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1. Introduction

Because tackling global environmental problems such as climate change

imposes significant costs on society, authors such as Nordhaus (2007) suggest

a gradual approach to emissions reduction. Given that Acemoglu et al. (2012)

claim that an immediate switch toward R&D related to clean technologies is

important, the knowledge gained through R&D should be useful for designing

optimal environmental policy. In this study, we develop a model in which

a research institute conducts R&D on a new clean technology that aims to

reduce costs, although the pace of progress is unknown. Before the new

technology is developed, producers use the old technology, which generates

external costs such as pollution. The central authority wants to replace the

old (dirty) technology with the new (clean) technology. Our main question

is how the optimal R&D policy is affected by learning-by-doing in research.

Note that unlike in the literature on learning-by-doing in the production

sector, in which costs are reduced by increasing cumulative output (cf. Popp

et al. (2010)), we assume that learning occurs in the R&D sector.

To investigate the effect of learning, we formulate an R&D project as

a step-by-step process. The research institute updates its belief about the

potential of the current research project and makes a “go” or “no-go” decision

after each trial to pass the current research step. Both private and social

returns to R&D are only obtained when the research institute completes all

steps, which results in the new clean technology being put to practical use and

replacing the old technology. Because of incomplete information about the

research’s potential and the externalities associated with the old technology,

the ex post optimal allocation of R&D investment is rarely achieved. To

eliminate this inefficiency, at least to some degree, we consider the effects of

two policies: an R&D investment subsidy and a Pigouvian tax on the old

technology.1 We show that the optimal R&D subsidy is higher when learning

1Many studies have examined environmental tax and subsidy policy. In the long run, an
important criterion for judging environmental policies is the extent to which they promote
the new clean technology (Kneese and Schulze (1975)). Some evidence from environmental
economics research suggests that market-based instruments such as taxes are more effective
at inducing technological change than are command-and-control instruments because they
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by a researcher on the quality of its research project is taken into account,

compared with the case without such learning. A Pigouvian tax on the dirty

technology can also stimulate R&D activity by raising the prices of goods

produced by the old technology; this reduces the extent to which the new

substitute technology must be developed to be commercially viable. However,

we show that a Pigouvian tax raises the probability of a bad project being

carried out relative to granting an R&D subsidy. In other words, learning

to find a better project is less efficient under a Pigouvian tax. However, the

comparison of efficiency in terms of welfare across policies depends on the

context, because a Pigouvian tax tends to induce the early adoption of the

new technology.

The model presented herein is an optimal stopping problem in which R&D

is completed after a fixed number of successes in Bernoulli trials and there

is Bayesian-style learning about the unknown probability of success. Our

study is conceptually close to that of Cowan (1991), who analyzes a model of

technology adoption with increasing returns in an armed-bandit setting. He

shows that although the central authority can improve the technology adop-

tion process by internalizing the positive externality from increasing returns,

it is still possible for technology adoption to converge to an inferior option.

The distinction between our study and that of Cowan (1991) is threefold.

First, we introduce a fixed goal for the trials, which is the completion of an

R&D project. Neither the research institute nor society obtains any return

from their R&D investment until the project is completed and the new tech-

nology is commercialized. Therefore, the remaining steps, or the expected

duration of the R&D project, crucially affects decision making. As the num-

ber of remaining steps to completion decreases, it becomes less important to

infer the superior option in terms of the probability of success at each step.

Second, by considering two or more projects, we do not incorporate into

our model the multi-armed bandit problem. This approach is taken because

there are no instant rewards when an arm (i.e., a project in this study) is

provide incentives to avoid tax (Newell et al. (1999)). Laffont and Tirole (1996) and Jung
et al. (1996) examine how the choice of policy instruments affects innovation.

3



successfully pulled and the best arm provides not the best pulls in perpetuity

but rather the shortest expected time to enjoying a fixed payoff. Third, we

define indices to capture the efficiency of learning and the social welfare loss

to evaluate the examined policies quantitatively. The former is defined as

the probability that the socially desired option is chosen and the latter is

defined as the gap between the expected social net benefit obtained under

a policy and the first-best outcome. Moreover, the parameters used in each

simulation are chosen based on the body of research findings on this topic

and interviews with representatives of the Toyota Motor Corporation about

R&D into electric vehicles, an important part of R&D into clean automobiles.

Our model is also related to the project choice models presented in the

industrial organization literature. Many of these studies incorporate strategic

relationships among innovators and/or venture capitalists (see, for example,

Dasgupta and Maskin (1987) and, more recently, Cardon and Sasaki (1998),

Gerlach et al. (2005), and Bergemann and Hege (2005)). Because the focus of

these studies is not the success or failure of particular R&D investments, R&D

processes are appropriately simplified, typically to one-shot processes. On the

contrary, we investigate R&D processes in more detail by focusing on a single

decision maker’s problem.2 No previous studies have thus far developed a

systematic framework for analyzing R&D choice with environmental policies.

The remainder of this paper is organized as follows. In Section 2, we

present a model with one R&D project and policy interventions. In Section

3, we introduce learning efficiency and social loss to evaluate the policy im-

pacts by simulations. In Section 4, we extend the model to incorporate two

projects. In Section 5, we provide concluding remarks and discuss.

2. A Model with One R&D Project

Suppose that a mature product generates external costs or pollution as

a byproduct of production. Hence, there is an incentive, especially for the

2In Appendix D, we show that the impact of learning in one-step R&D is quantitatively
small, based on our parameter setting.
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government, to develop environmentally friendly alternatives. For example,

electric vehicles or fuel-cell vehicles are new alternatives to petrol-powered

vehicles. Thermal power versus solar power is also applicable to this frame-

work.

Suppose that the initial unit cost of the new clean technology is c0, which

is assumed to exceed the cost level required for marketability. A research

institute may conduct R&D into this technology at a fixed cost of 1 per

period. Through R&D investment in period t, ct+1 falls to (1− α) ct with a

probability of q, where α ∈ (0, 1).

We assume that q is unknown. Hence, this R&D process is a sequence of

Bernoulli trials with an unknown probability of success and a known goal.

Let c∗ be the target cost level at which the new clean technology can replace

the old dirty technology in the market. To complete the project, the institute

needs M successes, such that

(1− α)M−1 c0 > c∗ ≥ (1− α)M c0

or

M =

⌈
ln c0 − ln c∗

− ln (1− α)

⌉
, (1)

where ⌈x⌉ ≡ min {n ∈ Z|x ≤ n}.
For simplicity, we assume that the researcher does not obtain any return

until ct reaches c
∗, and the new technology immediately prevails when c∗ is

attained. After M successes, the research institute and society obtain V and

X, respectively; we assume X > V . The social return X can be decomposed

into the external costs emitted by the old technology plus the private return,

V , minus the lost profits of firms using the old technology. We assume that

the research institute is risk neutral.

