goods is

Ct +
dKt

dt
− δKt + ι

(
1− Ae,txe,t

Qt

)
Dt =Yt,

where Ae,t is the total assets of entrepreneurs and Qt is the aggregate financial asset, the sum of risk-free

market portfolios and risky stocks. The last term on the left-hand side of the equation indicates that a

part of the final goods is consumed as transaction costs. The labor market clearing condition is

∫ N

0
ℓj,tdj = L. (11)
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The market clearing condition for the shares of firms is

sj,t + sfj,t =1,

where sj,t is the shares owned by the entrepreneur according to (3) and sfj,t is the shares owned by

financial intermediaries. We assume that government transfers are adjusted such that tax revenues equal

government transfers in each period.

3 Firm-Side Properties

Before we define the equilibrium and solve the model, we review some of its firm-side properties. First,

in this model, given rft , the firm-side variables, such as ℓj,t, kj,t, and dj,t can be obtained as closed-form

expressions. These variables can be written as a product of components that are common across firms

and the heterogeneous component. Second, the firm’s productivity distribution is obtained independently

of other variables. It is a Pareto distribution that establishes Zipf’s law of firms when the minimum

employment level ℓmin is sufficiently small.

3.1 Firm-side variables

Employing the firm’s first-order conditions (FOCs), (8) and (9), together with the aggregate condition

(10) and the labor market condition (11), the firm’s variables can be written as follows (for the derivations,
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see Appendices B.2 and B.3):

ℓj,t = ℓt z
φ
j,t, where ℓt ≡

⎛

⎝ L/N

E
{
zφj,t

}

⎞

⎠ and φ ≡ ρ

1− ρ
, (12)

pj,tyj,t = pytℓt z
φ
j,t, where pyt ≡

(
αρ

MPKt

) α
1−α

E
{
zφj,t

} 1
φ

1
1−α

, (13)

kj,t = ktℓtz
φ
j,t, where kt ≡

(
αρ

MPKt

) 1
1−α

E
{
zφj,t

} 1
φ

1
1−α

, (14)

dj,tdt = dtℓtz
φ
j,tdt− φσzktℓtz

φ
j,tdBj,t,

where dt ≡ (1− (1− α)ρ)pyt − (δ + µk,t) kt,

qj,t = qtℓtz
φ
j,t, where qt ≡ (1− τf − ι)dt

∫ ∞

t
exp

{
−
∫ u

t
(rfs − µd,s)ds

}
du. (15)

Note that E
{
zφj,t

}
is the average of zφj,t over the firm size distribution (we will show later that the average

exists), and µk,t and µd,t are the expected growth rates of kj,t and dj,t, respectively.

In the above equations, each of the variables has common components, such as ℓt and pyt and the

heterogeneous component, zφj,t. Thus, the size distributions of the firm-side variables depend only on the

heterogeneous component.

3.2 Restructuring

Before deriving the firm size distribution, we analyze how firms that are restructuring buy the assets of

other firms. In each small time interval, some firms decrease their productivities from t and t + dt to

zj,t+dt < zmin. We assume that these firms increase the productivities and firm sizes by mergers and

acquisitions (M&A) through the stock market.

To understand how the productivities of firms change through M&A, suppose that the buyer firm

j, whose firm value is qbeforej,t+dt, acquires a part of the seller firm by paying qM&A
j,t+dt. The firm value after

the M&A is qafterj,t+dt = qbeforej,t+dt + qM&A
j,t+dt. We assume that according to (15), the productivity of the buyer

firm after M&A zafterj,t+dt increases, thereby satisfying qafterj,t+dt = qt+dtℓt+dt(zafteri,t+dt)
φ. The productivity of

the seller firm decreases by qM&A
j,t+dt, also according to (15).

Thus, on the buyer side, firms whose productivities at t+dt are less than zmin have to buy qt+dtℓt+dt

(
zφmin − zφj,t+dt

)

from other firms to undergo restructuring. We denote the total of these payments by the restructured

13



firms as Qrestructuring,t+dt.

On the seller side, we assume that at each instant, every firms sell a constant fraction mφdt of its

value to these restructuring firms at the market price mφqj,tdt. (φ is multiplied as the adjustment term.)

The total value of the sellouts is

mφdt

∫ N

0
qj,tdj = Nqt+dtℓt+dtE

{
zφj,t

}
mφdt.

Because the demand of restructuring firms equates the supply,

Qrestructuring,t+dt =Nqt+dtℓt+dtE
{
zφj,t

}
mφdt. (16)

Rearranging this equation and taking the limit as dt approaches zero from above, we obtain (see Appendix

B.4 for details)

m =(λ− φ)
σ2
z

4
, (17)

where λ is the Pareto exponent of the firm size distribution that is pinned down in the next section.

3.3 Firm size distribution

We detrend the firm’s productivity to derive the invariant productivity distribution. Let z̃j,t be the firm’s

productivity level after selling a part of the firm’s assets to restructuring firms, detrended by egzt (gz is

a constant whose value is determined below). The firm’s detrended productivity growth after a sellout is

dz̃j,t = (µz − gz −m) z̃j,tdt+ σz z̃j,tdBj,t,

or, d ln z̃j,t =

(
µz − gz −

σ2
z

2
−m

)
dt+ σzdBj,t. (18)

The Fokker–Planck equation for the probability density fz(ln z̃j,t, t) for the firm’s productivity is

∂fz(ln z̃j,t, t)

∂t
= −

(
µz − gz −

σ2
z

2
−m

)
∂fz(ln z̃j,t, t)

∂ ln z̃j,t
+
σ2
z

2

∂2fz(ln z̃j,t, t)

∂(ln z̃j,t)2
.

In this paper, we assume an invariant distribution for firms, that is, ∂fz(ln z̃j,t, t)/∂t = 0. In the case
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of the invariant distribution, the Fokker–Planck equation has a solution in exponential form,

fz(ln z̃j,t) = F0 exp(−λ ln z̃j,t), (19)

where the coefficients satisfy

F0 = λz̃λmin, λ = −2

(
µz − gz −

σ2
z

2
−m

)
/σ2

z . (20)

(19) shows that the distribution of ln z̃j,t follows an exponential distribution. Through a change of

variables, it can also be shown that the distribution of z̃j,t follows a Pareto distribution whose Pareto

exponent is λ.

In this model, the exogenous parameter ℓmin pins down λ and gz. From the restriction on ℓmin and

(12) (and by employing (22) below), we obtain the Pareto exponent for z̃j,t as

λ =
1

1− ℓmin
L/N

φ. (21)

With this λ, we obtain the rescaling parameter gz that assures the existence of the invariant distribution

of z̃j,t from (17) and (20).

Four remarks need to be made on the firm size distribution. First, we obtain a constant rescaled mean

E
{
z̃φj,t

}
for a constant z̃min as follows:

E
{
z̃φj,t

}
=

∫ ∞

z̃min

z̃φfz(ln z̃)
∂ ln z̃

∂z̃
dz̃ =

F0z̃
−(λ−φ)
min

λ− φ
. (22)

Second, the growth rate of the aggregate output is g ≡ gz/(1− α). We can confirm this property by

detrending and aggregating (13).

Third, Zipf’s law holds for the distribution of firm size, ℓj,t and yj,t. This is because the firm size

distribution cross-sectionally obeys z̃φj,t, whose Pareto exponent is λ/φ. (21) shows that λ/φ > 1 and

that if ℓmin is sufficiently small as compared with the average employment level L/N , λ/φ becomes close

to 1.

Fourth, the expected growth rate of the detrended firm side variables, that is, the expected growth

rate of z̃φj,t, is negative when the firm does not restructure. We can show this property, that is,
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φ
(
µz − gz −m+ (φ− 1) σ

2
z
2

)
< 0, from (20), if λ/φ ≥ 1, which is satisfied when the third remark

holds. This is a key property that generates a Pareto distribution with a finite distributional mean,

because otherwise, the distribution diffuses over time.