2.1. The R&D Decision with Learning

2.1.1. Prior and Posterior Distributions of q

We assume that the initial prior about q is uniform, U [0, 1], which is

equivalent to a beta distribution, Be (q|1, 1). It is known that, starting with

a beta distribution, the posterior distribution is also a beta distribution de-

pending on the numbers of successes and failures.
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Let n be the total number of trials and m the remaining steps. The

posterior density function is

f (q|n,m,M) =
qM−m (1− q)n−M+m

B (M −m+ 1, n−M +m+ 1)
,

where B is the beta function. For future reference, note that

E (q|n,m) =
M −m+ 1

n+ 2
. (2)

2.1.2. The R&D Decision Rule

A state (n,m) is feasible if (n,m) ∈ Z+ × Z+, n ≥ M − m, and m ≤
M . The research institute conducts R&D for a given feasible state (n,m)

to maximize the expected net benefit from the project; this constitutes an

optimal stopping problem. Let the cost of R&D in each trial be set at 1.

The value of the project, v (n,m), satisfies

v (n,m) =

 max

{
0,−1 + β

[
E (q|n,m) v (n+ 1,m− 1)

+ (1− E (q|n,m)) v (n+ 1,m)

]}
for m ≥ 1,

V for m = 0,

(3)

where β is a discount factor. Hence, for m ≥ 1, the institute conducts R&D

if

E (q|n,m) v (n+ 1,m− 1) + (1− E (q|n,m)) v (n+ 1,m) >
1

β
.

Let n̂ (m) be the stopping trial in the sense that the research project

is terminated when the total number of research trials reaches n̂ (m) if the

remaining steps to the goal equal m.

Proposition 1. There uniquely exists an n̂ (m) for each m ∈ {1, 2, ...,M}
such that

v (n,m) > 0 ⇔ n < n̂ (m) ,

where

n̂ (m) = min {n ≥ M −m | βE (q|n,m) v (n+ 1,m− 1) ≤ 1} .

Moreover, n̂ (m) decreases with m.
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Figure 1: The R&D region and two sample paths. Starting at (M, 0), both sample paths
move to (M, 1), which implies that the first research trial fails. However, because the path
is still beneath n̂ (M), the research institute continues R&D. In this example, the second
trial is a “success” and thus it reaches (M − 1, 2). As long as the path is in the R&D
region (the area below n̂ (m)), R&D continues. R&D stops if it goes off the R&D region
(“quit”) or reaches m = 0 (“completion”). The Paths never cross the line representing
m = M − n because n < M −m is not feasible.

Intuitively, the researcher should stop the research project when it pro-

vides no expected profit even if the next trial ends in success. According

to Proposition 1, the R&D decision is straightforward given the sequence of

n̂ (m) values. Appendix A provides a proof of Proposition 1 and shows how

to compute v(n,m), where n̂ and v are decided sequentially.

Figure 1 shows the sample paths of the R&D project. The research in-

stitute continues the project if and only if the current pair (n,m) satisfies

n < n̂ (m). It terminates the project in two cases: one is “completion,” when

m reaches 0; the other is “quit,” when n reaches n̂ (m).

When the research institute pursues the social benefit of R&D, X, as if

the government conducts the project, the above argument works by replacing

V with X. This is the second-best case in the sense that the inefficiency

stemming from the externality is resolved and the only inefficiency is derived
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from the incomplete information about the capability of the project.

2.2. The R&D Decision Without Learning

To evaluate the contribution of learning, we first check what happens if

there is no learning. Even when the true probability of success is unknown,

the solution without learning is simple. The expected value of the R&D

project with m remaining steps, vNL (m), is

vNL (m) = E

(
βNV −

N−1∑
i=0

βi

∣∣∣∣∣m
)

(4)

where N is the required number of periods until the completion of the R&D

project. N is a random variable whose distribution is a negative binomial

distribution with parameters m and q. We assume that the common belief

about q follows a uniform distribution on [0, 1].

(4) can be developed as

vNL(m) =

(
V +

1

1− β

)
E
(
βN
∣∣m)− 1

1− β

=

(
V +

1

1− β

)∫ 1

0

(
βq

1− β (1− q)

)m

dq − 1

1− β
, (5)

where we used the fact that

E
(
βN |q,m

)
=

(
βq

1− β (1− q)

)m

. (6)

The researcher conducts R&D if and only if vNL (m) > 0. Given that

vNL (m) is strictly decreasing in m as long as vNL (m) > 0, the researcher

starts and continues the R&D project until completion if and only if vNL (M) >

0.

2.3. The First-best Decision: Complete Information and the Pursuit of the
Social Return of R&D

The second situation that should be compared with the decision-making

process in Section 2.1 is the first-best case in which q is known and the return

of R&D is set at X > V . For a given probability of success, q ∈ [0, 1], the
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expected net social benefit of the R&D project is

E

(
βNX −

N−1∑
i=0

βi

∣∣∣∣∣ q,m
)

=

(
X +

1

1− β

)
E
(
βN |q,m

)
− 1

1− β
, (7)

Thus, from (6), the institute should conduct the project if(
βq

1− β (1− q)

)m

>
1

(1− β)X + 1
.

Because the left-hand side of the above inequality is decreasing in m, the

research institute starts and continues to carry out the project if and only if

q >
1− β

β

1

[(1− β)X + 1]
1
M − 1

≡ q. (8)

We use q to define learning efficiency in Section 3, which indicates how

likely the research institute is to choose the truly promising project. From

(6)-(8), the first-best value of the R&D project for a given q is

vFB (q) =


(
X + 1

1−β

)(
βq

1−β(1−q)

)M
− 1

1−β
if q > q,

0 otherwise.
(9)

2.4. R&D Subsidy

In this subsection, we investigate how an R&D subsidy affects the R&D

process. Let us denote s ∈ [0, 1) as the R&D subsidy, with which the R&D

cost in each trial becomes 1− s. Because a negative externality is generated

by the old dirty technology, the government may have an incentive to promote

R&D in the new clean technology. The government’s decision depends on

whether it considers learning in the research sector.

First, we consider the case with the learning process described in Section

2.1. Let us denote v (n,m |V, s) as the value function when the return is V

and the subsidy is s. Then, we obtain the following proposition and corollary.
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Proposition 2. Assume V < X and s ∈ [0, 1).

v

(
n,m

∣∣∣∣ V

1− s
, 0

)
=

1

1− s
v (n,m |V, s) ,

n̂

(
m

∣∣∣∣ V

1− s
, 0

)
= n̂ (m |V, s) .

Corollary 1. An R&D subsidy induces the second-best R&D decision by set-
ting s = s∗ ≡ 1− V/X.

The proof of Proposition 2 is in Appendix B. The proof of its corollary

is straightforward. The R&D decision under a subsidy of s is identical to

that under no subsidy if we replace the return from the completion of R&D

with V
1−s

. As a result, by setting s∗ = 1 − V/X, the government can make

the private R&D decision mimic the one that would be taken by a research

institute pursuing social benefit.

Proposition 2 also implies that n̂ (m |V, s2 ) ≥ n̂ (m |V, s1 ) if s2 > s1 be-

cause v (n,m |V, 0) increases with V . Figure 2 shows the effect of the R&D

subsidy for a given m. An increase in the R&D subsidy shifts v upwards

and increases the stopping trial n̂. As a result, the research institute is more

likely to conduct and complete the R&D project under a positive subsidy.