4 Aggregate Dynamics and Equilibrium of the Model

In this model, because the household’s policy functions are independent of its wealth level, the dynamics

of aggregate variables are obtained independent of the heterogeneity within entrepreneurs, innate workers,

and former entrepreneurs. In this section, we first show this property and then, define the equilibrium of

the model.

4.1 Aggregate dynamics of the model

Let variables with tilde such as K̃t be the variables detrended by egt. We show below that the aggregate

dynamics of the detrended variables can be reduced to the differential equations of S̃t ≡ St/egt =

(Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t), i.e.,

dS̃t =µS̃(S̃t)dt. (23)

Note that Ãe,t, Ãw,t, and Ãf,t are the (detrended) aggregate productivities of entrepreneurs, innate

workers, and former entrepreneurs. We also show that price variables, r̃t ≡ (rft , µq,t,σq,t), are the

functions of S̃t, i.e.,

r̃t =fr̃(S̃t). (24)

These results are obtained by the following steps.

1. Given K̃t, from (14),

rft + δ = MPKt =αρE
{
z̃φj,t

} 1
φ /
(
K̃t

L

)1−α

.
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2. From (4), C̃t = (β + ν)Ãt. Q̃t = Ãt − H̃t. Given MPKt, Ỹt = pytL/e
gt is pinned down. Then,

dK̃t

dt
=Ỹt − δK̃t − C̃t − ι

(
1− Ãe,txt

Q̃t

)
D̃t − gK̃t,

D̃t =(1− (1− α)ρ)Ỹt − (δ + µK̃)K̃t −
dK̃t

dt
, where µK̃ ≡ g + φ

{
(µz − gz) + (φ− 1)

σ2
z

2

}
,

and xe,t are jointly determined (see Appendix B.2 for the derivation of the latter equation).

Note that here, the expected return and volatility of a risky stock are jointly determined as follows

(see Appendix B.3 for details of the derivations):

µq,t =

⎧
⎨

⎩

(
1− τe

(1− τf − ι)
− 1

)
1

∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

+ rft

⎫
⎬

⎭ ,

σq,t =φσz

×

⎧
⎨

⎩1−
(

1− τe

(1− τf − ι)

)
K̃t

D̃t

1
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

⎫
⎬

⎭ ,

where
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du is computed by the following equation:

∫ ∞

t
exp

{
−
∫ u

t
(rfs − µd,s)ds

}
du =

Q̃t

(1− τf − ι)D̃t

.

3. The assets for the three types of households evolve as follows:

dÃe,t

dt
=(µae,t − g) Ãe,t + (ν + pf )NH̃t/L− (ν + pf )Ãe,t,

dÃw,t

dt
=(µaℓ,t − g) Ãw,t + (νL− (ν + pf )N)H̃t/L− νÃw,t,

dÃf,t

dt
=(µaℓ,t − g) Ãf,t + pf Ãe,t − νÃf,t,

where µae,t and µaℓ,t are the µa,ts of an entrepreneur and a worker. The human asset evolves as

dH̃t

dt
= −(w̃t + t̃r t)L+ (ν + rft − g)H̃t, (25)
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where

w̃t =(1− α)ρỸt/L,

t̃r t =

{
Ãe,txe,t

Q̃t

τ e +

(
1− Ãe,txe,t

Q̃t

)
τf
}
D̃t/L.

4.2 Definition of a competitive equilibrium

Using the property on the aggregate dynamics, we now define the equilibrium of the model. To define the

equilibrium, we specify the initial endowments of physical capitals and stocks in the following way. First,

to simplify the analysis, in what follows, we focus on the equilibrium under which the initial capital of

a firm is proportional to the firm’s productivity, i.e., k̃j,0 ∝ z̃φj,0. Then, the initial value of a firm is also

proportional to the firm’s productivity, i.e.,

q̃j,0 =
z̃φj,0

E
{
z̃φj,0

} Q̃0, where Q̃0 = Ã0 − H̃0. (26)

Second, we assume that all stocks are initially owned by households and except for those held by en-

trepreneurs are sold to the financial intermediaries at period 0.5 Let sij,0 be the initial shares of firm j

held by household i (then, e.g.,
∫ L
0 sij,0di = 1).

A competitive equilibrium of the model, given the set of the firm’s productivities, {z̃j,t}j,t, the initial

capitals of firms, k̃j,0 ∝ z̃φj,0, the initial shares of firms held by households, {sij,0}i,j , is a set of household

variables, {xi,t, vi,t, ãi,t}i,t, price variables, q̃j,0 and {r̃t}t ≡ {rft , µq,t,σq,t}t, and aggregate variables,

{S̃t}t ≡ {St/egt}t = {Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t}t such that

• the household variables, {xi,t, vi,t, ãi,t}i,t, where ãi,0 =
∫ N
0 q̃j,0sij,0dj + H̃0/L, are chosen according

to the household’s decisions on the portfolio choice (3) and (4), and the law of motion for total

asset (1), and satisfy the transversality condition (5),

• the price variables, q̃j,0 and {r̃t}t, are determined by the aggregate variables S̃t according to (26)

and (24),

• and the aggregate variables, {S̃t}t, evolve according to (23).

5We assume that the sellout to the financial intermediaries is mandatory. We can relax the assumption and allow
households to hold risky stocks of the firms not managed by the households. See the discussion at the end of Section 2.1.

18



5 Households’ Asset Distributions in the Steady State

In this model, households’ asset distributions in the steady state can be derived analytically. We show

below that the asset distributions of entrepreneurs, innate workers, and former entrepreneurs are all Pareto

distributions. We also discuss that the asset, income, and consumption distributions of all households

follow a Pareto distribution at the upper tail, whose Pareto exponent coincides with that of the asset

distribution of entrepreneurs.

5.1 Asset distribution of entrepreneurs

An individual entrepreneur’s asset, ãe,t, if he does not die, evolves as

d ln ãe,t =

(
µae − g − σ2

ae

2

)
dt+ σaedBi,t,

where µae and σae are the drift and diffusion parts of the entrepreneur’s asset process, respectively.

Because they are constants in the steady state, we omit the time subscript.

The initial asset of entrepreneurs with age t′ at period t is ht−t′ . The relative asset of the entrepreneurs

who are alive at t, relative to their initial asset is in a logarithmic expression, ln(ae,t/ht−t′) = ln ãe,t −

(ln h̃t−t′ − gt′) that follows a normal distribution with mean (µae − σ2
ae/2)t

′ and variance σ2
aet

′.

We obtain the asset distribution of entrepreneurs by combining the above property with the as-

sumption of constant probability of death. The probability density function of log assets becomes a

double-exponential distribution (see Appendix C for the derivations in this section).6

fe(ln ãi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fe1(ln ãi) ≡ (ν+pf )N
L

1
θ exp

[
−ψ1(ln ãi − ln h̃)

]

if ãi ≥ h̃,

fe2(ln ãi) ≡ (ν+pf )N
L

1
θ exp

[
ψ2(ln ãi − ln h̃)

]

otherwise,

6We normalize the probability density functions of entrepreneurs, innate workers, and former entrepreneurs, fe(ln ãi),
fw(ln ãi), and ff (ln ãi), respectively, such that

∫ ∞

−∞

{
fe(ln ãi) + fw(ln ãi) + ff (ln ãi)

}
d(ln ãi) = 1.
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where

ψ1 ≡µae − g − σ2
ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

− 1

)
,

ψ2 ≡µae − g − σ2
ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

+ 1

)
,

θ ≡
√
2(ν + pf )σ2

ae + (µae − g − σ2
ae/2)

2.

This result shows that the asset distribution of entrepreneurs follows a double-Pareto distribution (Ben-

habib et al., 2012 and Toda, 2012), whose Pareto exponent at the upper tail is ψ1.