Now, we compare the optimal subsidies with and without learning. Let

sNL be the optimal subsidy without learning. The private expected net

benefit under subsidy s in the no-learning case is

vsNL(m|s) =
(
V +

1− s

1− β

)
E
(
βN
∣∣m)− 1− s

1− β
. (10)

Obviously, vsNL(m|0) = vNL(m).

If the government wants a private firm to conduct an R&D project with-

out any consideration of learning about project quality, it is sufficient to make

vsNL(M |s) > 0. Therefore, the optimal subsidy without learning is sNL = 0

if vNL(M) > 0. sNL > 0 only when vNL (M) ≤ 0 and the project is socially

worthwhile. Since s∗ makes the private expected benefit meet the social ex-

pected benefit, vsNL(M |s∗) > 0 must hold if the project is promising from
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0 M −m

n̂(m|V, s1)

v(n,m|V, s2)

v(n,m|V, s1) n̂(m|V, s2)

v

Figure 2: The effect of an R&D subsidy.

the social point of view. Therefore, there exists some sNL < s∗ to satisfy

vsNL(M |sNL) > 0.3 This argument leads to the next proposition.

Proposition 3. The optimal subsidy when the learning process is taken into
account, s∗, is greater than that without consideration of learning, sNL.

2.5. A Pigouvian Tax on the Dirty Technology

Suppose that the government imposes a Pigouvian tax on production

based on the old technology. (A Pigouvian subsidy on the new technology

has the equivalent effect.) Although the primary purpose of a Pigouvian tax

is to reduce external costs, it influences on the R&D decision through its

effect on the target cost level. Because the production cost of using the old

3From (10), the required subsidy to make vsNL(m|s) > 0 is that slightly higher than

1− E(βN |M)

1− E(βN |M)
(1− β)V.
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technology is raised by the tax, the new technology can be commercialized

despite its higher production cost if the impact of the tax is sufficiently large.

Let (1 + τ) c∗ be the new target cost after the Pigouvian tax is imposed

(τ ≥ 0) and let gτ be the change in the required number of successes before

commercialization. From modification of (1),

gτ ≡ M −
⌈
ln c0 − ln (1 + τ) c∗

− ln (1− α)

⌉
. (11)

The Pigouvian tax may bring the research institute closer to achieving

its goal according to (11). Given τ , the value function (3) is redefined as

v (n,m|τ) =

 max

{
0,−1 + β

[
E (q|n,m) v (n+ 1,m− 1|τ)
+ (1− E (q|n,m)) v (n+ 1,m|τ)

]}
for m ≥ gτ + 1,

V for m = gτ .

As shown in Proposition 4, the Pigouvian tax may also induce private R&D,

similar to the R&D subsidy policy.

Proposition 4. For τ, τ ′ ∈ [0, c0/c
∗ − 1) and τ > τ ′,

n̂ (m|τ) ≥ n̂ (m|τ ′) ∀m ∈ [gτ + 1,M ] .

The proof is in Appendix C.

3. Simulations of Policy Impacts

3.1. Learning Efficiency

The literature on learning considers the probability that the learning pro-

cess converges to the best choice as the process is repeated infinitely many

times (e.g., Cowan (1991)). We similarly define learning efficiency, LE, in

terms of the probability that the choice of project converges to the one that

would be made under complete information and from the social point of view.

Under complete information, the socially best strategy is that R&D contin-

ues to completion if and only if q > q. Thus, LE under a policy of granting
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a subsidy of s for a given q is

LE (s|q) =

{
Pr (“completion”|q, s) if q > q,

Pr (“quit”|q, s) if q ≤ q.

To evaluate a policy (ex ante) in terms of learning efficiency, we take the

expectations of LE(s|q) over q, for which we use q ∼ U [0, 1], the same as

the initial prior.

LE (s) =

∫ q

0

Pr (“quit”|q, s) dq +
∫ 1

q

Pr (“completion”|q, s) dq. (12)

Clearly, if the research institute knows q and pursues the social benefit,

as described in Section 2.3, LE = 1 for any s. Deviation from complete

information, the social viewpoint or both lowers learning efficiency to below

unity. The minimum value of LE is attained when the private research

institute does not update its belief, as in Section 2.2. In this no-learning

case, learning efficiency, say LENL, is

LENL(s) =

{
1− q if vNL (M |s) > 0,

q otherwise.

The gap between LE and LENL indicates the degree to which the proba-

bility of making the right choice is improved by learning about the capability

of the project.

3.2. Simulation

In this subsection, we investigate the policy effects by simulations. The

parameters used in each simulation are chosen based on previous research

and interviews with representatives of the Toyota Motor Corporation about

R&D into electric vehicles.4

4Ito and Managi (2015) study the cost-effective strategy for reducing CO2 emissions
from the transport sector. They analyzes conditions of clean vehicles to be replaced for
old vehicles (see also Managi (2012)).
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3.2.1. Parameter Settings

Initial cost and target cost. We set c0 at the initial unit cost of electric vehicles

and the target cost level, c∗, at the current price of a typical small car. Then,

c0 = 460 and c∗ = 150 (in ten thousand Japanese yen). Both capture the full

cost of production. Note that only the ratio c0/c
∗ matters in the decision-

making process.

Cost reduction rate. The rate at which costs are reduced has been inves-

tigated in the literature on learning curves. The surveys by Dutton and

Thomas (1984) and Popp et al. (2010) indicate a progress ratio or learn-

ing rate of about 20% in many industries; the progress ratio is defined as

the percentage reduction in unit cost following a doubling of cumulative

output. More specifically, if the cost curve is n−bc0, where n is the cumu-

lative amount and b is a positive parameter, the progress ratio is defined

as 1 − (2n)−b/n−b = 1 − 2−b. The engine of cost reduction in the main

body of studies on learning-by-doing does not easily fit our R&D analysis.

However, Söderholm and Sundqvist (2007) examine the learning curve with

both cumulative outputs and R&D expenditure in the wind energy industry

and find that 15% of the progress ratio comes from R&D expenditure (with

5% coming from typical learning-by-doing). Therefore, we assume that the

progress ratio related to R&D is 15% and thus the corresponding b is about

0.23.

We set the cost reduction rate, α, at a value that is consistent with the

standard progress ratio presented above. One problem with this approach is

that our cost curve is not isoelastic such as n−bc0 but exponential on average

for a given q: (1−αq)nc0 from the binomial theorem. To bridge this gap, we

search αq which equals the average of

1− e−b logn
n ,

to have n−b ≈ (1 − αq)n on average. We choose the coverage of n as 1 to

15 because the analysis in Söderholm and Sundqvist (2007) ranges up to 14

years, depending on the country. Then, we find αq being about 0.05. Since

the ex-ante average of q is 0.5 under our assumption, we set α = 0.1.
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R&D reward and external costs. In the above model, we set the per-period

cost of an R&D project as 1 because the decision problem, given by (3), is

equivalent for multiplication by any positive constant. We keep this normal-

ization in our numerical analyses.

The private reward for R&D, V , should be the expected discounted sum

of profit flows (divided by the per-period cost of an R&D project). However,

it is hard to choose a number that represents the expected sales volume of

electric vehicles. Rather, we estimate the per-unit expected profits of electric

vehicles and use this as the proxy for V .