5.2 Asset distribution of innate workers

An individual worker’s asset, ãℓ,t, if he does not die, evolves as

d ln ãℓ,t = (µaℓ − g) dt,

where µaℓ is the drift part of the worker’s asset process.

Under the asset process, the asset distribution of innate workers becomes

fw(ln ãi) =

⎧
⎪⎪⎨

⎪⎪⎩

νL−(ν+pf )N
L

1
|µaℓ−g| exp

(
− ν

µaℓ−g (ln ãi − ln h̃)
)

if ln ãi−ln h̃
µaℓ−g ≥ 0,

0 otherwise.

The result shows that the log assets of innate workers follow an exponential distribution, which implies

that their assets follow a Pareto distribution. With the parameter values in numerical analysis, the

trend growth of workers’ assets is close to the trend growth of the economy, that is, µaℓ ≈ g. Then, the

detrended assets of the innate workers are concentrated on the level around h̃.

5.3 Asset distribution of former entrepreneurs

The asset distribution of former entrepreneurs depends on the asset distribution of entrepreneurs, the

Poisson rate pf with which each entrepreneur leaves the firm, and the asset process after the entrepreneur

becomes a worker.
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We can analytically derive the steady state asset distribution of former entrepreneurs. Here, for

brevity, we only report the case where µaℓ ≥ g (for the µaℓ < g case, see Appendix C).

ff (ln ãi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pf

ν−ψ1(µaℓ−g)fe1(ln ãi)−
(

1
ν−ψ1(µaℓ−g) −

1
ν+ψ2(µaℓ−g)

)
pffe1(ln h̃)

× exp
(
− ν

µaℓ−g (ln ãi − ln h̃)
)

if ln ãi ≥ ln h̃,

pf

ν+ψ2(µaℓ−g)fe2(ln ãi) otherwise.

The probability density function for ãi ≥ h̃ consists of two exponential terms. As the asset level increases,

the second term, representing the innate workers’ distribution, declines faster than the first term, the

distribution of entrepreneurs. Therefore, the Pareto exponent of the former entrepreneurs’ asset distri-

bution becomes the same as that for entrepreneurs in the tail (the same result applies to the case where

µaℓ < g).

5.4 Pareto exponents of asset and income distributions for all of the house-

holds

We make two remarks on the households’ asset and income distributions. First, the Pareto exponent

at the upper tail of the households’ asset distribution is the same as that of the entrepreneurs’ asset

distribution, ψ1. This is because, as noted above, the distribution of the smallest Pareto exponent

dominates at the upper tail (see e.g., Gabaix, 2009).

Second, in this model, the consumption and income distributions at the upper tail are also Pareto

distributions with the same Pareto exponent as that of assets, ψ1. This is because the consumption and

income of a household are proportional to the household’s asset level.

6 Numerical Analysis

In this section, we numerically analyze how a reduction in the top marginal tax rate accounts for the

evolution of top incomes in recent decades. For this, we assume that an unexpected and permanent tax

cut occurs in 1975.

There are three reasons for choosing 1975 as the year of the structural change. First, several empirical

studies suggest that inequality has begun to grow since the 1970s (see for example, Katz and Murphy, 1992
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and Piketty and Saez, 2003). Second, some political scientists argue that U.S. politics transformed during

the 1970s in favor of industries (Hacker and Pierson, 2010), which might have affected entrepreneurs’

future expectations on tax rates. Third, the top marginal earned income tax declined from 77% to 50%

during the 1970s alone (see Figure 1). This would make CEOs anticipate a subsequent cut in the top

ordinary earned income tax, the most important variable in our analysis to account for the evolution of

top incomes. They suggest that a structural change occurred during the 1970s.

In our model, a tax cut affects top incomes by changing entrepreneurs’ incentive to invest in risky

stocks. In the tax parameters calibrated below, after 1975, the tax rate on risky stock τe becomes

relatively lower than the tax rate on the risk-free asset τf . This induces entrepreneurs to increase the

share of risky stocks in their asset portfolios. This is the reason why the Pareto exponent declines and

the top income share increases in our model.

6.1 Tax rates

We assume that risky stock in our model is a representation of incentive pay, such as employee stock

options. Thus, we set the tax on risky stocks τe to be equal to the top marginal ordinary income tax

that is imposed on top CEOs’ pay. On the other hand, the tax on risk-free assets, we assume, is the

sum of taxes that investors bear when they hold equities. We calculate the tax on risk-free assets τf ,

by using the equation 1 − τf = (1 − τ cap)(1 − τ corp), where τ cap and τ corp are the marginal tax rates

for capital gains and corporate income, respectively.7 These tax rates are calibrated by using the top

statutory marginal federal tax rates reported in Saez et al. (2012) (see Figure 1 and Table 1).

Insert Figure 1 here.

Insert Table 1 here.

7Although we use the capital gains tax primarily because of the availability of data, it can be justified by the following
reasoning. We assume that a firm uses all the profit for purchasing shares. Then, the firm pays households money equal
to the profit after corporate income tax. The money the households obtain is capital gains, on which capital gains tax is
imposed. (Finally, after a part of the after-tax money is paid to financial intermediaries as transaction costs, the households
obtain the residual.)
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6.2 Calibration

The parameters are chosen to roughly match the annual data. The first five parameters in Table 2 are

standard values. For example, we assume for ν that the average length of life after a household begins

working is 50 years.

ρ is set to 0.7, implying that 30% of a firm’s sales is rent. The value of ρ is lower than the standard

value, owing to two reasons. First, our model’s treatment of entrepreneurial income is different from the

data—in our model, an entrepreneur’s income comes mainly from the firm’s dividend, whereas in the

data, the CEO’s pay, in most situations, is categorized in labor income. A lower ρ is chosen to take this

into account. Second, if ρ is high, in the situation that entrepreneurs choose si,t according to (3), the

total value of an entrepreneur’s risky stocks exceeds the total value of financial assets in the economy.

To avoid this, a low ρ should be chosen.

For pf , we assume that the CEO’s average term of office is 20 years. ℓmin is set to unity, that is, the

minimum employment level is one person. We assume that L = 1.0 and N = 0.05. This implies that the

average employment of a firm is 20 persons that is consistent with the data reported in Davis et al. (2007).

Under the settings, the Pareto exponent of the firm size distribution in the model is 1/(1−0.05) ≈ 1.0526

that is consistent with Zipf’s law. Note that under these parameters, for small-sized firms, the value of

an entrepreneur’s risky stock calculated by (3) exceeds the value of his firm. To resolve this problem, we

assume that such an entrepreneur jointly runs a business with other entrepreneurs, such that the asset

value of the entrepreneurs’ risky stocks does not exceed the value of the joint firms. We assume that the

productivity shocks of the joint firms move in the same direction. A possible reason for this assumption

is that the productivity shocks are caused by managerial decisions.

For the calibration of firm-level volatility, we consider two cases. In Case A, we use the average

firm-level volatility of publicly traded firms. In Case B, we use the average firm-level volatility of both

publicly traded and privately held firms. These values are taken from Davis et al. (2007). In each case,

the transaction cost of financial intermediaries, ι, is calibrated to match the Pareto exponent in the

pre-1975 steady state with 2.4 that is close to the data around 1975. To investigate the extent to which

the calibrated ι is reasonable, we compute the model’s predictions on the size of the financial sector over

GDP, ι
(
1− Ãe,txt

Q̃t

)
D̃t

/
Ỹt, under the calibrated ι in Table 3. We find that the model’s predictions under

the calibrated ι are roughly comparable with the data.
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Insert Table 2 here.

Insert Table 3 here.

6.3 Computation of transition dynamics

We compute the Pareto exponent of the household’s income (or asset) distribution and the top 1% income

share before and after 1975. We assume that before 1975, the economy is in the pre-1975 steady state.

In our experiment, taxes change unexpectedly and permanently in 1975, and the economy moves toward

the post-1975 steady state.