We estimate the per-unit expected profits based on the interview as fol-

lows. First, we calculate the profit rate for a typical small car using the unit

profit and manufacturing cost, which is about 30%. Then we apply this profit

rate to the expected unit manufacturing cost of electric vehicles. Because the

cost of batteries in electric vehicles cannot be determined exactly, we use two

estimated values of V , {48.4, 77.8} (in ten thousand Japanese yen), which

represent low and high battery costs.

Social benefit, X, must consist of the negative externality derived from

using the old technology. Because it is difficult to quantify this externality

precisely, we simply set X = 100. Our results are robust to other values of

X that exceed both values of V .

In summary, we use two parameter sets that share c0 = 460, c∗ = 150,

α = 0.1, and X = 100 in common, but have distinct V : {48.4, 77.8}. Under
these parameter values, M = 11, q = 0.298, and vNL(M) > 0. Hence, the

best policy when the government ignores learning in the private sector is

s = 0 and τ = 0. Further, LE in the case of no-learning is constant over s

and τ .

3.2.2. R&D subsidy

An R&D subsidy increases the number of research trials and raises the

completion rate. When the true value of q is below the social threshold q,

although the project is not worth the expense, the subsidy policy nevertheless

inefficiently encourages researchers to pursue the R&D project. However,

the quantitative significance of this source of inefficiency depends on the
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situation.

Figure 3 shows LE across R&D subsidies.5 First, learning substantially

increases the probability of making the right choice: even without a subsidy,

LE surges by 12% and 17% for the lower and higher values of V , respectively,

compared with the no-learning case. Second, LE is nonmonotonic and there

is a maximum at some subsidy. Because an R&D subsidy stimulates research

activity (i.e., n̂ (m|s) is nondecreasing in s for any m), there is a surge in LE

if, without any policy, the current project is highly likely to be terminated

before completion even though the true q is high. This occurs primarily when

V is low. On the contrary, LE declines when a subsidy facilitates project

completion even though the true q is low. The impact of the R&D subsidy

is determined by the net effect of this tradeoff. In the current simulation,

there are two peaks of LE for each V . For each V , the LE-maximizing

subsidies locate across the optimal subsidy, 1−V/X as in Corollary 1.6 The

maximum values should be the same because the problem with V and s is

identical to the problem with V
1−s

and s = 0 (see Proposition 2). The optimal

R&D subsidy policy raises the probability of making the right choice by 7.1%

under the lower V and 1.7% under the higher V .

To see the impact of learning from the alternative point of view, we define

another efficiency measure that considers social loss relative to the first-best

outcome, defined in (9). We define social loss, SL, as the average difference

between the first-best value and the present-discounted value of the social

net benefit of the R&D process computed from the simulation. Social loss

5Discrete jumps in LE come from discrete changes in the cutoff number of trials,
n̂(m|s). Those changes vary across m for the same shift in s, while n̂ is more frequently
updated for larger m. The R&D decision with a large m tends to occur when the project
is less promising. In such a case, the subsidy tends to inefficiently encourage incapable
projects and reduce LE.

6More precisely, the subsidy of 0.430 and 0.576 achieves almost the same LE, 0.8916,
under V = 48.4; and those of 0.090 and 0.312 achieves the same level of LE under V = 77.8.
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Figure 3: Learning efficiency with and without learning across R&D subsidies. The number
of draws is 108 (we need this number of draws because there are two types of randomness:
one is the true value of the probability of success q, which we assume to be uniform on
[0, 1]; the other is the sample paths given q.)

under a policy of granting a subsidy of s for a given q, SL (s|q), is7

SL (s|q) = vFB (q)−

{
βNX − 1−βN

1−β
if completed,

−1−βN

1−β
if quit after N trials,

(13)

where N is obtained from the simulation. We compute SL (s) as the mean

of SL (s|q) over q ∼ U [0, 1].

When we ignore learning, social loss becomes

SLNL(s) =

 E[vFB(q)]−
[(

X + 1
1−β

) ∫ 1

0

(
βq

1−β(1−q)

)M
dq − 1

1−β

]
if vsNL (M |s) > 0,

E[vFB(q)] otherwise.

Figure 4 depicts the simulation outcome. Because of incomplete infor-

7In the case of an R&D subsidy, the research institute incurs an R&D cost of only 1−s.
However, because the government pays s for each trial, the social cost of each trial is 1.
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mation, SL cannot reach zero even when the external cost is internalized

by the optimal subsidy in Corollary 1. Compared with the no-learning case,

learning reduces social loss by 16.0% under the lower V and 7.6% under the

higher V without any subsidy. Further, compared with the case in which the

research institute learns the actual capability of the ongoing project under

s = 0, the optimal R&D subsidy reduce social loss by 10.5% under the lower

V and 1.5% under the higher V . Thus, the impact of an R&D subsidy in

terms of welfare is significant especially when the gap between the social and

private benefits is large.
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Figure 4: The effect of an R&D subsidy on social loss.

3.2.3. Pigouvian Tax on the Old Technology

Figure 5 shows the simulated result for LE under the imposition of a

Pigouvian tax on the old technology. The dotted line indicates the maximum

LE achieved under R&D subsidies. Although the Pigouvian tax stimulates

R&D in the new technology, too much intervention reduces LE and, hence,

some τ maximizes LE. However, it is impossible to exceed the maximum LE
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achieved through an R&D subsidy. Because a Pigouvian tax increases the

unit cost of using the old technology, fewer successes are required to replace

the old technology with the new one. Then, even if the research institute

estimates the true q to be low, it tends to be beneficial for the researcher to

continue the project. Consider a simple example. Suppose that V = 50 and

m = 2. Further, assume β = 1 for simplicity. To make the project promising,

we need at least 50q2 > 2, or q > 0.2. Now, suppose that a Pigouvian tax

reduces m to 1. Then, the minimum level of q required for the project to be

worthwhile is only 0.02 (50q > 1). Such a Pigouvian tax lowers the threshold

level of q 10-fold. In other words, a Pigouvian tax makes learning about

project quality less important.
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Figure 5: Learning efficiency under Pigouvian tax.

Social loss under a Pigouvian tax. We need to extend the model to examine

the behavior of social loss over Pigouvian taxes because we only have the

benefit of the early resolution of the negative externality in the above model.

Here, we introduce the welfare cost of the Pigouvian tax and consider two

cases.
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The welfare cost stems from the loss in social surplus caused by a higher

marginal cost because smaller cost-reduction efforts are required for the com-

mercialization of the new technology under a Pigouvian tax. We first examine

social loss with assuming that the higher marginal cost as a result of a Pigou-

vian tax remains in the market forever. Then, we examine how the result

changes if the R&D project is continued even after the commercialization.

We consider the second case to see the welfare cost from choosing a bad

project. If a bad project happen to succeed due to a Pigouvian tax, it tends

to stop before achieving the original target cost and a higher marginal cost

remains in the market like in the first case.

To introduce the loss in social surplus, we consider a simple monopoly

market. The marginal cost curve is horizontal at the cost level after the

completion of the R&D process. If there is no Pigouvian tax, it is (1 −
α)Mc0 ≤ c∗. However, under a Pigouvian tax, it is (1− α)M−gτ c0 from (11).