We model the transition dynamics after 1975 as follows. First, the dynamics of aggregate variables

are computed separately. To compute the dynamics of a set of the aggregate variables S̃t ≡ St/egt =

(Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t) explained in Section 4.1, we need to pin down their initial values. We suppose

that when the tax change occurs in 1975, the aggregate capital stock is the same as that in the pre-1975

steady state. For the ease of computation, we also suppose the perfect risk-sharing for the unexpected but

verifiable change in the asset values that is caused by the tax change. Then, asset shares of entrepreneurs,

innate workers, and former entrepreneurs, Ae,1975/A1975, Aw,1975/A1975, Af,1975/A1975, respectively, are

the same as those in the pre-1975 steady state. The remaining initial variables, Ã1975 and H̃1975 are

determined by using the shooting algorithm and the following steps:

1. Set Ã1975. Set also the upper and lower bound of Ãt, ÃH and ÃL.

(a) Set H̃1975 and compute the dynamics of aggregate variables as explained in Section 4.1. Stop

the computation if Ãt hits the upper or lower bound, ÃH or ÃL.

(b) Update H̃1975 by solving (25) backward, with the terminal condition

H̃T =
(1− α)ρp̃y∗ + t̃r

∗

ν + rf∗ − g
,

where the variables with asterisks are those in the post-1975 steady state and

T = argmint

√
(K̃t − K̃∗)2 + (C̃t − C̃∗)2.

(c) Repeat (a) and (b) until |H̃new
1975 − H̃old

1975| < ε.
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2. Repeat the procedure and find the initial value Ã1975 under which the sequence of {K̃t, C̃t}t con-

verges to the post-1975 steady state.8

Note that since C̃t = vÃt, the above procedure is similar to the shooting algorithm used in standard

growth models. In computing the variables used below, we assume that after time T ∗, when the dynamics

of Kt and Ct are the closest to the post-1975 steady state, the economy switches to the post-1975 steady

state.

Next, from the aggregate variables calculated above, we compute the variables related to the en-

trepreneur’s and worker’s asset processes, µae,t, σae,t, and µaℓ,t, respectively. Using these variables, we

compute the asset (and thus income) distribution at the upper tail. The transition dynamics of the dis-

tribution can be computed by numerically solving the Fokker–Planck equations for the asset distributions

of entrepreneurs and workers, fe(ln ãi,t, t) and fℓ(ln ãi,t, t) ≡ fw(ln ãi,t, t) + ff (ln ãi,t, t), respectively, as

follows:9

∂fe(ln ãi,t, t)

∂t
=−

(
µae,t −

σ2
ae,t

2
− g

)
∂fe(ln ãi,t, t)

∂ ln ãi,t

+
σ2
ae,t

2

∂2fe(ln ãi,t, t)

∂(ln ãi,t)2
− (ν + pf )fe(ln ã, t),

∂fℓ(ln ãi,t, t)

∂t
=− (µaℓ,t − g)

∂fℓ(ln ãi,t, t)

∂ ln ãi,t
− (ν − pf )fe(ln ã, t).

We impose the boundary conditions that limãi,t→∞ fi(ln ãi,t, t) = 0 and that at the lower bound of ãi,t,

ãLB, fi(ln ãLB, t) moves linearly during the 50 years from the pre-1975 to the post-1975 steady state.10

6.4 Pareto exponent and the top 1% income share

Figures 2 and 3 plot the model’s predictions of the Pareto exponent and the top 1% share of income

distribution for Case A, together with the data. Data are taken from Alvaredo et al. (2013). For the

model’s predictions, we plot the two steady states for the pre- and post-1975 periods and the transition

path between them.11

8More specifically, we choose the sequence of {K̃t, C̃t}t whose distance is the closest to the post-1975 steady state values,
(K̃∗, C̃∗).

9We use the partial differential equations solver in Matlab. We set the 2000 mesh points to ln ãi,t between ln ãLB and
100 and 500 mesh points to time t between 1975 and 2030.

10ãLB is set to be higher than h̃ at the pre- and post-1975 steady states.
11The Pareto exponent during the transition path is calculated from the slope of the countercumulative distribution of

asset between top 0.1% and top 1%.
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We find that the model traces data for the Pareto exponent well. Although ι is set to match the level

of the Pareto exponent at the initial steady state, it is non-trivial that the model matches both the level

and changes in the Pareto exponent afterward. For example, suppose that we need to set a low (high)

ι to match the Pareto exponent at the initial steady state. Then, the changes in the Pareto exponent

during the transition become slower (faster) than the data because the volatility of each entrepreneur’s

asset decreases (increases).

The model also captures the trend in the top 1% share of income after 1975, although the model’s

prediction is somewhat lower in level than what the data reveal. It is possible that other factors, such as

the differences in talents, account for the gap between them.

The corresponding results for Case B are graphed in Figures 4 and 5. The model’s transitions of the

Pareto exponent and the top 1% share of income become slower than those in Case A. This is because the

firm’s volatility becomes higher in Case B. This makes xe,t lower by (3), which results in lower volatility of

the entrepreneur’s asset. This perhaps implies that the lower firm-level volatility in the top firms, where

the richest CEOs are employed, is an important factor in understanding the evolution of top incomes.

To take a closer look at the evolution of inequality in the model, in Figure 6, we plot the countercu-

mulative distributions of the household’s detrended asset, Pr(ãi,j > ã), at the pre- and post-1975 steady

states and at the transition paths. We find that from a lower asset level, the asset distribution converges

to the new stationary distribution at the post-1975 steady state. In other words, the convergence is

slower at the wealthiest level. We also find that the convergence is faster in Case A than in Case B that

is consistent with the above results.

Insert Figure 2 here.

Insert Figure 3 here.

Insert Figure 4 here.

Insert Figure 5 here.

Insert Figure 6 here.
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6.5 Implications of the model

6.5.1 Incentive pay for CEOs

In the real world, CEOs obtain incentive pay, such as stock options, whose value moves along with the

performance of the firm. In our model, this is represented by entrepreneurs holding risky stocks of their

firms. Here, we discuss whether our formulation is realistic.

Our formulation of CEO pay has a close similarity with those of Edmans et al. (2009) and Edmans

et al. (2012). These papers theoretically derive that under the optimal incentive scheme of a CEO in a

moral hazard problem, a fraction of the CEO’s total assets, denoted by xe,t in our model, is invested in

his firm’s stocks. Although our model does not take into account the moral hazard problem of CEOs,

our model has a similar feature. Edmans et al. (2009) also find evidence that an empirical counterpart

of xe,t, “percent–percent” incentives, which is a variant of (27) below, is cross-sectionally independent of

the firm size.12 This property is satisfied both in their and our models.

There are also differences between our model and those of Edmans et al. (2009) and Edmans et al.

(2012). In their models, only the disutility of effort, a deep parameter, affects the fraction of the en-

trepreneur’s assets invested in his firm’s stocks. In our model, however, several factors affect this fraction;

for example, an increase in the volatility of the firm value decreases the fraction of the entrepreneur’s

total assets invested in risky stocks xe,t (see (3)). This prediction is consistent with the evidence surveyed

in Frydman and Jenter (2010, Section 2.3).

In our model, changes in taxes also affect the fraction of the entrepreneur’s assets invested in his firm’s

stocks. This is a crucial factor in interpreting the recent evolution of top incomes. After the tax change,

top incomes evolve in our model, because it becomes more profitable for CEOs to hold risky stocks. Thus,

the tax change induces entrepreneurs’ holdings of risky stocks; that is, it induces an increase in xe,t in

the post-1975 periods. In the real world, this shows up as the increase in employee stock options. To

check the plausibility of our formulation, we compare the model’s prediction with the data on incentive

pay for CEOs.

12The difference between the “percent–percent” incentives and (27) below is that in the “percent–percent” incentives the
numerator is “x% increase in the CEO’s pay.” They are equivalent in the model due to (4) if the CEO’s pay is defined by
the entrepreneur’s consumption as in Edmans et al. (2012).
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An empirical counterpart of xe,t is

x% increase in the CEO’s wealth

1% increase in firm rate of return
, (27)

because in our model, from (1), it is equal to

d(ae,t)/ae,t
µq,tdt+ σq,tdBe,t

= xe,t.

Unfortunately, a long-term estimate of (27) that covers the pre- and post-1975 periods is not available.

Alternatively, a long-term estimate of a wealth–performance sensitivity measure (referred to as BI in

Edmans et al., 2009),

x% increase in the CEO’s wealth

1% increase in firm rate of return
× the CEO’s wealth

the CEO’s pay
, (28)

which is a modification of (27), can be calculated from data in Frydman and Saks (2010).13 We plot the

wealth-performance measure constructed from Frydman and Saks (2010) and the model’s counterpart in

Figure 7.14 We find that the wealth–performance measure has increased in the post-1975 period. Our

model is qualitatively consistent with the data. The model interprets that this is brought about by the

increase in xe,t. Quantitatively, in Case A, the model’s prediction accounts for the magnitude of the

change in the wealth–performance measure occurred in the post-1975 period, although the model does

not account for the level of the measure. The opposite results apply for Case B. Of course, our model is

not intended to explain the fluctuations in the wealth–performance measure itself, and it cannot explain

why these incentives increase around the late 1950s. Further research is needed to understand these

empirical facts.

Insert Figure 7 here.

13This measure is calculated by dividing the “dollar change in wealth for a 1% increase in firm rate of return” by “total
compensation,” both of which are taken from Figures 5 and 6 of Frydman and Saks (2010).

14The model’s counterpart of the wealth-performance measure in (28) is calculated from

d(ae,t)/ae,t
µq,tdt+ σq,tdBe,t

ae,t
µa,tae,t + ce,t

=
xe,t

µa,t + β + ν
.
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6.5.2 Effect of the tax change on capital accumulation

An important implication of the model is that the tax change does not significantly affect the capital

accumulation or capital–output ratio of the economy. This result comes from the property that investment

on capital is financed by retained earnings (for details, see Sinn, 1991 and McGrattan and Prescott, 2005).

Then, the tax change does not affect the return on stocks ((1 − τ)di,tdt + dqi,t)/qi,t, because qi,t in the

denominator of the equation changes to exactly offset the effect of tax change (1− τ) in the numerator.

This prediction of the model is in stark contrast to that obtained in previous models of income

distribution. However, it is consistent with the facts in the U.S. that the capital–output ratio has not

changed significantly over the post-World War II years nor the level of per capita output has increased

recently.

6.5.3 Welfare analysis

How has the tax change affected the welfare of households? To determine this, we calculate the utility

level of an entrepreneur and an innate worker (that is, a worker from the beginning of his life) in the

pre- and post-1975 steady states. Table 4 shows the detrended initial utility level, defined by Ṽ i(h̃,S) ≡

V i(h,S)− gt under parameterization of Cases A and B. (for details of the derivations, see Appendix D).

Not surprisingly, the utility level of an innate worker becomes lower in the post-1975 steady state

under Cases A and B parameterizations, whereas that of an entrepreneur becomes higher under Case

A parameterization. These results are consistent with the view that the rich have benefited from the

tax change at the expense of the poor. Interestingly, under Case B parameterization, the utility level

of an entrepreneur also becomes lower in the post-1975 steady state. The result seems to stem from

the property that taxes and transfers in the model play the role of an insurance device. Under Case

B parameterization, where firm-level volatility is high, the disappearance of the insurance device has a

detrimental effect on not only workers, but also entrepreneurs.

Insert Table 4 here.
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7 Conclusion

We have proposed a model of asset and income inequalities that explains both Zipf’s law of firms and

Pareto’s law of incomes from the idiosyncratic productivity shocks of firms. Empirical studies show that

the Pareto exponent of income varies over time, whereas Zipf’s law of firm size is quite stable. This paper

consistently explains these distributions with an analytically tractable model. We derive closed-form

expressions for the stationary distributions of firm size and individual income. The transition dynamics

of those distributions are also explicitly derived and are then used for numerical analysis.

Our model features an entrepreneur who can invest in his own firm as well as in risk-free assets.

The entrepreneur incurs a substantial transaction cost if he diversifies the risk of his portfolio returns.

When a tax on risky returns is reduced, the entrepreneur increases the share of his own firm. This,

in turn, increases the variance of his portfolio returns, resulting in a wider dispersion of wealth among

entrepreneurs.

By calibrating the model, we have analyzed to what extent the changes in tax rates account for

the recent evolution of top incomes in the U.S. We find that the model matches the decline in the

Pareto exponent of income distribution and the trend in the top 1% income share. There remain some

discrepancies between the model and data. For example, the model’s prediction of the top 1% share is

somewhat lower than the data. Further research is needed to understand the causes of such discrepancies.
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A Derivations for the household’s problem

This appendix shows the derivations of the household problem in Section 2.1. As shown in Section 4.1,

the aggregate dynamics of the model is described by St, whose evolution can be written as

dSt =µS(St)dt.

By Ito’s formula, V i(ai,t,St) is rewritten as follows:

dV i(ai,t,St) =
∂V i

t

∂ai,t
dai,t +

1

2

∂2V i
t

∂a2i,t
(dai,t)

2 +
∂V i

t

∂St
· dSt

+
(
V ℓ(ai,t,St)− V i(ai,t,St)

)
dJi,t,
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where Ji,t is the Poisson jump process that describes the probability of an entrepreneur leaving his firm

and becoming a worker.

dJi,t =

⎧
⎪⎪⎨

⎪⎪⎩

0 with probability 1− pfdt

1 with probability pfdt.

Thus,

Et[dV i
t ]

dt
= µa,tai,t

∂V i
t

∂ai,t
+

(σa,tai,t)2

2

∂2V i
t

∂a2i,t
+ µ′

S(St) ·
∂V i

t

∂St
+ pf

(
V ℓ
t − V i

t

)
.

Substituting in (2), we obtain a Hamilton–Jacobi–Bellman equation as follows:

0 = max
ci,t,xi,t

ln ci,t − (β + ν)V i
t + µa,tai,t

∂V i
t

∂ai,t
+

(σa,tai,t)2

2

∂2V i
t

∂a2i,t

+ µ′
S(St) ·

∂V i
t

∂St
+ pf

(
V ℓ
t − V i

t

)

= max
ci,t,xi,t

ln ci,t − (β + ν)V i
t +

σ2
q,t

2
x2
i,ta

2
i,t
∂2V i

t

∂a2i,t

+ ((ν + µq,t)xi,tai,t + (ν + rft )(1− xi,t)ai,t − ci,t)
∂V i

t

∂ai,t
,

+ µ′
S(St) ·

∂V i
t

∂St
+ pf

(
V ℓ
t − V i

t

)
. (29)

The FOCs with respect to ci,t and xi,t are summarized as follows:

c−1
i,t =

∂V i
t

∂ai,t
, (30)

xi,t =

⎧
⎪⎪⎨

⎪⎪⎩

− ∂V i
t /∂ai,t

(∂2V i
t /∂a

2
i,t)ai,t

µq,t−rft
σ2
q,t

, if i = e,

0, otherwise.

(31)

Moreover, (29) has to satisfy the transversality condition (5).

Following Merton (1969) and Merton (1971), this problem is solved by the following value function

34



and linear policy functions:

V i
t = Bi

t ln ai,t +Hi(St), (32)

ci,t = vi,tai,t,

qi,tsi,t = xi,tai,t,

bi,t = (1− xi,t)ai,t − ht.

We obtain this solution by guess–and–verify. The FOC (30) becomes

(vi,t)
−1 = Bi

t.

Condition (31) is rewritten as

xi,t =

⎧
⎪⎪⎨

⎪⎪⎩

µq,t−rft
σ2
q,t

, if i = e,

0, otherwise.

Substituting these results into (29), we find that

vi,t =β + ν.