This gap in marginal costs generates the gap in social surplus. Assuming

that the decrease in total demand from a higher price caused by this cost

gap is sufficiently small, we can consider the loss in social surplus to be nearly

demand times the cost gap. Since we approximate the social benefit, X, in

per-unit term, it is natural to consider the social benefit after the completion

of the R&D project under a Pigouvian tax as

X −
(

1

(1− α)gτ
− 1

)
(1− α)Mc0. (14)

The upper panel of Figure 6 shows the social loss when this loss in social

surplus is taken into account. SL is defined similar to (13), except that

X is replaced with (14). The horizontal dotted line indicates the minimum

social loss attained by the optimal R&D subsidy, s∗. Under the current set of

parameters, the social loss from a Pigouvian tax is always higher than that

under the optimal subsidy and is getting worse as τ increases.

This result holds only if the cost gap caused by a Pigouvian tax remains

constant forever. Suppose that cost-reduction efforts are made even after

the new technology dominates the market because, for example, the govern-

ment may do away with the Pigouvian tax policy in the future. Then the
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researchers hired by the producer holding the new technology continue to

conduct the same project, aiming to reach the original goal, c∗. Thus, the

loss in social surplus, the second term in (14), decreases gradually as the

project progresses. If the project is aborted as a result of learning, the loss

in social surplus does not decline any more. If a project with a low q has been

continued thanks to a Pigouvian tax, it will be aborted and end in an insuf-

ficient cost reduction with a relatively high probability. When this impact is

significant, the result should be similar to that in the first experiment.8

The bottom panel in Figure 6 illustrates that the second experiment is

different from the first one. A Pigouvian tax can lower the social loss below

the minimum level attained by the R&D subsidy. Hence, under our parame-

ter setting, the early resolution of the negative externality dominates if R&D

is continued after the commercialization of the new technology. The loss from

making a wrong choice does not significantly matter because projects are al-

ready filtered when it achieves the target cost level under a Pigouvian tax, at

least for small τ . Hence, the superiority of R&D subsidy depends on whether

the government can induce suppliers to make cost reduction efforts even af-

ter the new technology successfully replaces the old one. We present this

advantage of Pigouvian taxes depends on the number of projects in Section

4.2.

4. A Model with Two R&D Projects

So far, we have assumed only one R&D project. In this section, we ex-

tend the above-presented model to incorporate two projects, labeled 1 and

2. Both projects create clean technologies, and the completed one replaces

the old dirty technology. We assume that the unknown probabilities of suc-

cess, q1 and q2, differ and are independent. Further, no cost is incurred to

8To run this experiment, we decompose X into a per-period term. We define x(g) as
the per-period social benefit when the number of remaining steps of cost reduction after
the commercialization of the new technology is g, such as

x(g) = (1− β)
[
X −

(
(1− α)−g − 1

)
(1− α)Mc0

]
.
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Figure 6: Social loss over Pigouvian taxes.
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switch projects. Let c10 and c20 be the initial costs, and M1 and M2 be the

corresponding steps required for commercialization.

4.1. The R&D Decision

This extension does not simply generate a two-armed bandit problem

because the value of project 1 depends on the state of project 2 since the

shortest expected time to stopping matters. Specifically, if one of the projects

is completed, there is no reason to conduct the other: v (n1,m1|n2, 0) = 0

even if v (n1,m1|n2,m2) > 0 for m2 > 0.9 Therefore, we cannot divide the

two-project model into two independent one-project models.

The value function for state (n1,m1, n2,m2) is

v (n1,m1, n2,m2)

=

{
max {v1 (n1,m1, n2,m2) , v2 (n1,m1, n2,m2)} if min {m1,m2} > 0,

V if min {m1,m2} = 0,

where

v1 (n1,m1, n2,m2)

= max

{
0,−1 + β

[
E (q1|n1,m1) v (n1 + 1,m1 − 1, n2,m2)

+ (1− E (q1|n1,m1)) v (n1 + 1,m1, n2,m2)

]}
,

and

v2 (n1,m1, n2,m2)

= max

{
0,−1 + β

[
E (q2|n2,m2) v (n1,m1, n2 + 1,m2 − 1)

+ (1− E (q2|n2,m2)) v (n1,m1, n2 + 1,m2)

]}
.

Given the state (n1,m1, n2,m2), the research institute has three options:

conduct no R&D, conduct project 1, or conduct project 2. v1 (n1,m1, n2,m2)

is the value of the state when the researcher undertakes project 1. v2 (n1,m1, n2,m2)

is its counterpart for project 2. The research institute stops R&D if v (n1,m1, n2,m2) =

0. Otherwise, it conducts project 1 (2) if v1 (n1,m1, n2,m2) > (<)v2 (n1,m1, n2,m2).

9See Gittins et al. (2011) for details of multi-armed bandit problems.
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We assume that when v1 (n1,m1, n2,m2) = v2 (n1,m1, n2,m2) > 0, one of the

projects is randomly chosen.

We can compute these value functions backwardly. Leaving the details

to Appendix E, here we sketch the algorithm briefly. Our calculation starts

from state (n̂1(1) − 1, 1, n̂2(1) − 1, 1), where n̂i(1) is the stopping trial of

project i when mi = 1, defined in the one-project model (Proposition 1). In

this state, one success in either project results in the final reward and one

failure in project i results in project i becoming worthless and thereafter the

problem reduces to the one-project model with project j ̸= i. More clearly,

v1 (v2 is analogous) at this state is

v1 (n̂1(1)− 1, 1, n̂2(1)− 1, 1)

= max

{
0,−1 + β

[
E (q1|n1,m1)V

+(1− E (q1|n1,m1)) v̂2 (n2,m2)

]}
,

where v̂2 indicates the value of project 2 in the one-project model, defined

in (3). Then, we calculate the v values for all feasible states (n1,m1, n2,m2)

by descending in ni and ascending in mi, sequentially, until coming at state

(0,M1, 0,M2).

4.2. R&D Subsidy and Pigouvian Tax

Learning Efficiency. Because the logic in the one-project model applies, both

an R&D subsidy and a Pigouvian tax stimulate R&D in the new technology.

The new feature of the two-project model is that the Pigouvian tax may

change the project choice, whereas the R&D subsidy does not. To see this

clearly, consider the following extreme example. Suppose that m2 < m1

but v1 > v2, which occurs when E (q2|n2,m2) is sufficiently small relative to

E (q1|n1,m1). However, if the Pigouvian tax leads to g2,τ ≥ m2 (gi,τ is defined

by (11) for M = Mi), then project 1 is never chosen. Imposing a Pigouvian

tax brings the goal closer, and its impact depends on the original distance

from the goal. An R&D subsidy does not interfere in project selection because

it increases the values of the states at the same rate, 1/ (1− s).