B Derivations for the firm’s problem

B.1 Derivations of FOCs of the firm’s problem

This appendix shows the derivations of the firm’s problem described in Section 2.2.2. qj,t is a function of

kj,t, zj,t, and the aggregate dynamics St (see Appendix A). By applying Ito’s formula to qj,t, we obtain

dq(kj,t, zj,t,St) =

(
∂qj,t
∂zj,t

dzj,t +
∂qj,t
∂kj,t

dkj,t +
∂qj,t
∂St

· dSt

)
+

1

2

∂2qj,t
∂z2j,t

(dzj,t)
2

=

(
µz
∂qj,t
∂zj,t

+
1

2
σ2
z
∂2qj,t
∂z2j,t

)
dt+

∂qj,t
∂kj,t

dkj,t + µ′
S(St) ·

∂qj,t
∂St

+ σz
∂qj,t
∂zj,t

dBj,t.
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The FOCs for ℓj,t and dkj,t are

(1− τf − ι) =
∂qj,t
∂kj,t

,

wt =
∂pj,tyj,t
∂ℓj,t

.

By the envelope theorem,

rft
∂qj,t
∂kj,t

dt =(1− τf − ι)

(
∂pj,tyj,t
∂kj,t

dt− δdt

)
.

By rearranging the equation, we obtain

rft =
∂pj,tyj,t
∂kj,t

− δ.

B.2 Derivations of the firm-side variables

This appendix shows the derivations of the firm-side variables described in Section 3.1. From (9),

wt = (1− α)ρ

(
Yt

N

)1−ρ
zρj,tk

αρ
j,t ℓ

(1−α)ρ−1
j,t .

Rewriting this,

ℓj,t =

(
(1− α)ρ

wt

(
Yt

N

)1−ρ
zρj,tk

αρ
j,t

) 1
1−(1−α)ρ

. (33)

On the other hand, from (8),

MPKt = αρ

(
Yt

N

)1−ρ
zρj,tk

αρ−1
j,t ℓ(1−α)ρj,t . (34)

By substituting (33) into (34) and rearranging,

k
αρ

1−(1−α)ρ

j,t =

(
αρ

MPKt

(
Yt

N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt

N

)1−ρ
) αρ(1−α)ρ

(1−ρ)(1−(1−α)ρ)

z
η αρ

1−ρ

j,t , (35)
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where η ≡ ρ
1−(1−α)ρ . Substituting (35) into (33),

ℓj,t =

(
αρ

MPKt

(
Yt

N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt

N

)1−ρ
) 1−αρ

1−ρ

zφj,t (36)

By substituting this equation into the labor market condition (11) and rearranging,

(
αρ

MPKt

(
Yt

N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt

N

)1−ρ
) 1−αρ

1−ρ

=
L

N

1

E
{
zφj,t

} , (37)

or,

(
(1− α)ρ

wt

(
Yt

N

)1−ρ
) (1−α)ρ

1−ρ

=

⎧
⎨

⎩

(
αρ

MPKt

(
Yt

N

)1−ρ
)−αρ

1−ρ
L

N

1

E
{
zφj,t

}

⎫
⎬

⎭

(1−α)ρ
1−αρ

. (38)

Here, E is the operator of the cross-sectional average of all firms. Then, substituting (37) into (36),

ℓj,t =
L

N

⎛

⎝ zφj,t

E
{
zφj,t

}

⎞

⎠ . (39)

Rewriting (35),

kj,t =

(
αρ

MPKt

(
Yt

N

)1−ρ
) 1−(1−α)ρ

1−ρ
(
(1− α)ρ

wt

(
Yt

N

)1−ρ
) (1−α)ρ

1−ρ

zφj,t. (40)

Substituting (38) into (40),

kj,t =

(
αρ

MPKt

(
Yt

N

)1−ρ
) 1

1−αρ (
L

N

) (1−α)ρ
1−αρ

⎛

⎜⎜⎝
zφj,t

E
{
zφj,t

} (1−α)ρ
1−αρ

⎞

⎟⎟⎠ . (41)

Next, we derive Yt. Substituting (39) and (41) into yj,t = zj,tkαj,tℓ
1−α
j,t and rearranging,

yj,t =

(
αρ

MPKt

(
Yt

N

)1−ρ
) α

1−αρ (
L

N

) 1−α
1−αρ

⎛

⎜⎜⎝
z

1
1−ρ

j,t

E
{
zφj,t

} (1−α)
1−αρ

⎞

⎟⎟⎠ .
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Substituting this equation into Yt =
(∫ N

0

(
1
N

)1−ρ
yρj,tdj

) 1
ρ
,

(
Yt

N

)1−ρ
=

(
αρ

MPKt

)α(1−ρ)
1−α

(
L

N

)1−ρ

E
{
zφj,t

}(1−ρ)[ 1−αρ
(1−α)ρ−1]

. (42)

Substituting (42) into (41),

kj,t =

(
αρ

MPKt

) 1
1−α

E
{
zφj,t

} 1
φ

1
1−α

(
L

N

)⎛

⎝ zφj,t

E
{
zφj,t

}

⎞

⎠

=

(
αρ

MPKt

) 1
1−α

E
{
zφj,t

} 1
φ

1
1−α

ℓj,t. (43)

Substituting (39) and (43) into (42),

pj,tyj,t = Y 1−ρ
t yρj,t (44)

=

(
αρ

MPKt

) α
1−α

E
{
zφj,t

} 1
φ

1
1−α

(
L

N

)⎛

⎝ zφj,t

E
{
zφj,t

}

⎞

⎠

=

(
αρ

MPKt

) α
1−α

E
{
zφj,t

} 1
φ

1
1−α

ℓj,t. (45)

Rewriting (39),

ℓj,t = ℓt z
φ
j,t, where ℓt ≡

⎛

⎝ L/N

E
{
zφj,t

}

⎞

⎠ .

Rewriting (45),

pj,tyj,t = pytℓt z
φ
j,t, where pyt ≡

(
αρ

MPKt

) α
1−α

E
{
zφj,t

} 1
φ

1
1−α

.

Rewriting (43),

kj,t = ktℓtz
φ
j,t, where kt ≡

(
αρ

MPKt
E
{
zφj,t

} 1
φ

) 1
1−α

. (46)
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From (46),

dkj,t = d(ktℓtz
φ
j,t)

=
dktℓt
dt

zφj,tdt+ ktℓtd
(
zφj,t

)
.

Note that

d
(
zφj,t

)
=

{
φµz + φ (φ− 1)

σ2
z

2

}
zφj,tdt+ φσzz

φ
j,tdBj,t.

Then,

dkj,t = d(ktℓtz
φ
j,t)

=
dktℓt
dt

zφj,tdt+ ktℓtd
(
zφj,t

)

= kj,t {µk,tdt+ φσzdBj,t} .

Here,

µk,t ≡g − 1

1− α

drft /dt

MPKt
+ φ

{
(µz − gz) + (φ− 1)

σ2
z

2

}
.

gz is the growth rate of E
{
zφj,t

}
and g = gz/(1− α).

dj,tdt is computed by substituting these results into the following relationship:

dj,tdt =(pj,tyj,t − wtℓj,t − δkj,t)dt− dkj,t

=(1− (1− α)ρ)pj,tyj,tdt− δkj,tdt− dkj,t.

Then, dj,tdt is rewritten as follows:

dj,tdt = dtℓtz
φ
j,tdt− {φσzdBj,t} ktℓtzφj,t,

where dt ≡ (1− (1− α)ρ)pyt − (δ + µk,t) kt.
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By aggregating the above equation and detrending by egt, we obtain

D̃t =(1− (1− α)ρ)Ỹt − (δ + µK̃)K̃t −
dK̃t

dt
, where µK̃ ≡ g + φ

{
(µz − gz) + (φ− 1)

σ2
z

2

}
.

Here, we use the property that

1

1− α

drft /dt

MPKt
=

dK̃t

dt

/
K̃t.