Before moving to the simulation, we must redefine the efficiency measures

for the two-project model. For simplicity, we consider the symmetric case,
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c10 = c20, so that M1 = M2 = M and q
1
= q

2
= q. (It is straightforward to

extend to the case in which c10 ̸= c20.) Pointwise LE at (q1, q2) is

LE (s|q1, q2) =


Pr (“quit”) if max {q1, q2} ≤ q

X
,

Pr (“completion with 1”) if q1 > max
{
q, q2

}
,

Pr (“completion with 2”) if q2 > max
{
q, q1

}
.

Hence, the unconditional LE is

LE (s) =

∫ q

0

[ ∫ q

0
Pr (“quit”|q1, q2, s) dq2

+
∫ 1

q
Pr (“completion with 2”|q1, q2, s) dq2

]
dq1

+

∫ 1

q

[ ∫ q1
0

Pr (“completion with 1”|q1, q2, s, τ) dq2
+
∫ 1

q1
Pr (“completion with 2”|q1, q2, s, τ) dq2

]
dq1.

The top panel of Figure 7 illustrates the simulated impacts of R&D subsi-

dies on LE for the two-project model. The two projects are identical except

for their true values of q, and the parameters are the same as those used in

the previous section. The best R&D subsidy in terms of learning efficiency is

close to that shown in the one-project model. The bottom panel of Figure 7

shows LE under Pigouvian taxes, compared with LE attained by the R&D

subsidy at best. The maximum LE under a Pigouvian tax is below that

shown in the one-project model, which is consistent to the above argument.

Social Loss. Social loss in the two-project model is defined as follows. For

each pair (q1, q2), the first-best outcome is

vFB (q1, q2) =


(
X + 1

1−β

)(
βq̄

1−β(1−q̄)

)M
− 1

1−β
if q̄ ≡ max{q1, q2} > q,

0 otherwise.

Since we assume qi independently follows the standard uniform distribution,

q̄ follows a beta distribution, Beta(2, 1). Then, social loss with two projects

is analogously defined as in the one-project model.

Figure 8 is the simulation result for SL over R&D subsidies. Social loss

is globally smaller than that in the one-project model because the research

institute has multiple options whose qualities are statistically independent.
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Figure 7: The effects on learning efficiency in the two-project model. The top panel is for
R&D subsidies and the bottom panel is for Pigouvian taxes (the dotted horizontal line
indicates the maximum level of LE attained by the R&D subsidy). The parameters are
the same as those used in the one-project model and the two projects are identical except
for their true values of q.
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Figure 8: The effect of an R&D subsidy on social loss in the two-project model.

Other than the level difference, the behaviors of SL are similar to the basic

model.

Figure 9 illustrates SL under Pigouvian taxes for the two cases, which

are described in Section 3.2.3. The top panel shows SL when R&D stops

at the commercialization of the new technology and a high marginal cost

remains forever. The bottom panel is when R&D continues even after the

commercialization, where we assume that the researcher does not switch

projects after one of the two is commercialized. Relative to the one-project

model, the advantage of the Pigouvian tax policy in the second case is not

strong.

4.3. A Selective Subsidy

In this subsection, we present an application of the two-project model. So

far, we have only considered an R&D subsidy policy that treats all projects

equally, which we refer to as a uniform subsidy. In this case, the government

does not interfere in the private research institute’s project selection. In this

subsection, we consider more active government intervention. That is, we

consider a selective subsidy, under which the government offers preferential
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Figure 9: The effect of a Pigouvian tax on social loss in the two-project model. The top
panel: R&D stops once the target is achieved. The bottom panel: R&D is continued even
after commercialization but no switch over projects.
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treatment to one of the two projects.10

Suppose that the government grants a subsidy of s to one of the projects at

the beginning of period T . The target project is unchanged and the subsidiza-

tion policy is maintained until the completion of the R&D project. Provided

that the government has the same information as the research institute has, it

should choose the target project based on v (n1,T−1,m1,T−1, n2,T−1,m2,T−1).
11

Because the project with a higher value in period T incurs a lower private

R&D cost thereafter, the selective subsidy policy tends to lock the research in-

stitute into its target project. This leads the institute to bias its information

collection toward the project being conducted under the subsidy program,

thus discouraging experimentation in the other research project. Therefore,

LE is decreased by the selective subsidy relative to the level under a uniform

subsidy program.

Figure 10 illustrates the deleterious effect of a selective subsidy with T = 5

and V = 48.4. The solid curve represents the relative LE under selective

subsidies, defined as the ratio of LE under a selective subsidy to that under

a uniform subsidy. The dashed curve represents the relative SL defined

analogously. Although a selective subsidy is better than no policy, a large

gap between the two policy programs exists, especially in terms of social loss.

We can see that the gap in social loss is sizable if we set the subsidy at the

optimal level under a uniform subsidy, which is indicated as the vertical line

in the figure. This result is robust to other values of T and V . Therefore, it

is better for the government not to choose a project as the subsidy target as

long as the private research institute makes a rational decision.

Lerner (1999) suggests that one benefit of a selective scheme is the cer-

tification effect in the sense that government selection conveys information

about the quality of a new firm to investors. However, the government must

10Cowan (1991) introduces a “selective subsidy” as a tool to be used by the government
to determine private technology choice. Our setting is more moderate in the sense that
the research institute still has options under the selective subsidy.

11We can also consider the case in which the government changes the target project
based on v in each period. This policy is equivalent to granting a uniform subsidy because
the government reduces the cost of the R&D project chosen by the private researcher.
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Figure 10: The learning efficiency and social loss of a selective subsidy, relative to those
of a uniform subsidy. The vertical line indicates the optimal R&D subsidy. V = 48.4.
(Similar for a higher V .)

know qualities of projects for the certification effect to be effective. In this

subsection, we examined the impact of a selective subsidy when the govern-

ment knows no more than the private sector does. In this case, granting a

selective subsidy substantially lowers learning efficiency and heightens social

loss, as shown in Figure 10.

5. Conclusion and Discussion

R&D subsidies for climate change and renewable energy are common in

many countries, with government-sponsored research programs and grants

available in the United States, the United Kingdom, Denmark, Ireland, Ger-

many, Japan, and the Netherlands.

The decentralized economy underinvests in R&D in the absence of taxes

and subsidies (Jones and Williams (2000)). In the energy sector, governmen-

tal funding plays an important role. For example, private sector investments

in energy have decreased during the past decade, with current governmental

funding accounting for 76% of all R&D expenditures in the US energy sector
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(Nemet and Kammen (2007)). In the case of action on climate change, mar-

ket failures in innovation, such as research spillovers, may justify research

subsidies (Schneider and Goulder (1997)). Popp and Newell (2009) estimate

social returns on environmental R&D and find that these returns are typically

higher than social returns on other R&D investments.

Carraro and Siniscaico (1994) argue that research needs more of an en-

vironmental dimension in the long-term to tackle environmental problems.

They show that high taxes are required to decrease CO2 emissions in the

absence of innovation. Similarly, Hart (2004) demonstrates the importance

of environmentally oriented research in growth models.

In this study, we formulated an R&D project choice model in which the

research institute does not know how long each project will take until the

new technology is commercialized. By focusing on an environmental technol-

ogy, we considered two sources of inefficiency: incomplete information and

external costs. Our model is an optimal stopping model with a finite goal.