B.3 Returns on risky stocks

This appendix explains the derivation of the returns on risky stocks described in Sections 3.1 and 4.1.

Multiplying (6) by e−
∫ u
t rfs ds and integrating,15 we obtain

qj,t =Et

[∫ ∞

t
(1− τf − ι)dj,ue

−
∫ u
t rfs dsdu

]
.

By further rearranging the above equation,

qj,t =

∫ ∞

t
(1− τf − ι)e−

∫ u
t rfs ds Et [dj,u] du.

Because

Et[dj,u] =duℓu Et[z
φ
j,u]

=dtℓt
duℓu
dtℓt

× exp

{∫ u

t

(
φµz + φ (φ− 1)

σ2
z

2

)
ds

}
· zφj,t

=dtℓtz
φ
j,t exp

{∫ u

t

(
d ln(dsℓs)

ds
+ φµz + φ (φ− 1)

σ2
z

2

)
ds

}

=dtℓtz
φ
j,t exp

{∫ u

t
µd,sds

}
, where µd,t ≡

d ln(dtℓt)

dt
+ φ

(
µz + (φ− 1)

σ2
z

2

)
.

15The Ito process version of integration by parts
∫ T

t
Xj,sdYj,s = Xj,TYj,T −Xj,tYj,t −

∫ T

t
Yj,sdXj,s −

∫ T

t
dXj,sdYj,s

is used here. Define ∆t,u ≡ e−
∫ u
t rfs ds. Then,

∫ ∞

t
∆t,udqj,u = qj,u∆t,u |∞t −

∫ ∞

t
qj,u(−rfu)∆t,udu
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Therefore,

qj,t =qtℓtz
φ
j,t, where qt ≡ (1− τf − ι)dt

∫ ∞

t
exp

{
−
∫ u

t
(rfs − µd,s)ds

}
du.

Then,

dqj,t =qj,t
d ln(dtℓt)

dt
dt+ qj,t

d(zφj,t)

zφj,t
+ qj,t

−1 + (rft − µd,t)
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

dt

=
{
−(1− τf − ι)dtℓtz

φ
j,t + rft qj,t

}
dt+ qj,tφσzdBj,t.

By using dj,t = dtℓtz
φ
j,t, the return of a risky stock is

(1− τe)dj,t + dqj,t
qj,t

=

⎧
⎨

⎩

(
1− τ e

(1− τf − ι)
− 1

)
1

∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

+ rft

⎫
⎬

⎭ dt

+ φσz

⎧
⎨

⎩1−
(

1− τe

(1− τf − ι)

)
kt
dt

1
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du

⎫
⎬

⎭ dBj,t.

Note that if (rft − µd,t) is constant as in the steady state,
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du = 1/(rf − µd)

and

qj,t =
(1− τf − ι)dtℓtz

φ
j,t

rf − µd
.

We need to know the value of
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du to compute the return on risky stocks.

We calculate the value as follows. Integrating (15), we obtain

∫ ∞

t
exp

{
−
∫ u

t
(rfs − µd,s)ds

}
du =

Qt

(1− τf − ι)dtL
.

If we know the value ofQt = At−Ht and (1−τf−ι)dtL, we can calculate the value of
∫∞
t exp

{
−
∫ u
t (rfs − µd,s)ds

}
du.

B.4 Derivations of the restructuring

This appendix shows the derivations of the restructuring described in Section 3.2. Let z̃j,t be the firm’s

productivity level after selling a part of the firm’s assets to restructuring firms, detrended by egzt. Then,
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Qrestructuring,t+dt is written as follows:

Qrestructuring,t+dt =Nqt+dtℓt+dte
gztE

{
z̃φmin − z̃φj,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
.

Here, E
{
z̃φmin − z̃φj,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
is the expectation of z̃φmin − z̃φj,t+dt conditional on z̃j,t+dt being

lower than z̃min. Because the evolution of z̃j,t follows (18) and the distribution follows (19),

E
{
z̃φmin − z̃φj,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+dt)

(
z̃φmin − z̃φj,t+dt

)
fz(ln z̃j,t)fz(ln z̃j,t+dt| ln z̃j,t)

=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+dt)

(
z̃φmin − z̃φj,t+dt

)
F0e

−λ ln z̃j,t

× 1√
2πσ2

zdt
e
− (ln z̃j,t+dt−(ln z̃j,t+µ̃zdt))2

2σ2
zdt ,

where µ̃z ≡ µz − gz − σ2
z/2−m, fz(ln z̃j,t+dt| ln z̃j,t) is the distribution of ln z̃j,t+dt conditional on ln z̃j,t

that follows a normal distribution, and fz(ln z̃j,t) is the steady state firm size distribution.

Under the setup, taking the limit as dt approaches zero from above, (16) becomes

E
{
z̃φj,t

}
mφ = lim

dt→0+

E
{
z̃φmin − z̃φj,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}

dt

= lim
t′→0+

dE
{
z̃φmin − z̃φj,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}

dt′
. (47)
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dE
{
z̃φmin − z̃φj,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}
/dt′ can be further calculated as follows:

dE
{
z̃φmin − z̃φj,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}

dt′

=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+t′)

d

dt′

⎛

⎝
(
z̃φmin − z̃φj,t+t′

)
F0e

−λ ln z̃j,t 1√
2πσ2

zt
′
e
− (ln z̃j,t+t′−(ln z̃j,t+µ̃zt′))2

2σ2
zt′

⎞

⎠

=
F0e−(λ−φ) ln z̃minφ

4 (λ− φ)

×
(
e

1
2λ(2µ̃z+λσ

2
z)t

′
(2µ̃z + λσ2

z) Erfc

[
(µ̃z + λσ2

z)
√
t′√

2σz

]

−e
1
2φ(2µ̃z+φσ

2
z)t′

(
2µ̃z + φσ2

z

)
Erfc

[(
µ̃z + φσ2

z

)√
t′

√
2σz

])
.

By combining these results and taking the limit, we obtain

lim
t′→0+

dE
{
z̃φmin − z̃φj,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}

dt′
=

1

4
F0e

−(λ−φ) ln z̃minφσ2
z .

Substituting this result into (47), we finally obtain

m =(λ− φ)
σ2
z

4
.

C Derivations of Households’ Asset Distributions in the Steady

State

This appendix shows the derivations of the households’ asset distributions described in Section 5.
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C.1 Derivation of the asset distribution of entrepreneurs

The discussion in Section 5.1 indicates that the probability density function of entrepreneurs at age t′

with a detrended log wealth level of ln ãi is

fe(ln ãi|t′) =
1√

2πσ2
aet

′
exp

(
− (ln ãi − (ln h̃+ (µae − g − σ2

ae/2)t
′))2

2σ2
aet

′

)
.

The probability density of entrepreneurs whose age is t′ is

fe(t
′) =

(ν + pf )N

L
exp (−(ν + pf )t

′) .

By combining them, we can calculate the probability density function of the entrepreneurs’ asset

distribution, fe(ln ãi), by

fe(ln ãi) =

∫ ∞

0
dt′ fe(t

′)fe(ln ãi|t′).

To derive fe(ln ãi) in Section 5.1, we apply the following formula to the above equation:

∫ ∞

0
exp(−at− b2/t)/

√
tdt =

√
π/a exp(−2b

√
a), for a > 0, b > 0.