By analyzing a simulation based on parameter values distilled mainly from

information on R&D investment in electric vehicles, we showed that an R&D

subsidy achieves the second-best R&D decision and performs better than a

Pigouvian tax on the dirty technology under certain conditions. Moreover,

the optimal R&D subsidy is different depending on whether the government

takes into account the learning process in the research sector.

Analyses of the time paths of subsidies for competing technologies in a

first-best economy (e.g., Kverndokk and Rosendahl (2007)) suggest that sub-

sidies should be higher for technologies with higher spillovers. The authors

of these studies assume that the regulator can select winners for the optimal

subsidization. However, having taken account of learning in R&D activity,

we showed that such selective subsidization is less effective than a uniform

R&D subsidy. Likewise, having studied the role of technology subsidies in

climate policy by using a simple dynamic equilibrium model Kverndokk and

Rosendahl (2007) find that picking winners is complicated. Therefore, we

suggest that governments should grant uniform subsidies rather than trying

to choose winners.

Further research on our model could be used to analyze the correlations
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between projects, because trialing one project might help another. Incorpo-

rating an endogenous number of trials or R&D intensity in one period could

also be a worthwhile extension. Although we focused on R&D activities and

policies, broader approaches can be applied to environmental policy selection

and to their effects on technological change (see Krysiak (2011) for a review).

Considering learning in the context of R&D subsidies and understanding how

these processes interact with other market-based policies represent useful di-

rections for future research.
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Appendix A. Proof of Proposition 1 and Construction of the Value
Function in the One-project Model

Proposition 1 is proved by using Lemmas 1–3. Note that the variables n

and m below are all nonnegative integers.

Lemma 1. The stopping trial for m = 1 is uniquely determined by

n̂ (1) = min {n|βE (q|n, 1)V ≤ 1}

and v (n, 1) > v (n+ 1, 1) for any n = M − 1, ..., n̂ (1)− 1.
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Proof. First, we show v(n, 1) > 0 if and only if βE (q|n, 1)V > 1. If

βE (q|n, 1)V > 1, then v (n, 1) > 0. To show the “only if” part, suppose

that βE (q|n, 1)V ≤ 1 and v (n, 1) > 0 for some n. Then,

v (n+ 1, 1) =
v (n, 1) + 1− βE (q|n, 1)V

β (1− E (q|n, 1))
> v (n, 1) .

Moreover, as E (q|n, 1) is decreasing in n, βE (q|n+ 1, 1)V ≤ 1. Hence,

v (n, 1) is increasing in n and the research project is completed regardless of

the number of trials that end in failure. However, in such a case, we can

analytically compute v (n, 1) as the expected net benefit when the research

institute commits to the project, as follows:

v (n, 1) = E

(
βNV −

N−1∑
i=0

βi

∣∣∣∣∣n, 1
)

=

(
V +

1

1− β

)∫ 1

0

βq

1− β (1− q)
F (dq|n, 1)− 1

1− β
, (A.1)

where N is the number of trials before completion and F (q|n, 1) is the belief
about q, which follows the beta distribution with parameters M and n−M+

2. Because F (q|n, 1) first-order stochastically dominates F (q|n+ 1, 1) and
βq

1−β(1−q)
is increasing in q, the expected net benefit (A.1) decreases with n

(and becomes negative for sufficiently large n), which contradicts the above

result that v (n, 1) is strictly increasing in n. Hence, βE (q|n, 1)V ≤ 1 implies

v (n, 1) = 0. Therefore,

n̂ (1) = min {n|βE (q|n, 1)V ≤ 1} .

Clearly, n̂ (1) is unique because E (q|n, 1) is strictly decreasing in n and

converges to zero as n → ∞.

Given n̂ (1), we can show v (n, 1) > v (n+ 1, 1) for n = M−1, ..., n̂ (1)−1

by induction. Note

v (n̂ (1)− 2, 1) = −1 + β {E (q|n̂ (1)− 2, 1)V + (1− E (q|n̂ (1)− 2, 1)) v (n̂ (1)− 1, 1)}

> −1 + βE (q|n̂ (1)− 2, 1)V > −1 + βE (q|n̂ (1)− 1, 1)V = v (n̂ (1)− 1, 1) .
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Suppose that v (n, 1) > v (n+ 1, 1) for some n ∈ {M − 1, ..., n̂ (1)− 1}.
Then,

v (n− 1, 1) = −1 + β {E (q|n− 1, 1)V + (1− E (q|n− 1, 1)) v (n, 1)}

> −1 + β {E (q|n, 1)V + (1− E (q|n, 1)) v (n+ 1, 1)} = v (n, 1) .

Hence, for any n = M − 1, ..., n̂ (1)− 1, v (n, 1) > v (n+ 1, 1).

Lemma 2. The stopping trial for m ≥ 2 is uniquely determined by

n̂ (m) = min {n|βE (q|n,m) v (n+ 1,m− 1) ≤ 1}

and v (n,m) > v (n+ 1,m) for any n = M − 1, ..., n̂ (m)− 1.

Proof. Letm ≥ 2. Suppose that n̂ (m− 1) uniquely exists and v (n,m− 1) >

v (n+ 1,m− 1) for any n ∈ {M − 1, ..., n̂ (m− 1)− 1}. If βE (q|n,m) v (n+ 1,m− 1) >

1, then v (n,m) > 0 by definition. Suppose that there exists an n̄ such that

βE (q|n̄,m) v (n̄+ 1,m− 1) ≤ 1, and v (n̄,m) > 0.

Then, v (n̄+ 1,m) > v (n̄,m). Given that E (q|n,m) v (n+ 1,m− 1) is de-

creasing in n, {v (n,m)}∞n=n̄ must be an increasing sequence for the given

m. The research institute does not stop the project until it reaches m − 1.

The value obtained from one success should be less than v (n̄,m− 1) because

v (n,m− 1) is decreasing in n. Thus, for n ≥ n̄,

0 < v (n,m) <

(
v (n̄,m− 1) +

1

1− β

)∫ 1

0

βq

1− β (1− q)
F (dq|n,m)− 1

1− β
.

(A.2)

However, given that

lim
n→∞

∫ 1

0

βq

1− β (1− q)
F (dq|n,m) = 0,

the right-hand side in (A.2) becomes strictly negative for sufficiently large n.

This is a contradiction. Hence, v (n,m) > 0 if and only if βE (q|n,m) v (n+ 1,m− 1) >

1. Because E (q|n,m) v (n+ 1,m− 1) is decreasing in n and converges to 0,
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the stopping trial is uniquely determined by

n̂ (m) = min {n|βE (q|n,m) v (n+ 1,m− 1) ≤ 1} .

Moreover, v (n,m) > v (n+ 1,m) for any n ∈ {M −m, ..., n̂ (m)− 1} similar

to the proof of Lemma 1.

Given that this argument holds for m = 1 according to Lemma 1, the

proposition is proved by induction.

Lemma 3. n̂ (m) < n̂ (m− 1) for any m = 2, 3, ...,M .