C.2 Derivation of the asset distribution of innate workers

The asset distribution of innate workers is calculated as follows:

fw(ln ãi) =

∫ ∞

0
dt′ fw(t

′)fw(ln ãi|t′)

=

∫ ∞

0
dt′

νL− (ν + pf )N

L
exp(−νt′) · 1(ln ãi = ln h̃+ (µaℓ − g)t′)

=

∫ ln h̃+(µaℓ−g)∞

ln h̃

dt′

d ln ãi
d(ln ãi) · νL− (ν + pf )N

L
exp

(
− ν

µaℓ − g
(ln ãi − ln h̃)

)

× 1(ln ãi = ln h̃+ (µaℓ − g)t′)

=

⎧
⎪⎪⎨

⎪⎪⎩

νL−(ν+pf )N
L

1
|µaℓ−g| exp

(
− ν

µaℓ−g (ln ãi − ln h̃)
)

if ln ãi−ln h̃
µaℓ−g ≥ 0,

0 otherwise.
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Note that 1(ln ãi = ln h̃ + (µaℓ − g)t′) is a unit function that takes 1 if ln ãi = ln h̃ + (µaℓ − g)t′) and 0

otherwise.

C.3 Derivation of the asset distribution of former entrepreneurs

The asset distribution of former entrepreneurs is derived as follows. Let t′m ≡ (ln ãi − ln h̃)/(µaℓ − g).

First, we consider the case where µaℓ ≥ g. If ln ãi ≥ ln h̃, then

ff (ln ãi) =

∫ t′m

0
dt′ pffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dt′ pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=

[
−pf

ν − ψ1(µaℓ − g)
fe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

]t′m

0

+

[
−pf

ν + ψ2(µaℓ − g)
fe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

]∞

t′m

=
pf

ν − ψ1(µaℓ − g)
{−fe1(ln ãi − (µaℓ − g)t′m)× exp(−νt′m) + fe1(ln ãi)}

+
pf

ν + ψ2(µaℓ − g)
{−0 + fe2(ln ãi − (µaℓ − g)t′m)× exp(−νt′m)} .

By substituting the following relations into the above equation, ln ãi − (µaℓ − g)t′m = ln h̃, fe1(ln h̃) =

fe2(ln h̃), and t′m = (ln ãi − ln h̃)/(µaℓ − g), we obtain,

ff (ln ãi) =
pf

ν − ψ1(µaℓ − g)
fe1(ln ãi)

−
(

1

ν − ψ1(µaℓ − g)
− 1

ν + ψ2(µaℓ − g)

)
pffe1(ln h̃)

× exp

(
− ν

µaℓ − g
(ln ãi − ln h̃)

)
.

If ln ãi < ln h̃,

ff (ln ãi) =

∫ ∞

0
dt′pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν + ψ2(µaℓ − g)
fe2(ln ãi).
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Next, we consider the case where µaℓ < g. If ln ãi ≥ ln h̃, then

ff (ln ãi) =

∫ ∞

0
dt′pffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν − ψ1(µaℓ − g)
fe1(ln ãi).

If ln ãi < ln h̃,

ff (ln ãi) =

∫ t′m

0
dt′pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dtpffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν + ψ2(µaℓ − g)
fe2(ln ãi)

−
(

1

ν + ψ2(µaℓ − g)
− 1

ν − ψ1(µaℓ − g)

)
pffe1(ln h̃)

× exp

(
− ν

µaℓ − g
(ln ãi − ln h̃)

)
.

D Derivation of the welfare analysis

In this appendix, we calculate the ex ante utilities of an entrepreneur and a worker in the steady state

that were used in Section 6.5.3. We first derive the utility (value function) of a worker. By substituting

(3) and (4) into (29) and rearranging, we obtain Hw(S) in (32) in the steady state as follows:

Hw(S) =
1

β + ν

[
ln(β + ν) +

rf − β

β + ν

]
.

By using this equation, the value function of a worker in the steady state, whose total asset is ai, can be

calculated by

V w(ai,S) =
ln ai
β + ν

+Hw(S).

Next, using the above results, we derive the utility (value function) of an entrepreneur. From (29),
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we obtain He(S) in (32) in the steady state as follows:

He(S) =
1

β + ν + pf

[
pfHw(S) + ln(β + ν) +

rf − β + (µq − rf )xe/2

β + ν

]
.

The value function of an entrepreneur in the steady state, whose total asset is ai, can be calculated by

V e(ai,S) =
ln ai
β + ν

+He(S).

Section 6.5.3 calculates the detrended utility level of an entrepreneur and an innate worker that is

defined by

Ṽ i(h̃,S) ≡ V i(h,S)− gt =
ln h̃

β + ν
+Hi(S).
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Pre-1975 Post-1975
Ordinary income tax, τord 0.75 0.40
Corporate income tax, τ corp 0.50 0.35

Capital gain tax, τ cap 0.25 0.25
τe 0.75 0.40
τf 0.63 0.51

Table 1: Tax rates
Notes: The figures in the upper half of the table are calibrated from the top statutory marginal federal
tax rates in Figure 1 that is taken from Saez et al. (2012). The tax rate on risky stocks, τe, is set to be
equal to τord. The tax rate on risk-free assets, τf , is calculated by 1− (1− τ cap)(1− τ corp).

β Discount rate 0.04
ν Prob. of death 1/50
α Capital share 1/3
δ Depreciation rate 0.1
g Steady state growth rate 0.02
ρ Elasticity of substitution 0.7
pf Prob. of entrepreneur’s quitting 1/20
ℓmin Min. level of employment 1
L Mass of population 1.0
N Mass of entrepreneurs 0.05

Case A Case B
φσz Firm-level vol. of employment 0.25 0.45
ι Transaction costs of fin. intermed. 0.215 0.243

Table 2: Calibrated parameters
Notes: The figures of the firm-level volatility of employment are taken from Figure 2.6 of Davis et al.
(2007). Case A corresponds to the case where firm-level volatility is equal to that of publicly traded firms
in the data. Case B corresponds to the case where firm-level volatility is equal to that of both publicly
traded and privately held firms in the data.

Case A Case B
Pre-1975 4.7% 6.2%
Post-1975 1.9% 6.3%

Data
1980 4.9%
2006 8.3%

Table 3: Size of the financial sector
Notes: The left table shows the model’s predictions on the size of the financial sector over GDP

ι
(
1− Ãe,txt

Q̃t

)
D̃t

/
Ỹt at the pre- and post-1975 steady states under the parameter values in Cases A

and B. The right table shows the share of the financial sector in GDP in the U.S. in 1980 and 2006.
These data are taken from Greenwood and Scharfstein (2013).

48



Case A

Ṽ e(h̃,S) Ṽ w(h̃,S)
Pre-1975 36.27 35.03
Post-1975 36.55 32.84

Case B

Ṽ e(h̃,S) Ṽ w(h̃,S)
Pre-1975 36.23 34.98
Post-1975 35.63 33.12

Table 4: Welfare analysis
Notes: The table calculates the detrended initial utility level of an entrepreneur and an innate worker
at the pre- and post-1975 steady states. The detrended initial utility level is defined by Ṽ i(h̃,S) ≡
V i(h,S)−gt. The left table presents these calculations for Case A, whereas the right table presents them
for Case B.
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Figure 1: Federal tax rates
Note: The data are taken from Table A1 of Saez et al. (2012).
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Figure 2: Pareto exponent: Case A
Note: Data are taken from Alvaredo et al. (2013).
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Figure 3: Top 1% share of income: Case A
Note: Data are taken from Alvaredo et al. (2013).
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Figure 4: Pareto exponent: Case B
Note: Data are taken from Alvaredo et al. (2013).
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Figure 5: Top 1% share of income: Case B
Note: Data are taken from Alvaredo et al. (2013).
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(a) Case A
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Figure 6: Household’s asset distributions
Notes: The figures plot the countercumulative distributions of the household’s detrended asset under
the pre- and post-1975 steady states as well as the transition paths. For example, “1985 (transition)”
indicates the wealth distribution in 1985 under the model’s transition path. The left figure presents the
distributions for Case A, whereas the right figure presents them for Case B.
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Figure 7: Wealth–performance measure
Notes: For the definition of the wealth–performance measure, see (28). The data are calculated by
dividing “dollar change in wealth for a 1% increase in the firm’s rate of return” by “total compensation,”
both of which are estimated in Frydman and Saks (2010). These data correspond to the median values
of the 50 largest firms.
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