Proof. Suppose that n̂ (m) ≥ n̂ (m− 1) for some m ∈ {2, 3, ...,M}. Then,

0 < v (n̂ (m)− 1,m) = −1+β

[
E (q|n̂ (m)− 1,m) v (n̂ (m) ,m− 1)

+ (1− E (q|n̂ (m)− 1,m)) v (n̂ (m) ,m)

]
= −1

because v (n̂ (m) ,m− 1) ≤ v (n̂ (m)− 1,m− 1) = 0 and v (n̂ (m) ,m) = 0.

This is a contradiction.

Construction of v (n,m). From Lemma 1, the threshold number of trials,

n̂ (1), is determined by

n̂ (1) = min {n |βE (q|n, 1)V ≤ 1} = ⌈βVM⌉ − 2. (A.3)

If n̂ (1) ≤ M−1, then the R&D project is never promising. Thus, we suppose

that βV is sufficiently high to make n̂ (1) > M − 1.

Starting from v (n̂ (1) , 1) = 0, v (n, 1) for n < n̂ (1) is computed by using

v (n, 1) = max {0,−1 + β [E (q|n, 1)V + (1− E (q|n, 1)) v (n+ 1, 1)]} .

For m ≥ 2, we again consider

n̂ (m) = min {n |βE (q|n,m) v (n+ 1,m− 1) ≤ 1} ,

and define

v (n,m) = −1 + β

{
E (q|n,m) v (n+ 1,m− 1)

+ (1− E (q|n,m) v (n+ 1,m))

}
for n ≤ n̂ (m)− 1,
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where v (n̂ (m) ,m) = 0 by definition.

Appendix B. Proof of Proposition 2

For any feasible state (n,m), the value function must satisfy

v (n,m |V, s)

=

 max

{
0,− (1− s) + β

[
E (q|n,m) v (n+ 1,m− 1 |V, s)
+ (1− E (q|n,m)) v (n+ 1,m |V, s)

]}
for m ≥ 1,

V for m = 0.

Dividing each term by 1− s yields

v (n,m |V, s)
1− s

=

 max

{
0,−1 + β

[
E (q|n,m) v(n+1,m−1|V,s )

1−s

+(1− E (q|n,m)) v(n+1,m|V,s )
1−s

]}
for m ≥ 1,

V
1−s

for m = 0.

This functional equation has the same structure as (3). Therefore,

v

(
n,m

∣∣∣∣ V

1− s
, 0

)
=

v (n,m |V, s)
1− s

.

This relationship ensures that the stopping trials {n̂ (m)}Mm=1 are identical

and R&D decisions are equivalent for situations between (V, s) and
(

V
1−s

, 0
)
.

Appendix C. Proof of Proposition 4

First, note that v (n,m|τ) is decreasing in distance from the goal, m−gτ ,

because v (n,m|τ) has the same structure as v (n,m), defined in (3), even

though the terminal condition is modified. Now, gτ ≥ gτ ′ ≥ 0 by definition.

Consider m = gτ + h for h = 1, 2, ...,M − gτ . Then,

0 = v (n̂ (gτ + h|τ) , gτ + h|τ) ≥ v (n̂ (gτ + h|τ) , gτ + h|τ ′)

because E (q|n̂ (gτ + h|τ) , gτ + h) are common and (gτ + h)−gτ ′ ≥ h. There-

fore, n̂ (gτ + h|τ) ≥ n̂ (gτ + h|τ ′).
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Appendix D. Comparing One-step and Many-step R&D Settings

In this study, we consider many-step R&D. By contrast, much of R&D

economics research deals with one-step R&D. (For example, Bergemann and

Hege (2005) consider the case of M = 1 with learning.) Although our anal-

ysis also applies to one-step R&D, the quantitative impact of learning is

weak in such a one-step environment. Figure D.11(a) illustrates the LE-

maximizing R&D subsidies for different values of M (with the other param-

eters unchanged). Figure D.11(b) shows how the maximum improvements

in LE evolve along with M , normalized by those indices in the no-learning

case. When only a few steps are required to finish the R&D project, the LE-

maximizing subsidy is high, but the improvement in efficiency brought about

by the subsidy policy is negligible. The degree of improvement increases grad-

ually with M until M = 11 because learning opportunities increase with the

total number of steps. The jump at M = 12 occurs because of a structural

change. In the absence of policy and learning, the R&D project does not

start when M ≥ 12 under our current parameter settings.

In summary, we can ignore learning in small-step R&D. Learning matters

only when there is a long way to go.

Appendix E. Construction of the Value Function in the Two-project
Model

First, define n̂i (mi) for i = 1, 2, which is the stopping trial when the

researcher focuses on project i. If ni ≥ n̂i (mi), the researcher does not

conduct project i even when the outside value is 0, which is no more than

the actual outside value because the other project may be worth conducting.

Hence, the values of (n1,m1, n2,m2) equal the values of (nj,mj) in the one-

project model if ni ≥ n̂i (mi) (i ̸= j). Clearly, v (n1,m1, n2,m2) = 0 if

ni ≥ n̂i (mi) for all i and v (n1,m1, n2,m2) = V if mi = 0 for some i. In

addition, v (n1,m1, n2,m2) is not defined if ni < Mi −mi for some i.

The above argument narrows the range of states whose values are defined.

Now, we consider ni < n̂i (mi).

We set m2 = 1. The relevant n2 should be between M2−1 and n̂2 (1)−1.

Let us set n2 = n̂2 (1)−1. If m1 = 1, then the relevant n1 lies between M1−1
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Figure D.11: Panel (a): LE-maximizing R&D subsidies for different values of M . Panel
(b): the maximized LE relative to that in the no-learning case.

and n̂1 (1)− 1. Starting from n1 = n̂1 (1)− 1,

v1 (n̂1 (1)− 1, 1, n̂2 (1)− 1, 1)

= −1 + β

{
E (q1|n̂1 (1)− 1, 1)V

+(1− E (q1|n̂1 (1)− 1, 1)) v (n̂1 (1) , 1, n̂2 (1)− 1, 1)

}

= −1 + β

{
E (q1|n̂1 (1)− 1, 1)V

+(1− E (q1|n̂1 (1)− 1, 1)) v̂2 (n̂2 (1)− 1, 1)

}
, (E.1)

where v̂i (ni,mi) is the value of (ni,mi) in the one-project model. Because v2

for the same state can be defined similarly, we obtain v (n̂1 (1)− 1, 1, n̂2 (1)− 1, 1)

as the maximum of these two values.
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By having v (n̂1 (1)− 1, 1, n̂2 (1)− 1, 1) as the terminal value, we repeat

the calculation to obtain

v1 (n1,m1, n2,m2) = −1+β

{
E (q1|n1,m1) v (n1 + 1,m1 − 1, n2,m2)

+ (1− E (q1|n1,m1)) v (n1 + 1,m1, n2,m2)

}
,

v2 (n1,m1, n2,m2) = −1+β

{
E (q2|n2,m2) v (n1,m1, n2 + 1,m2 − 1)

+ (1− E (q1|n1,m1)) v (n1,m1, n2 + 1,m2)

}
,

v (n1,m1, n2,m2) = max {v1 (n1,m1, n2,m2) , v2 (n1,m1, n2,m2)} ,

over all the remaining states in the ascending order of mi and descending

order of ni.
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